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@ Motivation: Riesz Bases of Exponentials
e Basis Extraction/Complementation

e Main Results

@ One Interval: Extracting a Basis

Q Two Intervals: Beatty-Fraenkel Sequences.

G Three or more intervals: Calculus of Avdonin Maps
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Orthogonal Bases of Exponentials

Given a countable set A C RY, define £(A) to be the
exponential system

EN) ={ex(t): e A} = {20 xe AL

Theorem

£(Z9) is an orthonormal basis for 2[0,1]9. f € L2[0,1]9 can be

written
f(t)= > (f,en) en(t).

nezd
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Orthogonal Bases of Exponentials

We will be working in d = 1 with the following easy variant.

Given o € R and a > 0. Then with N = 212 £(A) is an
orthogonal basis for L2(1) where | is any interval with |I| = a.

What is most important here is the length of the interval, and
less so the interval itself.
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Existence of Orthogonal Bases of Exponentials

@ Fundamental Question: Given a domain Q C R?, does
there exist a countable set A such that £(A) is an
orthogonal basis for L2(Q)?

@ Fuglede (1974) conjectured the following: A domain
Q C RY admits an orthogonal basis of the form £(A) if and
only if Q tiles RY by A, that is,

o (Q+AN)N(Q+XN) =10, ae.if A, X are distinct elements of A,
o RI= [ J(Q+N).
AEA
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Existence of Orthogonal Bases of Exponentials

@ Fuglede proved that the conjecture held for Q2 a
fundamental domain for a lattice A.

@ The conjecture is false for d > 5 (Tao, 2004), for d = 4
(Matolcsi, 2005), and for d = 3 (Matolcsi, Koulountzakis,
Balint, Mora, 2005). However, the conjecture remains
unsolved in full generality for d = 1, 2.

@ If Q is a convex body in RY, then the conjecture holds in all
dimensions. (Lev, Matolcsi, 2019).
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Riesz Bases

By passing from an orthogonal to a non-orthogonal basis, we
open up new possibilities.

Definition

A Riesz basis of a Hilbert space # is the image of an
orthonormal basis under a bounded, invertible operator on .

Theorem

Given Q C RY, £(N) is a Riesz basis of L?(Q) if and only if
(1) span&(N)=L?(Q) and
(2) for some 0<A,B<oo and every {c\} € (?(N),

AZ|C>\|2§/ ‘chezmu,n
X Q

AEN

2
dx <BY |ayf
A
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Riesz Bases

For a Riesz basis £(N\) of L?(Q) exists {gx}ren SO that for all
f € L2(Q) we have

f(X) L:2 Z<f7 g}\> e2'7ri)\x

AEN

Theorem (Kadec 1/4-theorem)

For o : ¢ — R, £(Range(y)) is a Riesz basis for L2(1) for
any interval | with |1| = a if

1

k+a\  kta 1
a ) a < 4a°

sup ‘90(
keZ
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Fundamental Questions on Riesz Bases

@ Given a domain Q C RY, does there exist a countable set A
such that £(A) is a Riesz basis for L?(Q)?

@ There is no 2 for which such a Riesz basis is known not to
exist.

@ In relatively few cases is it known how to construct such a
basis.
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Kozma and Nitzan (2015)

Let{h, bk, ..., I,} be a collection of disjoint subintervals of
[0, 1]. Then there exists N C Z such that E(N) is a Riesz basis
for L2(hUkU --- Ulp).

In the paper the authors recount an imaginary conversation
with a graduate student who asks: Why not just find sets A,
such that (M) is a Riesz basis for L2(ly), and let

A=A UNU---UANA?
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Are unions of Riesz bases Riesz bases of unions?

Sometimes they are.

o o o o o

o
7 8 9 10 11 12
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o O
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Are unions of Riesz bases Riesz bases of unions?

Sometimes they are.

£(2z) is OB of L2[0, }]

[ ] [¢] [ ] [¢] [ ] [¢] o O [ ] [¢] [ ] [¢] [ ] [¢] o [¢] [ ] [¢] [ ]

2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
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Are unions of Riesz bases Riesz bases of unions?

