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Outline

• Impact of mathematics/statistics on computer vision, machine learning and AI
• A brief history of AI
• Three at scale case studies

• Unconstrained face verification and recognition 
• Vehicle detection and re-identification
• Action detection in untrimmed videos 

• Challenges in AI and partial solutions
• Bias 
• Domain adaptation/generalization
• Vulnerability to attacks

• Looking ahead
• AI’s impact on medicine and healthcare
• Some open problems for math/stat folks



1970’s - 2010s –The golden decades for 
math/statistics, computer vision and AI

• MRF representations, estimation methods, neighborhood selection 
rules, texture synthesis, classification, image restoration

• Performance bounds, robust statistics for computer vision and 
machine learning

• Invariants
• Mumford-Shah segmentation algorithm
• Calculus of variations
• Lie group



Statistics on manifolds



More on math/statistics 

• Fisher-Rao metric
• Shape statistics (Mardia, Srivastava)
• Dictionary learning on statistical manifolds
• Model order selection

• Bayes information criterion 
• Object recognition
• Bayesian graphical models – shallow hierarchy – uncertainty in AI
• Simulated annealing, particle filter, MCMC 
• Statistics on special manifolds



Statistics is struggling

• Statistical methods were mostly absent when compressive sensing 
and sparse representations were popular (2005-2012)

• Statistics likes l2 more than l1 and l0!

• When hierarchical models are considered
• Multi-resolution time series models, MRFs have challenging inference 

problems 

• Statistical methods for hierarchical and non-linear models (Deep 
learning) are even more challenging!



Directions in AI
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Many AI techniques have led to many applications

Tutored
• Trend Analysis
• Observed behaviors

Hand-crafted
• Rules
• Features
• Measures

Trained
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Deep learning - miracle or mirage?

• Since 2012, computer vision has become a one-trick pony
• Even more troublesome – AI and deep learning are used 

synonomously
• Impressive performance on many tasks

• Object/ face detection, classification, verification
• For face verification at 10-7 false acceptance rate, > 90% true acceptance rate 

on faces in the wild (IARPA JANUS program)
• Not there yet 

• For action detection, probability of miss for the best systems are 0.34 and 
0.53 for known and unknown facilities and 37 actions. 0.6 for detecting 
surprise activities



Unconstrained face verification 

• 2014 – 2020, Supported by the IARPA JANUS program 
• UMD (Lead) with CMU, Columbia, JHU, UB, UCCS, UTD. 
• Multi-task learning in deep networks

• Face and gender detection, pose and age estimation, fiducial extraction
• Network of networks

• Fusion of short and tall networks
• Current template size is 384 floats (1536 bytes or 12288 bits)

• Hashing reduces size to 3072 bits
• State-of-the art performance on face verification, search, 

clustering tasks using relatively small training data set.
• Implications to forensics (Collaborations with Jonathon Phillips, 

and Alice O’Toole) – Proc. National Academy of Sciences, May 
28, 2018.

• Drs. Rajeev Ranjan, Ankan Bansal, Hui Ding contributed to this 
effort.



Hyperface architecture (PAMI 2017)

Ranjan, et al., T-PAMI, 2018



Unconstrained video-based face identification

• Recognize the identity of the target face in a video

IJB-B (Multi-shot Videos)

CS6 (single-shot surveillance Videos)

CS6 video dataset
An unconstrained video-based face recognition dataset.
Galleries: high-resolution still images. Probes: low quality, remotely captured 
surveillance videos.
202 subjects from 1421 images and 398 single-shot surveillance videos.
We focus on surveillance-to-single , surveillance-to-booking and surveillance-to-
surveillance identification protocols.
Zheng, et al, T-BIOM 2019, Ranjan, et al., T-BIOM 2019



Other problems we have Worked on
• Large gallery face dataset

• The large-scale dataset used in this work consists of 14,728,804 images from 4,233,581 distinct individuals of non-
U.S. individuals. On average there are 3.47 images per individual - the number of images for each individual varies 
from a minimum of 1 to a maximum of 139, with most of the individuals having only 1 image.

• Faces at          300m                                650m                             1000m

• IARPA Janus Benchmark Multi-Domain Face (IJB-MDF) dataset. 
• Source domain is in the visible domain and the target domains are from four SWIR cameras. 

Lau, et al, T-BIOM, 2021, Lau, et al., JST Special Issue on Deep learning, 2020



AICity challenges (2019-2021)
● Algorithms developed for multiple tasks (vehicle re-id, vehicle counting and anomaly 

detection)
● Datasets for challenge are carefully curated, with annotations

○ High Resolution: Most images are 1920x1080
○ High Frame Rate: Usually 10 frames per second

Clean curated data



Challenges on trafficView/CATT data
• Operational cameras tend to be lower quality/less maintained by local governments than curated 

challenge datasets

• Lower Resolution: Most images are 320x240
• Lower Frame Rate
• Artifacts such as compression artifacts, video tearing, etc
• Various Scales
• (large vehicles + closer to camera vs small vehicles + further from camera)



Activity detection in nntrimmed videos-DIVA 
(JHU, UMD, UCF, CMU, Columbia)

