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Orthogonal Bases of Exponentials

Definition

Given a countable set Λ ⊆ Rd , define E(Λ) to be the
exponential system

E(Λ) =
{

eλ(t) : λ ∈ Λ
}

=
{

e2πi〈λ,t〉 : λ ∈ Λ
}
.

Theorem

E(Zd ) is an orthonormal basis for L2[0,1]d . f ∈ L2[0,1]d can be
written

f (t) =
∑
n∈Zd

〈
f ,en

〉
en(t).
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Orthogonal Bases of Exponentials

We will be working in d = 1 with the following easy variant.

Theorem

Given α ∈ R and a > 0. Then with Λ = Z+α
a , E(Λ) is an

orthogonal basis for L2(I) where I is any interval with |I| = a.

What is most important here is the length of the interval, and
less so the interval itself.
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Existence of Orthogonal Bases of Exponentials

Fundamental Question: Given a domain Ω ⊆ Rd , does
there exist a countable set Λ such that E(Λ) is an
orthogonal basis for L2(Ω)?
Fuglede (1974) conjectured the following: A domain
Ω ⊆ Rd admits an orthogonal basis of the form E(Λ) if and
only if Ω tiles Rd by Λ, that is,

(Ω +λ)∩ (Ω +λ′) = ∅, a.e. if λ, λ′ are distinct elements of Λ,
Rd =

⋃
λ∈Λ

(Ω + λ).
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Existence of Orthogonal Bases of Exponentials

Fuglede proved that the conjecture held for Ω a
fundamental domain for a lattice Λ.
The conjecture is false for d ≥ 5 (Tao, 2004), for d = 4
(Matolcsi, 2005), and for d = 3 (Matolcsi, Koulountzakis,
Balint, Mora, 2005). However, the conjecture remains
unsolved in full generality for d = 1, 2.
If Ω is a convex body in Rd , then the conjecture holds in all
dimensions. (Lev, Matolcsi, 2019).
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Riesz Bases

By passing from an orthogonal to a non-orthogonal basis, we
open up new possibilities.

Definition
A Riesz basis of a Hilbert space H is the image of an
orthonormal basis under a bounded, invertible operator on H.

Theorem

Given Ω ⊆ Rd , E(Λ) is a Riesz basis of L2(Ω) if and only if
(1) span E(Λ)=L2(Ω) and
(2) for some 0<A,B<∞ and every {cλ} ∈ `2(Λ),

A
∑
λ

|cλ|2 ≤
∫

Ω

∣∣∣∑
λ∈Λ

cλe2πi〈λ,x〉
∣∣∣2 dx ≤ B

∑
λ

|cλ|2
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Riesz Bases

Theorem

For a Riesz basis E(Λ) of L2(Ω) exists {gλ}λ∈Λ so that for all
f ∈ L2(Ω) we have

f (x)
L2
=
∑
λ∈Λ

〈f ,gλ〉e2πiλx

Theorem (Kadec 1/4-theorem)

For ϕ : Z+α
a → R, E

(
Range (ϕ)

)
is a Riesz basis for L2(I) for

any interval I with |I| = a if

sup
k∈Z

∣∣∣ϕ(k+α
a )− k+α

a

∣∣∣ < 1
4a .
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Fundamental Questions on Riesz Bases

Given a domain Ω ⊆ Rd , does there exist a countable set Λ
such that E(Λ) is a Riesz basis for L2(Ω)?
There is no Ω for which such a Riesz basis is known not to
exist.
In relatively few cases is it known how to construct such a
basis.
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Kozma and Nitzan (2015)

Theorem
Let {I1, I2, . . . , In} be a collection of disjoint subintervals of
[0,1]. Then there exists Λ ⊆ Z such that E(Λ) is a Riesz basis
for L2(I1 ∪ I2 ∪ · · · ∪ In).

In the paper the authors recount an imaginary conversation
with a graduate student who asks: Why not just find sets Λk
such that E(Λk ) is a Riesz basis for L2(Ik ), and let

Λ = Λ1 ∪ Λ2 ∪ · · · ∪ Λn?
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Are unions of Riesz bases Riesz bases of unions?

Sometimes they are.

0 1
2 1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
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Are unions of Riesz bases Riesz bases of unions?

Sometimes they are.

0
E(2Z) is OB of L2[0, 1

2 ]
1
2

E(2Z + 1) is OB of L2[1
2 ,1]
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Are unions of Riesz bases Riesz bases of unions?

Sometimes they are.