Sometimes they are.

£(22)isOBof 120.]] . £(2Z+1)is OB of L2[},1]
0 2
| | |
[ | |
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ) [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
6 5 -4 3 2101 2 3 45 6 7 8 9 10 11 12
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Are unions of Riesz bases Riesz bases of unions?

Sometimes they are.

£(2z) is OB of L2[0, }] . €(2Z+1)is OB of 2[5, 1]

0 2
|
|

£(Z) = £(2Z + 1) U E(2Z) is ONB of L2[0, 1]
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Sometimes they’re not.

A ={0} U {2n— I}ns0 U {2n+ 1}nco
N ={2n+1 - %}n>0 u{2n—-1+ %}n<0

0 5 1
| |
|

[¢] [¢] [¢] [¢] [¢] [¢] o O [¢] [¢] [¢]

o O
9 8 7 6 -5 4 -3 -2-1 0 1 2 3
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Sometimes they’re not.
A ={0} U {2n— %}n>0 U {2n+ %}n<0
/\2 = {2n+ 1-— %}n>0 U {2n -1+ %}n<0

£(A1) is RB of L2[0, 1]

— N|—=

[¢] oce O oe O oe O ce O [ ] O @O0 O @O0 O @O0 O @O0 [¢]

9 8 -7 6 543 -2-10 1 2 3 45 6 7 8 9
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Sometimes they’re not.

A ={0} U {2n— %}n>0 U {2n+ %}n<0
/\2 = {2n+ 1-— %}n>0 U {2n -1+ %}n<0

£(Ny) is RB of L2[0, §] E(A2) is RB of L?[},1]

ce OCe Oe Oe Oe Oe Ce O Oe @ eO 6O eO eO eO eO eO o0 oo

9 8 -7 6 543 -2-101 2 3 45 6 7 8 9
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Sometimes they’re not.

A ={0} U {2n— %}n>0 U {2n+ %}n<0
Ao ={2n+1— %}n>0 u{2n—-1+ %}n<0

E(M)isRBoOfL2[0,3] E(A2)is RBof L2[},1]

0 2
|
|

E(Ay UNy) is not RB of L2[0, 1]

ce OCe Oe O Oe O Ce Oe Oe @ eO 6O eO eO eO eO eO o0 oo

9 8 -7 6 543 -2-101 2 3 45 6 7 8 9
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Basis extraction (S. Avdonin)

Theorem (Basis extraction)

Suppose that for N C R, £(A) is a Riesz basis for L?[0,1]. Then
for every 0 < a < 1 there exists N C A\ such that E(N') is a
Riesz basis for L2[0, a].

Question: Is it necessarily true that £(A \ A') is a Riesz basis
for L2[a, 1]?
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Basis complementation (S. Avdonin)

Theorem (Basis complementation)

Let0 < a < 1 and suppose that for N C R, £(A) is a Riesz basis
for L2[0, o]. Then there exists N' O A such that E(N') is a Riesz
basis for L2[0,1].

Question: Is it necessarily true that £(A’ \ A) is a Riesz basis
for L2[a, 1]?
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Answer: No. (Dae Gwan Lee)

A={2n}nco U {2n—1+ §}nso

A is a perturbation of {2n — L} nez

o
L o=
-
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Answer: No. (Dae Gwan Lee)

N= {2n}n§0 U {2n -1+ %}n>0

A is a perturbation of {2n — F}nez

E(N) is RB of L2]0, ]
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Answer: No. (Dae Gwan Lee)

A= {2n}p<o U {2n—1+ I}z

A is a perturbation of {2n — F}nez

E(N) is RB of L2]0, ]

o ee® o ee® O ee® C eo® o ee® a» e O a» e O ™ e O a» e O ™ e

9 8 -7 6 5 43 2101 2 3 45 6 7 8 9
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Answer: No. (Dae Gwan Lee)

