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Power spectrum of proteins

The power spectrum of proteins is modelled by the Guinier law at low
frequencies and the Wilson statistics at high frequencies.

Guinier Law (1937):
At low frequencies the power spectrum decays exponentially

|φ̂(ξ)|2 ≈ |φ̂(0)|2e
−4π2ξT Λ

φ̂(0)
ξ
, for |ξ| � 1

R
,

where R is the size of the molecule and Λ is the moment of inertia

Λij =

∫
φ(x)xixj dx , i, j = 1, 2, 3.

Wilson statistics (1942):
At high frequencies the power spectrum is approximately flat

|φ̂(ξ)|2 ≈ const.

Guinier law is derived by Taylor expansion (straightforward).

The focus of this talk is the derivation of Wilson statistics (more challenging).
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Guinier plot

the radius of gyration, the scattering amplitude is
described by:

F ¼ ðr2 r0ÞVproteine2ð2p2R2
g=3d2Þ

where (r 2 r0) is the difference in scattering
density between protein (r) and solvent (r0).
When written in terms of protein atomic scattering
factors fi:

F ¼ ððr2 r0Þ=rÞð
X

i

nifiÞ e2ð2p2R2
g=3d2Þ

The scattering maximum occurs at zero angle ðd ¼
1Þ where all atoms scatter in phase and is equal
to

P
i nifi multiplied by the solvent contrast term

ðr2 r0Þ=r: The mean structure factor amplitude is
large but decays rapidly with resolution and con-
tinues to reflect shape and solvent to about 10 Å.

Beyond 10 Å, the mean scattering amplitude
depends to some extent on protein-specific features
including fold and secondary structure, but on
average is determined by the essentially random
position of atoms in the interior of the protein.
According to Wilson statistics,10 the average scat-
tering amplitude from randomly positioned atoms

is given by F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i nif 2

i

q
: This average amplitude

decreases slowly with resolution roughly in line

with individual atomic form factors, but is essen-
tially constant when compared to decay in the
shape/solvent region at lower resolution. Predomi-
nantly a-helical structures tend to have stronger
diffraction around 10 Å resolution, whereas those
with larger amounts of b-structure diffract more
strongly around 4.5 Å, producing small deviations
from Wilson scattering.

Experimental structure factor amplitudes may be
placed on an absolute scale by setting the zero
angle scattering equal to ððr2 r0Þ=rÞNatoms and
average scattering amplitude in the Wilson regime
equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Natoms

p
; where Natoms is the number of

equivalent atoms of identical scattering factor

such that Natoms=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Natoms

p
¼ ð

P
i nifi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i nif 2

i

q
Þ: For

a typical protein, Natoms may be determined by
assuming the protein molecular mass is made up of
Natoms equivalent carbon atoms (12 £ Natoms Daltons).
In this simplified model, the scattering amplitude
at both low and high resolution may be expressed
in terms of a single parameter derived from the
molecular mass. The molecular mass of a protein
is usually known in advance of structural study.

The solvent contrast factor ðr2 r0Þ=r is equal to
about 0.28 for X-rays (assuming protein density r
is 0.42 e2/Å3 in proteins and solvent r0 is 0.30 e2/Å3

for ice of mass density 0.92 g/cm3). When calculated

Figure 1. Schematic Guinier plot shows the natural logarithm of the spherically averaged structure factor amplitude
(F) for a protein against 1/d 2, where d is the resolution (Å). Zero angle scattering is equal to Natoms carbon equivalents
of the molecular mass multiplied by the solvent contrast (0.28) and places the scattering on an absolute scale. The
protein scattering curve (red line) consists of a low-resolution region (d . 10 Å) determined by molecular shape and
solvent contrast, and a high-resolution region (d , 10 Å) which approaches the scattering of randomly placed atoms
described by Wilson statistics, which decreases only slightly with resolution and may be approximated by the hori-
zontal line of amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Natoms

p
: The high-resolution region may also have structure corresponding to fold-specific

features, including a-helix and b-sheet. The average noise amplitude is FNoise(1) for a single image or FNoiseð1Þ=
ffiffiffiffi
N

p
after

averaging N images. Low-resolution structure factor amplitudes are also shown for a large structure that might be
studied by tomography and a small molecular mass particle which has a low-resolution scattering amplitude below
the noise level for one image (blue lines). The experimental contrast loss for structure factors at high resolution due
to imperfect images is indicated by a dotted red line labeled by its slope, the temperature factor Bimage. Additional con-
trast lost due to imperfect computations gives a line with slope Boverall, which is the sum of temperature factors Bimage

and Bcomputation. The resolution limit is indicated where the structure factor curve equals the noise level, which in this
example occurs at 106 particles for Boverall, but at 105 particles if Bcomputation ¼ 0.