0
E(2Z) is OB of L2[0, 1

2 ]
1
2

E(2Z + 1) is OB of L2[1
2 ,1]

1

E(Z) = E(2Z + 1) ∪ E(2Z) is ONB of L2[0,1]
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Sometimes they’re not.

Λ1 = {0} ∪ {2n − 1
4}n>0 ∪ {2n + 1

4}n<0

Λ2 = {2n + 1− 1
4}n>0 ∪ {2n − 1 + 1

4}n<0

0 1
2 1

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
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Sometimes they’re not.

Λ1 = {0} ∪ {2n − 1
4}n>0 ∪ {2n + 1

4}n<0

Λ2 = {2n + 1− 1
4}n>0 ∪ {2n − 1 + 1

4}n<0

0
E(Λ1) is RB of L2[0, 1

2 ]
1
2

E(Λ2) is RB of L2[1
2 ,1]

1

E(Λ1 ∪ Λ2) is not RB of L2[0,1]

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Walnut (GMU) Exponential Bases for Partitions of Intervals.



Basis extraction (S. Avdonin)

Theorem (Basis extraction)

Suppose that for Λ ⊆ R, E(Λ) is a Riesz basis for L2[0,1]. Then
for every 0 < α < 1 there exists Λ′ ⊆ Λ such that E(Λ′) is a
Riesz basis for L2[0, α].

Question: Is it necessarily true that E(Λ \ Λ′) is a Riesz basis
for L2[α,1]?
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Basis complementation (S. Avdonin)

Theorem (Basis complementation)

Let 0 < α < 1 and suppose that for Λ ⊆ R, E(Λ) is a Riesz basis
for L2[0, α]. Then there exists Λ′ ⊇ Λ such that E(Λ′) is a Riesz
basis for L2[0,1].

Question: Is it necessarily true that E(Λ′ \ Λ) is a Riesz basis
for L2[α,1]?
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Answer: No. (Dae Gwan Lee)

Λ = {2n}n≤0 ∪ {2n − 1 + 1
8}n>0

Λ is a perturbation of {2n − 7
16}n∈Z
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Answer: No. (Dae Gwan Lee)
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Answer: No. (Dae Gwan Lee)
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0
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The following result of Lyubarski and Seip (2001) shows that
extraction is always possible.

Theorem

Let E(Λ) be a Riesz basis of exponentials for L2[0,1]. For each
0 < a < 1, there is a splitting

Λ = Λ′ ∪ Λ′′, Λ′ ∩ Λ′′ = ∅

such that E(Λ′) and E(Λ′′) are Riesz bases for L2[0,a] and
L2[a,1] respectively.

Walnut (GMU) Exponential Bases for Partitions of Intervals.



If E(Λ) is an orthogonal basis, then extraction and
complementation always go together.

Theorem (Meyer, Matei (2009), Bownik, Casazza, Marcus,
Speegle (2016))

Let S ⊆ [0,1] and suppose that for some Λ ⊆ Z, E(Λ) is a Riesz
basis for L2(S). Then E(Z \ Λ) is a Riesz basis for L2([0,1] \ S).

Interestingly, Lee’s example seems to show that the assumption
of orthogonality cannot be weakened.
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Main Results

Theorem (Pfander, Revay, DW 2018)

Given a partition 0 = a0 < a1 < a2 < · · · < an = 1 of [0,1],
there exists a partition of Z into Λ1,...,Λn such that for each k,
E(Λk ) is a Riesz basis of L2[ak−1,ak ]. In addition

⋃`
r=k E(Λr ) is a

Riesz basis of L2[ak−1,a`].

a0 = 0

E(Λ1)

a1

E(Λ2)

a2

E(Λ3)

a3

E(Λ4)

a4

E(Λ5)

1 = a5

a0 = 0 a1 a2

E(Λ2) ∪ E(Λ3) ∪ E(Λ4)

a3 a4 1 = a5

Walnut (GMU) Exponential Bases for Partitions of Intervals.



Main Results

Theorem (Pfander, Revay, DW 2018)

Let b1, . . . ,bn > 0 with
∑n

j=1 bj = 1. Then there exist pairwise
disjoint sets Λ1, . . . ,Λn ⊆ Z such that

⋃n
j=1 Λj = Z and for any

J ⊆ {1, . . . ,n},
⋃

j∈J E
(
Λi
)

is a Riesz basis for any interval of
length

∑
j∈J bj .