AN={2n}pco U {2n =1+ §}ns0
/\o = {2n}nez U {2” — 1 + %}n>0 U {2n+ 1 - %}n<0

0 3 1
|
|
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Answer: No. (Dae Gwan Lee)

A= {2n}n§0 U {2’7 -1+ %}n>0
N ={2n}pez U {2n -1+ %}n>0 u{2n+1- %}n<0

E(N) is RB of L2]0, ]
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Answer: No. (Dae Gwan Lee)

A= {2n}n§0 U {2’7 -1+ %}n>0
N ={2n}pez U {2n -1+ %}n>0 u{2n+1- %}n<0

E(N) is RB of L2]0, ]
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Answer: No. (Dae Gwan Lee)

A={2n}nco U {2n—1+ §}nso
N ={2n}nez U {2n—1+ §}pso U {2n+1 = a0

E(N) is RB of L2]0, ]

0 3 1
|
[

E(A°) is RB of L2[0,1]
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Answer: No. (Dae Gwan Lee)

NANAN={2n}p0 U {2n+1 — %}n<0

(A°\ A) U {0} is a perturbation of {2n + &} ez

o
L o=
-
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Answer: No. (Dae Gwan Lee)

NANA = {2n}m0 U {2n+1 = 11000

(A°\ A) U {0} is a perturbation of {2n + {1} nez

E(N) is RB of L2]0, }]

0 3 1
|
[

E(N°) is RB of L2[0, 1]
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Answer: No. (Dae Gwan Lee)

NANA = {2n}m0 U {2n+1 = 11000

(A°\ A) U {0} is a perturbation of {2n + {1} nez

E(N) is RB of L2]0, }] . €(A°\ A) is not RB of 2[5, 1]

0 ! 1
|
[

|
|

E(N°) is RB of L2[0, 1]

® o e ® o e ® o e ® O e ® ®e O e O e O ®e O e O

9 8 -7 6 543 -2-101 2 3 45 6 7 8 9
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The following result of Lyubarski and Seip (2001) shows that
extraction is always possible.

Theorem

Let £(\) be a Riesz basis of exponentials for L2[0,1]. For each
0 < a< 1, there is a splitting

A=NUN, NN =0

such that £(N') and £(\") are Riesz bases for L?[0, a] and
L?[a, 1] respectively.
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If £(A) is an orthogonal basis, then extraction and
complementation always go together.

Theorem (Meyer, Matei (2009), Bownik, Casazza, Marcus,

Speegle (2016))

Let S C [0, 1] and suppose that for some N C Z, E(N) is a Riesz
basis for L?(S). Then £(Z \ N) is a Riesz basis for L?([0,1]\ S).

Interestingly, Lee’s example seems to show that the assumption
of orthogonality cannot be weakened.
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Main Results

Theorem (Pfander, Revay, DW 2018)

Given a partition0 = ay < a1 < a < --- < ap=10f[0,1],
there exists a partition of Z. into \+,...,\, such that for each k,
E(Nx) is a Riesz basis of L?[ay_y,ax]. In addition Uf:k E(N) isa
Riesz basis of L?[ak_1,ay].

a =0 ai a as as 1=as
L | | | | |
I 1

£(A) £(Ay) E(hs) E(M)  E(Ns)

a=0 a a as as 1=as
| |
{ \

E(N2) U E(A3) U E(Ma)
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Main Results

Theorem (Pfander, Revay, DW 2018)

Letby,..., by > 0 with Zf:1 bj = 1. Then there exist pairwise
disjoint sets A1, . .., N, C Z such that Ul’-’:1 A;j = Z and for any

JC{1,...,n}, Ujcs €(Ni) is a Riesz basis for any interval of
length > ;. ; bj.
b1 b2 bS b4 bS
| | | | | |
[ I I I I 1
E(M) E(A2) ENs)  E(N1)  E(Ns)
b2 + by + bs

E(A2) U E(Ng) U E(Ns)
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Main Results

Theorem (Pfander, Revay, DW 2018)