Single-particle Cryomicroscopy 723

Rosenthal and Henderson, J. Mol. Biol. 2003
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Guinier plot and B-factor sharpening

hand depends on accurate orientation determi-
nation. By using the free hand difference, tilt
angle, and tilt axis as targets for rapidly optimizing
the parameters that influence orientation determi-
nation, the accuracy of the orientations improved.
Orientation determination is influenced by noise,
and each image in a tilt pair will have different
noise features. With the refinement parameters
optimized by hand determination, the minimum
phase residual discriminates between the real
image features and the noise. Better orientations
produce a better map at higher resolution by
reducing the computational temperature factor
(Bcomputation).

Contrast loss and restoration

We have applied the optimized procedures for
the refinement of particle parameters to a dataset
of 3667 untilted images of icosahedral E2CD and
calculated a map. The orientations for all the par-
ticles are shown in Figure 7(a). We plot the Fourier
shell correlation (FSC) for the map in Figure 7(b).
The FSC is the correlation between two indepen-
dent maps, where each map is calculated from
half the images. In the Appendix, we argue that
the resolution of the map should be assigned at
the point where the FSC crosses a threshold of
0.143. This corresponds to the resolution at which
the estimated correlation between a density map
calculated from all the data and a perfect reference
map (Cref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2FSC=ð1 þ FSCÞÞ

p
; also plotted in

Figure 7(b)) is 0.5. Cref is equivalent to the crystallo-
graphic figure-of-merit, a common measure of map

interpretabiliy in X-ray crystallography. The resol-
ution of the map is thus 8.7 Å.

We now assess high-resolution contrast loss in
the experimental map by comparing spherically
averaged structure factor amplitudes to a scatter-
ing reference as shown in the Guinier plot in
Figure 8. The reference structure factors are com-
puted from an X-ray model of the complex (see
the next section for details on the model) assuming
a background solvent density of 1.0 g/cm3. Both
experimental and calculated structure factors are
placed on an absolute scale by setting the zero
angle scattering equal to the product of the sol-
vent-contrast term (0.28) and Natoms, the number
(136,100) of carbon atom equivalents correspond-
ing to a molecular mass of the complex (1.5 MDa).
The experimental structure factor amplitudes have
a similar average value to the reference at low
resolution where scattering is dominated by the
shape and solvent contrast of the complex. Small
differences likely result from the inability to
model solvent adequately in the reference. At high
resolution the amplitudes decay considerably
from the relatively flat profile of the reference.
Also shown is a horizontal line of amplitudeffiffiffiffiffiffiffiffiffiffiffiffiffi

Natoms

p
representing the average scattering ampli-

tude of randomly positioned atoms given by
Wilson statistics, a reference criterion for structure
factor amplitudes at high resolution.

In Figure 8, we also plot noise-weighted struc-
ture factors, CrefF, where Cref is calculated from the
FSC after smoothing (noise-weighted amplitudes
can be calculated up to the resolution at which the
weighting function Cref becomes random and the
amount of signal in the data becomes negligible).

Figure 8. Guinier plot showing the natural logarithm of the spherical average of F versus 1/d 2 for the experimental
map (thick red line), the experimental map amplitudes weighted by Cref (thin red line), weighted amplitudes after
sharpening (broken red line), Wilson statistics (horizontal black line), and the X-ray model (blue line). Linear fit of
data for 1/d 2 between 0.005 and 0.015 yields B ¼ 1200 Å2 for the experimental map and slope 200 Å2 for the model
structure factors (dotted black lines). The difference, B ¼ 21000 Å2, is used to sharpen the experimental map.

Single-particle Cryomicroscopy 733

Rosenthal and Henderson, J. Mol. Biol. 2003
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Guinier Law

Let φ(x) be the electrostatic potential of the molecule.
The Fourier transform φ̂(ξ) is

φ̂(ξ) =

∫
φ(x)e−2πı〈ξ,x〉 dx .