E(Λ1)

b1

E(Λ2)

b2

E(Λ3)

b3

E(Λ4)

b4

E(Λ5)

b5

b2 + b4 + b5

E(Λ2) ∪ E(Λ4) ∪ E(Λ5)
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Main Results

Theorem (Pfander, Revay, DW 2018)

Let b1,b2, . . . > 0 with
∑∞

j=1 bj = 1 and K ∈ N. Then there exist
pairwise disjoint sets Λ1,Λ2, . . . ⊆ Z such that for any J ⊆ N
with |J| ≤ K or |N \ J| ≤ K ,

⋃
j∈J E

(
Λj
)

is a Riesz basis for any
interval of length

∑
j∈J bj .

E(Λ1)

b1

E(Λ2)

b2

E(Λ3)

b3

E(Λ4)

b4

E(Λ5) · · ·

b5 · · ·
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Avdonin “Average 1/4 Theorem”

Theorem (Avdonin 1974)

For ϕ : Z+α
a → R injective with separated range, E

(
Range (ϕ)

)
is

a Riesz basis for L2[0,a] if there exists R > 0 such that

sup
m∈Z

∣∣∣∣ 1
R

∑
k+α

a ∈[mR,(m+1)R)

ϕ
(k+α

a

)
− k+α

a

∣∣∣∣ < 1
4a
.

Says essentially that if a separated set Λ is “on average”
close to a set whose exponentials form a Riesz basis for
L2(I) (I an interval), then E(Λ) is also a Riesz basis for
L2(I).
The above is not the most general statement of the
theorem, but is more than good enough for our purposes.
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Avdonin maps

Definition (Avdonin map)

Let ε, a > 0 and α ∈ R. An injective map ϕ :
Z + α

a
→ R with

separated range is an ε-Avdonin map for Z+α
a if for all R > 0

sufficiently large,

sup
m∈Z

∣∣∣ 1
R

∑
k+α

a ∈[mR,(m+1)R)

ϕ
(k + α

a

)
−
(k + α

a

)∣∣∣ < ε. (1)

Theorem

If ϕ is an ε-Avdonin map for Z+α
a with ε ≤ 1/4, then

E
(
Range(ϕ)

)
is a Riesz basis of exponentials for L2(I) for any

interval I with |I| = a.
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One interval (Weyl-Khinchin Theorem)

Our first goal is to prove the following theorem.

Theorem (Avdonin 1991, Seip 1995)

Given 0 < a ≤ 1, there exists Λ ⊆ Z such that E(Λ) is a Riesz
basis for L2[0,a].

a irrational is the interesting case.

We know that if Γ =
Z + 1

2
a

, then E(Γ) is a Riesz basis for

L2[0,a].
Round each element of Γ to the nearest element of Z + 1

2 .
For any x ∈ R, this is just bxc+ 1

2 .
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Look at a =
√

2/2.

0 a = 1√
2

1√
2 1

Z+ 1
2

a =
√

2Z + 1√
2
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2
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What is the “average perturbation”?

Theorem (Weyl Equidistribution Theorem)
Given α irrational,

lim
R→∞

1
R

R∑
k=1

k α mod 1 =
1
2

This is not quite what we want.
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Theorem (Weyl-Khinchin)
Let a irrational and ε > 0. Then for all R sufficiently large,

sup
m∈Z

∣∣∣ 1
R

(m+1)R−1∑
k=mR

k + 1
2

a
mod 1 − 1

2

∣∣∣ < ε.

Note that

∣∣∣ 1
R

(m+1)R−1∑
k=mR

k + 1
2

a
mod 1 − 1

2

∣∣∣
=
∣∣∣ 1
R

(m+1)R−1∑
k=mR

k + 1
2

a
−
(⌊k + 1

2
a

⌋
Z

+
1
2

)∣∣∣ < ε.
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Consequently,

ϕ :
Z + 1

2
a
→ R

given by

ϕ
(k + 1

2
a

)
=
⌊k + 1

2
a

⌋
Z

+
1
2

is an ε-Avdonin map, for every ε > 0.

Taking ε ≤ 1
4a gives the result.
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Two Intervals

In our previous example, look what happens when we also
consider the interval [a,1].

0 1√
2 1

Z+ 1
2

a =
√

2Z + 1√
2

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 +1
2
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2
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√
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2
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2

b ≈ 3.41Z + 1.71
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Beatty sequences

Theorem

For a,b irrational with a + b = 1, the sets A =
{⌊k

a

⌋}
k∈N

and

B =
{⌊k

b

⌋}
k∈N

partition N.