Letby, by, ... > 0 with Zj?’; b; =1 and K € N. Then there exist
pairwise disjoint sets N\, N\g, ... C Z such that for any J C N
with |J| < K or [N\ J| < K, U, €(N;) is a Riesz basis for any
interval of length 3. ; b;.

by by by bs bs - -

E(N) E(NA2) E(A3) E(Ns) E(As) - -
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Avdonin “Average 1/4 Theorem”

Theorem (Avdonin 1974)

For ¢ : £ — R injective with separated range, € (Range (¢)) is
a Riesz basis for L2[0, 4] if there exists R > 0 such that

1 o (6%
> e <

ksa e[mR,(m+1)R)

1

sup 473

MeZ

@ Says essentially that if a separated set A is “on average”
close to a set whose exponentials form a Riesz basis for
L2(1) (I an interval), then £(A) is also a Riesz basis for
L2(1)).

@ The above is not the most general statement of the
theorem, but is more than good enough for our purposes.
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Avdonin maps

Definition (Avdonin map)

L Z .
Lete, a > 0 and a € R. An injective map ¢: % — R with

separated range is an e-Avdonin map for Z% if forall R >0
sufficiently large,

wlg > (50 -(F) <

meZ e
=xe[mR,(m+1)R)

If ¢ is an e-Avdonin map for Zﬁ%a with e < 1/4, then
& (Range(y)) is a Riesz basis of exponentials for L(/) for any
interval | with |I| = a.
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One interval (Weyl-Khinchin Theorem)

Ouir first goal is to prove the following theorem.

Theorem (Avdonin 1991, Seip 1995)

Given 0 < a < 1, there exists N C Z such that £(N) is a Riesz
basis for L?|0, .

@ airrational is the interesting case.
7141
@ We know that if I = Z 2 then £(I") is a Riesz basis for
L?[0, &].
@ Round each element of I" to the nearest element of Z + .
For any x € R, this is just [x] + 3.
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Look at a = v/2/2.

_ 1 1
? a*\/é \/‘é 1
|
[ I |
Z+z 1
32 —\/éZ—‘rﬁ

il

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 +§
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Look at a = v/2/2.

_ 1 1
? a*\/é \/‘é 1
|
[ I |
Z+z 1
32 —\/éZ—‘rﬁ

il

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 +§
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Look at a = v/2/2.

- 1 a
0 ai\/é V2 1
| . | |
+3 _ 1
2t = V2Lt

Noi

N0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 +7

Walnut (GMU) Exponential Bases for Partitions of Intervals.



Look at a = v/2/2.

- 1 a
0 ai\/é V2 1
| . | |
+3 _ 1
2t = V2Lt

v\:.i

AL

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 +7
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What is the “average perturbation”?

Theorem (Weyl Equidistribution Theorem)

Given « irrational,

R
o1
E’I|_r>nooﬁ§ka mod1 = —

This is not quite what we want.
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Theorem (Weyl-Khinchin)

Let a irrational and e > 0. Then for all R sufficiently large,

1 (m+1)R—1

1
sup |— mod 1 — | <e.
mez | k—zn;Ff e

Note that

(m+1)R—1 1
1 k + 5 1
‘ﬁ Z 2 mod 1 — >

k=m
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Consequently,

p: ZZ; - R
gven by k+ 1 k+ 1 1
(p( az):{ aZJz t3

is an e-Avdonin map, for every e > 0.

Taking € < 2= gives the result.
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Two Intervals

In our previous example, look what happens when we also
consider the interval [a, 1].

0 75 1
| | |
2 =v2Z+ L

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 —|—%
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Two Intervals

In our previous example, look what happens when we also
consider the interval [a, 1].

_ 1 1
° v ve 1J
[ | |
Z+3 1
32 —\/QZTLW
°

m.i

N0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 —|—;
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Two Intervals

In our previous example, look what happens when we also
consider the interval [a, 1].