Assume the molecule is centered such that its center of mass is at the origin:∫
φ(x)xi dx = 0, i = 1, 2, 3.

Equivalently, in vector notation
∫
φ(x)x dx = 0.

Assume that the molecule has size R, e.g., the molecule is compactly supported
inside a ball of radius R: φ(x) = 0 for |x | > R.
2nd order Taylor approximation of e−2πı〈ξ,x〉 for |ξ| � 1

R (low frequencies)

e−2πı〈ξ,x〉 ≈ 1− 2πı〈ξ, x〉+
(2πı)2

2
〈ξ, x〉2 = 1− 2πıξT x − 2π2ξT xxT ξ.

The Fourier transform for |ξ| � 1
R :

φ̂(ξ) ≈
∫
φ(x)

[
1− 2πıξT x − 2π2ξT xxT ξ

]
dx = φ̂(0)− 2π2ξT ΛξT ,

where Λ =
∫
φ(x)xxT dx is the inertia tensor.

The first order term vanishes due to the center of mass assumption.
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Wilson statistics: Random bag of atoms

Suppose a “random” protein consisting of N atoms whose locations
X1,X2, . . . ,XN are i.i.d.

For example, each Xi could be uniformly distributed inside a container Ω ⊂ R3,
e.g., a ball or a cube, though other shapes and distributions are possible.

The electrostatic potential is modelled as

φ(x) =
N∑

i=1

f (x − Xi )

where f is a bump function such as a Gaussian, or a delta function in the limit of
an ideal point mass f (x − Xi ) = δ(x − Xi ).

For simplicity of exposition, we assume that the atoms are identical. Otherwise,
one can use a different f for the scattering from each atom type.

The Fourier transform is given by

φ̂(ξ) =
N∑

i=1

f̂ (ξ)e−2πı〈ξ,Xi 〉 = f̂ (ξ)
N∑

i=1

e−2πı〈ξ,Xi 〉
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Wilson Statistics

φ̂(ξ) = f̂ (ξ)
N∑

i=1

e−2πı〈ξ,Xi 〉

Wilson’s original argument (Nature, 1942):

|φ̂(ξ)|2 = |̂f (ξ)|2
∣∣∣∣∣

N∑
i=1

e−2πı〈ξ,Xi 〉

∣∣∣∣∣
2

= |̂f (ξ)|2
 N∑

i,j=1

e−2πı〈ξ,(Xi−Xj )〉


= |̂f (ξ)|2

N +
∑
i 6=j

e−2πı〈ξ,(Xi−Xj )〉


≈ N |̂f (ξ)|2.

Since f̂ (ξ) = 1 for an ideal point mass, the power spectrum is flat: |φ̂(ξ)|2 ≈ N.

Wilson argued that the sum of the complex exponentials is negligible as the
terms wildly oscillate and cancel each other, especially for high frequency ξ.

We now try to make this hand wavy argument more rigorous.
(We are not aware of a mathematical derivation of Wilson statistics in the
literature.)
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Wilson Statistics

|φ̂(ξ)|2 = |̂f (ξ)|2
N +

∑
i 6=j

e−2πı〈ξ,(Xi−Xj )〉

 .

The challenge is to show that there is so much cancellation that adding O(N2)
oscillating terms of size O(1) is negligible compared to N.

For a random walk, the sum of O(N2) i.i.d zero-mean random variables of
variance O(1) is O(N) (the square-root of the number of terms).

We want to show that the sum is negligible compared to N, so more cancellation
must be happening.

We also need to examine the role that ξ plays: Omitting f̂ (ξ), for ξ = 0, clearly
|φ̂(0)|2 = N2. What is the mechanism by which |φ̂(ξ)|2 decays from N2 to N as ξ
increases?
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Scaling argument

φ̂(ξ) = f̂ (ξ)
N∑

i=1

e−2πı〈ξ,Xi 〉

Since X1, . . . ,XN are i.i.d, we may be tempted to apply the Central Limit
Theorem (CLT) and conclude that φ̂(ξ) is approximately normally distributed,
with mean and variance that can be calculated.
However, one should proceed with caution, because if the container Ω is fixed,
then in the limit N →∞, the density of the atoms grows indefinitely, whereas the
density of atoms in a protein is clearly bounded.
To keep the density of atoms fixed, we allow the container Ω to grow with N and
denote it ΩN .
Specifically, the volume of the container ΩN should be proportional to N.
The length-scale is therefore proportional to N1/3, that is, ΩN = N1/3Ω1, or
Xi = N1/3Yi with Yi ∼ U(Ω1) in the uniform case, and i.i.d in general. Now,