Proof.
Clearly A and B can never coincide.
Given N ∈ N, |A ∩ [0,N)| = baNc and |B ∩ [0,N)| = bbNc

aN − 1 < baNc < aN, and bN − 1 < bbNc < bN

and summing

N − 2 = aN − 1 + bN − 1 < baNc+ bbNc < aN + bN = N.

Hence |(A ∪ B) ∩ [0,N)| = N − 1.
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Beatty sequences arose as a solution to a problem posed
in the Mathematical Monthly in 1926, but were known and
mentioned in the nineteenth century by Lord Rayleigh in
relation to the study of sound waves.
In 1969, Fraenkel considered sequences of the form
{bnα + γc : n ∈ Z} which he referred to as inhomogeneous
Beatty sequences. It is his results that we need here.

Theorem (Beatty-Fraenkel)

Let a,b irrational with a + b = 1. Then the sets
{⌊k + 1

2
a

⌋}
k∈Z

and
{⌊`+ 1

2
b

⌋}
`∈Z

partition Z.
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Combining Beatty-Fraenkel and Weyl-Khinchin:

Theorem (Pfander, Revay, DW, 2018)
Given a, b > 0, there exist injective maps

ϕ :
Z + 1

2
a
−→

Z + 1
2

a + b
, ψ :

Z + 1
2

b
−→

Z + 1
2

a + b

such that

(1) Range(ϕ) and Range(ψ) partition Z+ 1
2

a+b ,

(2) for every ε > 0, ϕ and ψ are ε-Avdonin maps for Z+ 1
2

a and
Z+ 1

2
b (resp.).
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Proof

By Beatty-Fraenkel, (1) is satisfied with

ϕ
(k + 1

2
a

)
=
⌊k + 1

2
a

⌋
+

1
2
, ψ

(k + 1
2

b

)
=
⌊k + 1

2
b

⌋
+

1
2

Since both Range (ϕ) and Range (ψ) come from rounding,
Weyl-Khinchin implies that the average perturbation from

the lattices Z+ 1
2

a and Z+ 1
2

b can be made as small as desired.
This is (2).
Taking a + b = 1 gives the partition result for two intervals.

Walnut (GMU) Exponential Bases for Partitions of Intervals.



Three intervals

0 1
5

1√
2 1b1 = 1

5

Z+ 1
2

b1
= 5Z + 5

2

b2 = 1√
2
− 1

5

Z+ 1
2

b2
≈ 1.97Z + 0.99

b3 = 1− 1√
2

Z+ 1
2

b3
≈ 3.41Z + 1.71

Z+ 1
2

b1+b2
=
√

2Z + 1√
2

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 + 1
22222
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By working inductively, we can obtain a partition of Z into
three sets.
However, there is no guarantee that the mappings so
defined satisfy Avdonin’s Theorem
To get around this, we deploy a calculus of Avdonin maps.

Walnut (GMU) Exponential Bases for Partitions of Intervals.



Three or more intervals

Lemma
Suppose that there exist injective maps

ϕ̂ :
Z + 1

2

b1
→

Z + 1
2

b1 + b2
, ψ̂ :

Z + 1
2

b2
→

Z + 1
2

b1 + b2
, σ :

Z + 1
2

b1 + b2
→ Z +

1
2

such that

Range (ϕ̂) ∪̇ Range (ψ̂) =
Z+ 1

2
b1+b2

ϕ and ψ are δ-Avdonin maps for Z+ 1
2

b1
and Z+ 1

2
b2

(resp.), and

σ is an ε-Avdonin map for Z+ 1
2

b1+b2
.

Then ϕ̂, ψ̂ can be locally modified to ϕ,ψ so that in addition
σ ◦ ϕ and σ ◦ ψ are (ε+ 3δ)-Avdonin maps.
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Partitioning into three intervals

Suppose that we are given b1, b2, b3 > 0 so that
b1 + b2 + b3 = 1.
We can define ε-Avdonin maps

ϕ1 :
Z + 1

2
b1

→ Z +
1
2
, ψ1 :

Z + 1
2

b2 + b3
→ Z +

1
2

thereby partitioning Z + 1
2 into Λ1 = Range (ϕ1) and

Γ1 = Range (ψ1).
With ε small enough, we immediately have that

E(Λ1) is a Riesz basis for L2(I) with |I| = b1

and

E(Γ1) is a Riesz basis for L2(I) with |I| = 1− b1 = b2 + b3
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Next define δ-Avdonin maps

ϕ2 :
Z + 1

2
b2

→
Z + 1

2
b2 + b3

, ψ2 :
Z + 1

2
b3

→
Z + 1

2
b2 + b3

thereby partitioning Z+ 1
2

b2+b3
into Range (ϕ2) and Range (ψ2).