N0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 —|—;

_ 1 1
? a=7 v2 b=1- 1‘
[ [ |
1
Zgzzﬁz+% Z2%341Z+171
[ ]

m.i
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Two Intervals

In our previous example, look what happens when we also
consider the interval [a, 1]

_ 1 1
? a=s \/‘é b:1——\1@ 1‘
[ [ |
1 1
Zgzzﬁz+% Z2%341Z+171
[ ]

GG

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 —|—;
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Two Intervals

In our previous example, look what happens when we also
consider the interval [a, 1]

_ 1 1
? a=s \/‘é b:1——\1@ 1‘
[ [ |
1 1
Zgzzﬁz+% Z2%341Z+171
[ ]

GG

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 —|—;
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Beatty sequences

For a, b irrational with a+ b = 1, the sets A = { FJ }k - E
S

a
B = { [ZJ }keN partition N.

Clearly A and B can never coincide.
Given Ne N, |[An [0,N)| = |aN] and |B N [0,N)| = |bN|

aN—-1<|aN] <aN, and bN -1 < |bN| < bN

and summing

N—2=aN—1+bN—1< |aN|+|bN| < aN+ bN = N.

Hence |[(A U B) N [0,N)| =N —1. O
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@ Beatty sequences arose as a solution to a problem posed
in the Mathematical Monthly in 1926, but were known and
mentioned in the nineteenth century by Lord Rayleigh in
relation to the study of sound waves.

@ In 1969, Fraenkel considered sequences of the form

{[na+ ~]: n € Z} which he referred to as inhomogeneous
Beatty sequences. It is his results that we need here.

Theorem (Beatty-Fraenkel)

k i
Let a, b irrational with a+ b = 1. Then the sets { L ; : J } ez
€
1

and { V 2 EJ }eez partition 7.
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Combining Beatty-Fraenkel and Weyl-Khinchin:

Theorem (Pfander, Revay, DW, 2018)
Given a, b > 0, there exist injective maps

Z+1  zZ+} Z+1  zZ+}
: — : —
L axrb Vb a+b

such that

. Tt
(1) Range(y) and Range(y) partition 7,

1
(2) foreverye > 0, o and ) are e-Avdonin maps for Z% and
1
ZZE (resp.).

Walnut (GMU)
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@ By Beatty-Fraenkel, (1) is satisfied with

k+5% k+5 1 k+3\  (k+5 1
() =1t e () =1 e

@ Since both Range (¢) and Range (/) come from rounding,
Weyl-Khinchin implies that the average perturbation from

the lattices Z+2 and Z+2 can be made as small as desired.
This is (2).
@ Taking a+ b = 1 gives the partition result for two intervals.

Walnut (GMU) Exponential Bases for Partitions of Intervals.



Three intervals
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Three intervals
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Three intervals
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Three intervals

0 1 1 1 4 1 1
; b= - E om-i-y
[ [ 1

Z+3

52 ~1.97Z+0.99

2

o ol o 0| @/ @ @ o o @ o o o o o
2 3456 7 8 910111213 14151617 181920 21 ~~ 23 24 +}

6 5 -4-3-2-10 1
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Three intervals

0 : 7 1
5 be= 1 Vi bi=1-2
| | | |
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@ By working inductively, we can obtain a partition of Z into
three sets.

@ However, there is no guarantee that the mappings so
defined satisfy Avdonin’s Theorem

@ To get around this, we deploy a calculus of Avdonin maps.
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Three or more intervals

Lemma

Suppose that there exist injective maps

A_Z+%_> Z+3 A_Z+%_> Z+3 Z+3 Lzl
b bbb bitb U bitb 2
such that

Z+2

@ Range () U Range (1)) = Br+bs

1 1

@ ¢ and ) are d-Avdonin maps for Z;—f and ZZZ—Z (resp.), and
1

@ o is an e-Avdonin map for b +b2

Then o, 1/1 can be locally modified to ¢, so that in addition
ooy ando o are (e + 36)-Avdonin maps.
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Partitioning into three intervals

@ Suppose that we are given by, bo, b3 > 0 so that
by + bo+ bz =1.
@ We can define e-Avdonin maps
Z+3 1 Z+}