φ̂(ξ) = f̂ (ξ)
N∑

i=1

e−2πı〈ξ,N1/3Yi 〉

The CLT cannot be applied anymore, as the random variables depend on N.
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Shape of container

φ̂(ξ) = f̂ (ξ)
N∑

i=1

e−2πı〈ξ,N1/3Yi 〉

The expected value of φ̂(ξ):

E[φ̂(ξ)] = Nf̂ (ξ)E[e−2πı〈ξ,N1/3Y〉] = Nf̂ (ξ)

∫
e−2πı〈ξ,N1/3y〉g(y) dy = Nf̂ (ξ)ĝ(N1/3ξ),

where g(y) is the probability density function of Y , and ĝ is its Fourier transform.

The dependency on ĝ(N1/3ξ) and N being a large parameter together suggest
that the decay rate of ĝ at high frequencies is critical for analyzing Wilson
statistics.

Different container shapes and choices of g can lead to different behavior of its
Fourier transform ĝ.

Before stating known theoretical results, it is instructive to consider a couple of
examples.
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Uniform distribution in a ball

E[φ̂(ξ)] = Nf̂ (ξ)ĝ(N1/3ξ)

Here Ω1 is a ball of radius 1, denoted B.

The uniform density is gB(x) = 1
4π/3χB(x), where χB is the characteristic

function of the ball.

It is a radial function, a property that can readily be used to calculate its Fourier
transform as

ĝB(ξ) = −3 cos(2π|ξ|)
4π2|ξ|2 +

3 sin(2π|ξ|)
8π3|ξ|3 .

In particular, |ĝB(ξ)| ≤ C
|ξ|2 for some constant C > 0.
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Uniform distribution in a cube

Here Ω1 = [− 1
2 ,

1
2 ]3 is the unit cube.

The uniform distribution gC is a product of three rectangular window functions
whose Fourier transform is the sinc function:

ĝC(ξ) =
3∏

i=1

sinc(ξi ) =
3∏

i=1

sin(πξi )

πξi
.

Taking ξ along one of the axes, e.g., ξ = (|ξ|, 0, 0) gives ĝC(|ξ|, 0, 0) =
sin(π|ξ|)
π|ξ| .

In this case, |ĝC(ξ)| ≤ C
|ξ| for some C > 0.

Notice that the decay of ĝC in directions not normal to its faces is faster.

For example, for ξ = 1√
3

(|ξ|, |ξ|, |ξ|) we have∣∣∣∣ĝC

(
1√
3

(|ξ|, |ξ|, |ξ|)
)∣∣∣∣ =

| sin3( 1√
3
π|ξ|)|

( 1√
3
π|ξ|)3

≤ C
|ξ|3 .

We are now ready to state existing theoretical results about the decay rate of the
Fourier transform for containers of general shape.

Amit Singer (Princeton University) October 2021 12 / 32



Decay rate of Fourier transform - Theorem 1

(see Stein and Shakarchi, Functional analysis: introduction to further topics in
analysis, vol. 4., Princeton University Press, 2011 – page 336)

Theorem
1 Suppose Ω ⊂ Rd is a bounded region whose boundary M = ∂Ω has

non-vanishing Gauss curvature at each point, then

|χ̂Ω(ξ)| = O(|ξ|−
d+1

2 ), as |ξ| → ∞.

2 If M has m non-vanishing principal curvatures at each point, then

|χ̂Ω(ξ)| = O(|ξ|−(m+2)/2), as |ξ| → ∞.

The decay rates previously observed for the three-dimensional ball (d = 3 or m = 2)
and the cube (m = 0) are particular cases of Theorem 1.
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Decay rate of spherically averaged Fourier transform

Although the decay rate in different directions could be different (as the example of the
cube illustrates), for a large family of containers (convex sets and open sets with
sufficiently smooth boundary surface), Theorem 2 asserts that the spherical average
of the power spectrum has the same decay rate as that of the ball.