Applying the Lemma, we can adjust ϕ2 and ψ2 in such a
way that

ψ1 ◦ ϕ2 :
Z + 1

2
b2

→ Z +
1
2
, ψ1 ◦ ψ2 :

Z + 1
2

b3
→ Z +

1
2

are ε+ 3δ-Avdonin maps, and Γ1 is partitioned into
Λ2 = Range (ψ1 ◦ ϕ2) and Λ3 = Range (ψ1 ◦ ψ2).
With δ small enough, we immediately have
E(Λ2) RB for L2(I), |I| = b2 and E(Λ3) RB for L2(I), |I| = b3

Λ1, Λ2, Λ3 is our desired partition.
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Theorem (Pfander, Revay, DW, 2018)

Let b1,b2, . . . > 0 with
∑∞

k=1 bk = 1, and cj =
∑∞

k=j+1 bk for
j ∈ N so that cj + bj = cj−1. Let δ > 0 be given. Then there exist
injective maps

Φj :
Z + 1

2

bj
→ Z +

1
2
, Ψj :

Z + 1
2

cj
→ Z +

1
2

such that
(a)

{
Range (Φk ), Range (Ψj)

}j
k=1 is a partition of Z + 1

2 ,

(b)
{

Range (Φj+1), Range (Ψj+1)
}

is a partition of Range (Ψj),
and

(c) Φj and Ψj are (1− 2−j)δ-Avdonin maps for Z+ 1
2

bj
and Z+ 1

2
cj

(resp.)
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For each j , define maps

ϕ̂j :
Z + 1

2
bj

→
Z + 1

2
bj + cj

=
Z + 1

2
cj−1

,

ψ̂j :
Z + 1

2
cj

→
Z + 1

2
bj + cj

=
Z + 1

2
cj−1

These can be simple rounding maps that we can take to be
εj -Avdonin maps with ε1 = δ

2 and εj = δ
3·2j if j ≥ 2.
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If j = 1 then Φ1 = ϕ̂1 and Ψ1 = ψ̂1.
For j = 2, adjust the maps ϕ̂2 and ψ̂2 to ϕ2 and ψ2 so that

Φ2 = Ψ1 ◦ ϕ2 :
Z + 1

2
b2

→ Z +
1
2
,

Ψ2 = Ψ1 ◦ ψ2 :
Z + 1

2
c2

→ Z +
1
2

are ε1 + 3ε2 = (1− 1
4)δ-Avdonin maps.

Proceed inductively.
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Combining Intervals from Partition

Lemma
Let a, b > 0 and suppose that

τ :
Z + 1

2
a
→ Z +

1
2
, and η :

Z + 1
2

b
→ Z +

1
2

are ε-Avdonin maps. Then there exists a 4ε-Avdonin map

ρ :
Z + 1

2
a + b

→ Z +
1
2

such that

ρ
(Z + 1

2
a + b

)
= τ

(Z + 1
2

a

)
∪ η

(Z + 1
2

b

)
.
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Theorem (Pfander, Revay, DW 2018)

Let b1,b2, . . . > 0 with
∑∞

k=1 bk = 1 and K ∈ N. Then there
exist pairwise disjoint sets Λ1,Λ2, . . . ⊆ Z such that for any
J ⊆ N with |J| ≤ K ,

⋃
j∈J E

(
Λj
)

is a Riesz basis for L2(I), I an
interval with |I| =

∑
j∈J bj .

Let δ = 4−K .
Previous theorem allows us to obtain

Φj :
Z + 1

2
bj

→ Z +
1
2

a 4−K -Avdonin map.
Letting

{Λj = Range (Φj)}∞j=1,

gives pairwise disjoint subsets of Z such that E(Λj) is a
Riesz basis for L2(I), I an interval with |I| = bj .
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Given J ⊆ N with |J| ≤ K , use the Lemma to combine
bases pairwise to obtain a 4K−14K = 1

4 -Avdonin map from

PJ :
Z + 1

2∑
j∈J bj

→ Z +
1
2

Hence ⋃
j∈J

E
(
Λj
)

is a Riesz basis for L2(I), I an interval with |I| =
∑

j∈J bj .
The rapid growth of the Avdonin constants makes the a
priori choice of K ∈ N necessary.
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