: Z+ =
P it Y1

1
7 —
192—|-b3—> +2

thereby partitioning Z + } into Ay = Range (1) and
'y = Range (1).
@ With e small enough, we immediately have that

£(Ay) is a Riesz basis for L2(/) with |/| = by
and

£(T¢) is a Riesz basis for L2(/) with [/| =1 — by = by + b3
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@ Next define §-Avdonin maps

Z+1  zZ+1}

Z+3  Z+1% R
bs by + b3

va: bo - bo + b3’

Yo
1
thereby partitioning bf:::gs into Range (2) and Range (1)2).

@ Applying the Lemma, we can adjust @2 and v, in such a
way that

1 1 1

Z+} 1 Z+}
Y10 @p: b22—>Z+§, (CIICKVPY 2 5%+ 5

are ¢ + 35-Avdonin maps, and Iy is partitioned into

A2 = Range (¢1 0 2) and Az = Range (1 0 ).
@ With 6 small enough, we immediately have

E(A2) RB for L2(1), |I| = be and £(A3) RB for L3(/), |I] = bs
@ Ay, N2, Ag is our desired partition.
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Theorem (Pfander, Revay, DW, 2018)

Letby,bp,... >0 with) 2, bc =1, andcj:ZiijJr1 by for

j € Nsothatci+ b= cj_4. Let s > 0 be given. Then there exist
injective maps

7+ 3 1 Z+1}
®;: 2 57+, Vi 2
) bj 2 J

—Z+

N =

G

such that

(a) {Range (®x), Range (V) jk:1 is a partition of Z + %,

(b) {Range (%j;1), Range (Vj;1)} is a partition of Range (W),
and

(c) ®; and V; are (1 — 27/)s-Avdonin maps for s

1 1
5= and CAN;
il
(resp.)

G

Walnut (GMU)
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@ For each j, define maps

_Z+3 L+ L+}
Spj' — - )
bj bj—l-Cj Cj—1

@__ZJF%H Z+3 Z+3
g "b+g g

@ These can be simple rounding maps that we can take to be

¢j-Avdonin maps with e; = § and ¢; = 3%; if j > 2.
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e If j=1then ®; = 3; and ¥y = 5.
@ For j = 2, adjust the maps ¢, and 1,52 to o and v, so that

Z+3% 1
b, — : 2 !
o=WVi 0o by —>Z+2,
Z+3% 1
Vo =W : 2 =
2 102 & —>Z+2

are e + 3¢ = (1 — )s-Avdonin maps.
@ Proceed inductively.
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Combining Intervals from Partition

Lemma

Leta, b > 0 and suppose that

Z+1 1 Z+1 1
2—>Z+§, and  n: b2—>Z+§

T.
are e-Avdonin maps. Then there exists a 4¢-Avdonin map

Z+3 1
: —Z+ =
P atb T3

such that

o(re) = r(P12) uy(BLE)
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Theorem (Pfander, Revay, DW 2018)

Letby,by,... >0 with 2, by =1 and K € N. Then there
exist pairwise disjoint sets A1, N\, ... C Z such that for any

J CNwith|J] < K, ;e E(N;) is a Riesz basis for L%(1), | an
interval with |I| = >, ; b;.

o Lets =4K,
@ Previous theorem allows us to obtain
Z+3% 1
b;: £ 7+ —
Ty TP

a 4~ K-Avdonin map.
@ Letting
{Aj = Range (®))}=4,

gives pairwise disjoint subsets of Z such that £(A;) is a
Riesz basis for L2(/), / an interval with |/| = by.
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@ Given J C N with |J| < K, use the Lemma to combine
bases pairwise to obtain a 4K~14K = }-Avdonin map from

Z+ 3 1
PJZ 2 —7Z+ =
Zjerf 2

@ Hence
Ue)
jed
is a Riesz basis for L2(/), / an interval with |/| = > jes b

@ The rapid growth of the Avdonin constants makes the a
priori choice of K € N necessary.
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