L. Brandolini, S. Hofmann, and A. Iosevich, “Sharp rate of average decay of the
Fourier transform of a bounded set,” Geometric & Functional Analysis GAFA, vol. 13,
no. 4, pp. 671–680, 2003.

Theorem
Suppose Ω ⊂ Rd is a convex body or an open bounded set whose boundary ∂Ω is
C3/2. Then, ∫

Sd−1
|χ̂Ω(kω)|2 dω = O(k−(d+1)), as k →∞.

Here k = |ξ| is the radial frequency and Sd−1 is the unit sphere in Rd .

We are now in position to state and prove our main result that fully characterizes the
regime of validity of Wilson statistics.
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Validity regime of Wilson statistics

Theorem (S, 2021)
1 For the random bag of atoms model, the expected power spectrum is given by

E
[
|φ̂(ξ)|2

]
= |̂f (ξ)|2

(
N + N(N − 1)

∣∣∣ĝ(N1/3ξ)
∣∣∣2) .

2 If the container is a convex body or an open set with a C3/2 boundary surface,
and the atomic locations are uniformly distributed in the container, then the
expected spherically-averaged power spectrum satisfies

E
[

1
4π

∫
S2
|φ̂(kω)|2 dω

]
= |̂f (k)|2 (N + o(N)) ,

for k � N−1/12.
3 If the Fourier transform of the density g satisfies |ĝ(ξ)| ≤ C|ξ|−α, then

E
[
|φ̂(ξ)|2

]
= |̂f (ξ)|2 (N + o(N)) , for |ξ| � N−β ,

where β =
2α− 3

6α
.

Amit Singer (Princeton University) October 2021 15 / 32



Proof - Part I

Start with Wilson’s original approach:

|φ̂(ξ)|2 =

∣∣∣∣∣f̂ (ξ)
N∑

i=1

e−2πı〈ξ,N1/3Yi 〉

∣∣∣∣∣
2

= |̂f (ξ)|2
N∑

i,j=1

e−2πı〈ξ,N1/3(Yi−Yj )〉

= |̂f (ξ)|2
N +

∑
i 6=j

e−2πı〈ξ,N1/3(Yi−Yj )〉

 .

Since the Yi ’s are i.i.d, the expected power spectrum satisfies

E
[
|φ̂(ξ)|2

]
= |̂f (ξ)|2

N +
∑
i 6=j

E
[
e−2πı〈ξ,N1/3(Yi−Yj )〉

]
= |̂f (ξ)|2

N +
∑
i 6=j

E
[
e−2πı〈ξ,N1/3Yi 〉

]
E
[
e2πı〈ξ,N1/3Yj 〉

]
= |̂f (ξ)|2

(
N + N(N − 1)

∣∣∣E [e−2πı〈ξ,N1/3Y〉
]∣∣∣2)

= |̂f (ξ)|2
(

N + N(N − 1)
∣∣∣ĝ(N1/3ξ)

∣∣∣2) .
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Proof - Part II

We proved

E
[
|φ̂(ξ)|2

]
= |̂f (ξ)|2

(
N + N(N − 1)

∣∣∣ĝ(N1/3ξ)
∣∣∣2) .

Assuming f (hence also f̂ ) are radial functions, the expectation of the
spherically-averaged power spectrum satisfies

E
[

1
4π

∫
S2
|φ̂(kω)|2 dω

]
= |̂f (k)|2

(
N + N(N − 1)

1
4π

∫
S2

∣∣∣ĝ(N1/3kω)
∣∣∣2 dω

)
.

Theorem 2 with d = 3 implies

N(N − 1)
1

4π

∫
S2

∣∣∣ĝ(N1/3kω)
∣∣∣2 dω = O(N2/3k−4).

This term is negligible compared to N for k � N−1/12, proving part II:

E
[

1
4π

∫
S2
|φ̂(kω)|2 dω

]
= |̂f (k)|2 (N + o(N)) ,

for k � N−1/12.
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Theoretical Guinier plots and cutoff frequencies

The protein density is approximately ρ ≈ 0.8 Da/Å
3
. The cutoff frequency is

kc = 0.28R−1/4 = 0.31M−1/12
W

For the larger molecule with R = 100Å the power spectrum is approximately flat
above k2 = 0.01Å

−2
corresponding to 10Å resolution, whereas for the smaller

molecule with R = 25Å the transition occurs closer to k2 = 0.015Å
−2

, or 8.2Å
resolution.

The cutoff frequencies are in agreement with empirical evidence about the
validity regime of Wilson statistics.
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Transition to Wilson statistics

E
[
|φ̂(ξ)|2

]
= |̂f (ξ)|2

(
N + N(N − 1)

∣∣∣ĝ(N1/3ξ)
∣∣∣2) .

N(N − 1)
1

4π

∫
S2

∣∣∣ĝ(N1/3kω)
∣∣∣2 dω = O(N2/3k−4).

The spherically-averaged power spectrum decays to its high frequency limit as
k−4.

At first, the 1/12 exponent of the cutoff frequency k0 = N−1/12 might seem
mysterious.

In hindsight, it is simply the product of the dimension d = 3 that resulted in the
scaling of N1/3 and the decay rate exponent of k−4.
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Statistical fluctuations

Even though we characterized the expected power spectrum, one may wonder
whether the statistical fluctuations of the power spectrum could overwhelm its
mean.

This turns out not to be the case.

Similar to the derivation of Wilson statistics, one can show that if |ĝ(ξ)| ≤ C|ξ|−2

then
E
[
|φ̂(ξ)|4

]
= N2 |̂f (ξ)|4 + o(N2), for |ξ| � N−1/12.

Since E
[
|φ̂(ξ)|2

]
= N |̂f (ξ)|2 + o(N) for |ξ| � N−1/12, it follows that for

|ξ| � N−1/12

Var(|φ̂(ξ)|2) = E
[
|φ̂(ξ)|4

]
− E

[
|φ̂(ξ)|2

]2
= o(N2).

In other words, the standard deviation of the power spectrum is o(N), so the
fluctuation is smaller than the mean value.
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Generalizations and applications to cryo-EM

Existing applications:

Map sharpening, B-factor correction, B-factor flattening, or B-factor sharpening:
estimate the B-factor from the Guinier plot, and boost medium and high
frequency components to agree with Wilson statistics.

B-factor sharpening increases the contrast of many structural features of the
map and helps to model the atomic structure.

Wilson statistics is also used to reason about and extrapolate the number of
particles required to high resolution reconstruction.
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Application to Bayesian Inference 3-D Refinement

A potential application of Wilson statistics is to 3-D refinement.
The Bayesian inference framework underlying RELION requires the covariance
matrix of φ̂ and approximates it with a diagonal matrix.
For tractable computation, the variance is further assumed to be a radial
function.

Scheres, JSB 2012; Scheres, JMB 2012
The covariance matrix can be determined for the random bag of atoms model
underlying Wilson statistics:

Cov[φ̂](ξ1, ξ2) = E[φ̂(ξ1)φ̂(ξ2)]− E[φ̂(ξ1)]E[φ̂(ξ2)]

The two terms are given by

E[φ̂(ξ1)φ̂(ξ2)] = f̂ (ξ1)f̂ (ξ2)
[
Nĝ(N1/3(ξ1 − ξ2)) + N(N − 1)ĝ(N1/3ξ1)ĝ(N1/3ξ2)

]
,

and
E[φ̂(ξ1)]E[φ̂(ξ2)] = N2 f̂ (ξ1)f̂ (ξ2)ĝ(N1/3ξ1)ĝ(N1/3ξ2).

Therefore,

Cov[φ̂](ξ1, ξ2) = Nf̂ (ξ1)f̂ (ξ2)
[
ĝ(N1/3(ξ1 − ξ2))− ĝ(N1/3ξ1)ĝ(N1/3ξ2)

]
.
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Application to Bayesian Inference 3-D Refinement

Cov[φ̂](ξ1, ξ2) = Nf̂ (ξ1)f̂ (ξ2)
[
ĝ(N1/3(ξ1 − ξ2))− ĝ(N1/3ξ1)ĝ(N1/3ξ2)

]
.

This result implies a vast reduction in the number of parameters needed to
describe the covariance matrix.

In general, for a 3-D map represented as an array of L3 voxels, the covariance
matrix is of size L3 × L3 which requires O(L6) entries, which is prohibitively large.

The result suggests that the covariance depends on only O(L3) parameters.

Furthermore, approximating ĝ(ξ) by a radial function implies that the covariance
depends on just O(L) parameters, the same number of parameters in the
existing Bayesian inference method for 3-D iterative refinement.
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Application to Bayesian Inference 3-D Refinement

Cov[φ̂](ξ1, ξ2) = Nf̂ (ξ1)f̂ (ξ2)
[
ĝ(N1/3(ξ1 − ξ2))− ĝ(N1/3ξ1)ĝ(N1/3ξ2)

]
.

Comparing the two terms in the covariance, the decay of ĝ implies that
|ĝ(N1/3(ξ1 − ξ2))| � |ĝ(N1/3ξ1)ĝ(N1/3ξ2)| whenever |ξ1|, |ξ2| � N−1/3.

Therefore, for |ξ1|, |ξ2| � N−1/3

Cov[φ̂](ξ1, ξ2) = Nf̂ (ξ1)f̂ (ξ2)ĝ(N1/3(ξ1 − ξ2))(1 + o(1)).

ĝ(N1/3(ξ1 − ξ2)) is largest for ξ1 = ξ2 and decays with increasing distance
|ξ1 − ξ2|.
The covariance matrix is approximately a band matrix with bandwidth O(N−1/3).

N−1/3 is a very low frequency corresponding to resolution of the size of the
protein (as implied by the N1/3 scaling). Therefore, the covariance is well
approximated by a band matrix with a small number of diagonals.

This serves as a theoretical justification for the diagonal approximation in the
Bayesian inference framework, as correlations of Fourier coefficients with
|ξ1 − ξ2| � N−1/3 are negligible.

On the flip side, correlations for which |ξ1 − ξ2| � N−1/3 should not be ignored
and correctly accounting for them could potentially lead to further improvement.
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Application to Bayesian Inference 3-D Refinement

Cov[φ̂](ξ1, ξ2) = Nf̂ (ξ1)f̂ (ξ2)
[
ĝ(N1/3(ξ1 − ξ2))− ĝ(N1/3ξ1)ĝ(N1/3ξ2)

]
.

Note that the diagonal of the covariance matrix satisfies

Var(φ̂(ξ)) = Cov[φ̂](ξ, ξ) = N |̂f (ξ)|2
[
1− |ĝ(N1/3ξ)|2

]
.

The variance vanishes for ξ = 0 because φ̂(0) = N regardless of atomic
positions.

In existing Bayesian inference approaches, the mean of each frequency voxel is
assumed to be zero.

However, for the random bag of atoms model the variance dominates the
squared mean only for |ξ| � N−1/12, which is the validity regime of Wilson
statistics.

It is justified to assume a zero-mean signal only for high frequencies, but not at
low frequencies.

Including an explicit (approximately radial) non-zero mean in the Bayesian
inference framework may therefore bring further improvement.
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Method of moments for 3-D reconstruction

Kam (1980) suggested an autocorrelation method for determining the 3-D
structure from the moment statistics of the noisy 2-D images.

Kam’s original method is limited to uniform distribution of viewing directions.

Recently, Kam’s approach was extended to non-uniform distributions (Sharon et
al, Inverse Problems 2020) and to reconstruction directly from micrographs
without particle picking (Bendory et al, Inverse Problems 2019).

These methods are based on sample moments and higher order spectra, but so
far have been limited to relatively low resolution.
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Wilson statistics and the autocorrelation approach

E
[
|φ̂(ξ)|2

]
= |̂f (ξ)|2

(
N + N(N − 1)

∣∣∣ĝ(N1/3ξ)
∣∣∣2)

Wilson statistics highlights two difficulties for the moment-based approach for
reconstruction directly from micrographs without particle picking.

First, the power spectrum drops from N2 at low frequencies to N at medium-high
frequencies. The method would give much more emphasis to fitting the
low-frequency content of the map.

Second, and perhaps more discouraging, there are many different molecules
(corresponding to different realizations of random placement of atoms) that have
approximately the same flat power spectrum at high frequencies. Recovering the
3-D map from its power spectrum is therefore ill-conditioned, especially at
medium-high frequencies due to the “universality” of the power spectrum.

What about higher order spectra?
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Higher order Wilson statistics

Next, calculate the expected bispectrum for the random “bag of atoms” model in
order to find its implication on the third order autocorrelation.

Use φ̂(ξ) = f̂ (ξ)
∑N

i=1 e−2πı〈ξ,Xi 〉 to calculate the expectation of φ̂(ξ1)φ̂(ξ2)φ̂(ξ3):

E
[
φ̂(ξ1)φ̂(ξ2)φ̂(ξ3)

]
= f̂ (ξ1)f̂ (ξ2)f̂ (ξ3)E

 N∑
i,j,k=1

e−2πı〈ξ1,N
1/3Yi 〉e−2πı〈ξ2,N

1/3Yj 〉e−2πı〈ξ3,N
1/3Yk 〉


= f̂ (ξ1)f̂ (ξ2)f̂ (ξ3)

[
Nĝ
(

N1/3(ξ1 + ξ2 + ξ3)
)

+N(N − 1)ĝ
(

N1/3(ξ1 + ξ2)
)

ĝ
(

N1/3ξ3

)
+N(N − 1)ĝ

(
N1/3(ξ1 + ξ3)

)
ĝ
(

N1/3ξ2

)
+N(N − 1)ĝ

(
N1/3(ξ2 + ξ3)

)
ĝ
(

N1/3ξ1

)
+ N(N − 1)(N − 2)ĝ

(
N1/3ξ1

)
ĝ
(

N1/3ξ2

)
ĝ
(

N1/3ξ3

)]
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Higher order Wilson statistics

Similar to the power spectrum |φ̂(ξ)|2 which is the Fourier transform of the
autocorrelation function, the bispectrum φ̂(ξ1)φ̂(ξ2)φ̂(−(ξ1 + ξ2)) is the Fourier
transform of the triple-correlation function.

The bispectrum, like the power spectrum, is also shift-invariant. As such, it plays
an important role in various autocorrelation analysis techniques.

For the expected bispectrum we set ξ1 + ξ2 + ξ3 = 0:

E
[
φ̂(ξ1)φ̂(ξ2)φ̂(ξ3)

]
= f̂ (ξ1)f̂ (ξ2)f̂ (ξ3)

[
N + N(N − 1)

∣∣∣ĝ (N1/3ξ1

)∣∣∣2
+N(N − 1)

∣∣∣ĝ (N1/3ξ2

)∣∣∣2 + N(N − 1)
∣∣∣ĝ (N1/3ξ3

)∣∣∣2
+ N(N − 1)(N − 2)ĝ

(
N1/3ξ1

)
ĝ
(

N1/3ξ2

)
ĝ
(

N1/3ξ3

)]
The bispectrum drops from N3 for ξ1 = ξ2 = ξ3 = 0 to N at high frequencies.

This drop is even more pronounced than that of the power spectrum that
decreases from N2 to N.

This may lead to numerical difficulties in inverting the bispectrum as it has a
large dynamic range, e.g., it spans eight orders of magnitude for N = 104.
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Discussion

Wilson statistics is an instance of a universality phenomenon: all proteins
regardless of their shape and specific atomic positions exhibit a similar power
spectrum at high frequencies. This universality is a blessing and a curse at the
same time. On the one hand, it enables to correct the magnitudes of the Fourier
coefficients of the reconstructed map so they agree with the theoretical
prediction. On the other hand, it implies that the high frequency part of the power
spectrum is not particularly useful for structure determination, as it does not
discriminate between molecules.

The generalization of Wilson statistics to higher order spectra shows that the
bispectrum is ill-conditioned and becomes flat at high frequencies. These
observations may help explain difficulties of the autocorrelation approach as a
high resolution reconstruction method.

Wilson statistics ignores correlations between atomic positions in the protein. It
is well known that the power spectrum deviates from Wilson statistics at
frequencies that correspond to interatomic distances associated with secondary
structure such as α-helices which produce a peak at 10Å and beta-sheets which
produce a peak at 4.5Å.

Amit Singer (Princeton University) October 2021 30 / 32



Summary

Presented the first formal mathematical derivation of Wilson statistics.

k0 = N−1/12 is the (dimensionless) frequency above which the power spectrum
is approximately flat.

The random bag of atoms model enables the derivation of useful statistics
beyond the power spectrum, such as the 3-D covariance and higher order
spectra (bispectrum).

These generalizations of Wilson statistics can potentially be applied to other
aspects of the computational pipeline of single-particle analysis beyond B-factor
correction.
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Thank You!
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