Best results: https://acev.nist.gov/sdl All p_miss numbers are at TFA=0.02
KF (EO): p_miss: 0.34, relative time: 0.41
KF (IR): p_miss: 0.68, relative time: 0. 38. 
UF (Known activities): p_miss: 0.54, relative time: 0.68
UF (Surprise activities)  p_miss: 0.78, relative time: 0.61.

p_miss is the portion of activities where the system did not detect the activity for at least 1 
second. TFA is the portion of time that the system detected an activity when in fact there was 
none 

UMD-JHU system: Modular, 
generalizable, proposal-based system 
for action detection. Uses objects and 
motion for activity detection. 
UCF system: Takes untrimmed RGB 
videos as input and provides spatio-
temporal localization of activities 
present in videos
Columbia System: Takes the UMD/JHU 
proposals as input and replace the TRI-
3D classifier with a 2-stage classifier to 
detect long-tail events (12 few-shot 
classes). For surprise activity detection, 
takes the UMD/JHU proposals as input, 
and combines a few-shot visual-based 
module and a text-based cross-modal 
module.
CMU Surprise activity retrieval   
system: Uses UMD/JHU’s  pipeline. 
Takes both visual and text surprise 
queries as input.
Retrieves activity cuboids for each 
surprise query

Gleason, et al., 
WACV 2019, 
WACV2020

https://acev.nist.gov/sdl


Challenges of using deep learning for 
pathology

• High cross-institutional data variation in staining protocols, patient population, etc. 

• Models trained by one lab may not work well for other labs

Slide from Prof. Hien Nguyen, Univ. 
of Houston

(a) DenseNet-121 achieves good performances on data 
from the same lab (green color) but performs poorly 
when applied to data from another lab (red color).

(b) Glomerular images from one lab (top) and another 
lab (bottom) have different colors, brightness, and 
texture due to variations in slide thickness, reagent, etc.



Despite being successful, deep learning-based 
methods have issues

• While seen as a non-linear mapping between data and labels, lack 
of analytical results is worrisome.

• Learning millions of parameters from relatively small data is a 
statistical blasphemy!

• Tightly clings to training data and does not generalize well
• No performance measure to say why and when it works
• We can pile on…



Open problems and partial solutions

• Bias
• Face recognition, vehicle re-identification

• Domain adaptation
• Vehicle re-identification, activity detection

• Adversarial attacks and robust defenses
• Patch attacks on object detection



GenderShades.Org

[Buolamwini & Gebru 2018]

PPB: Pilot Parliaments Benchmark
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Expressivity of facial attributes 

• Expressivity of an entity = the ease with which that entity can be 
predicted using a given set of features.

• We compute expressivity of facial attributes (yaw, age, gender, 
identity) in a given set of face descriptors

• To compute expressivity, we approximate the mutual information (MI) 
between features and attributes, by using an existing approach called 
Mutual Information Neural Estimation (MINE) [Belghazi et. al, ICML 
2018].



Expressivity of yaw, gender and age (Dhar, et al., 
FG2020

Crystalface (Resnet-101) Inception Resnet-v2



Key takeaways

• Face recognition features implicitly encode attributes like yaw, gender 
and age.

• During the training process, the expressivity of identity increases 
while that of yaw, gender and age decreases, thus showing that un-
learning is a part of learning. Expressivity of yaw, especially, decreases 
very rapidly.

• Rate of un-learning: Age < Gender < Yaw (opposite to the order of 
attribute-wise relevance)



Protected Attributes Suppression System (PASS)

Lclass: Classification loss for training M to classify identities

Latt: Classification loss for E (discriminator) to classify sensitive attribute (gender/race)

Ldeb: Adversarial loss to discourage M from encoding gender/race information

Dhar, et al, ICCV 2021



Results (Crystalface – Gender bias)

Crystalface: JANUS-UMD face matcher
IVE: Incremental variable elimination



Results (Crystalface – Skin tone bias)



Bias-performance tradeoff

• Most adversarial de-biasing systems demonstrate a drop in face verification 
performance.

• An ideal face recognition system should demonstrate high bias reduction and low 
drop in performance.

• To measure this tradeoff between reduction in bias and drop in verification 
performance, we propose a new metric called Bias Performance Coefficient:

% drop in bias % drop in TPR



PASS/MultiPASS systems achieve high BPCs

Crystalface – Gender bias analysis

Crystalface – Skin tone bias analysis



Qualitative results

D&D(g) and D&D++(g) generate 
more similar attention maps 

for male and female frontal faces.

D&D(s) and D&D++(s) generate 
more similar attention maps 

for dark and light frontal faces.



Bias performance tradeoff (TPR v/s bias)

Adversarial de-basing methods like PASS reduce bias but also reduce verification performance,
but D&D++ reduces bias and minimizes the drop in verification performance



Domain adaptation: Motivation (Saenko et al., 
ECCV ’10)

Image credit: Saenko et al., ECCV 2010, Bergamo et al., NIPS 2010
1 S. J. Pan and Q. Yang. A survey on transfer learning. 
IEEE Trans. Knowledge and Data Engineering, 22:1345 –1359, 
October 2010. 32

Transfer Learning1

 P(Y|X) ≠ P(Y’|X’), P(X) ≈ P(X’)
Domain adaptation
 P(X) ≠ P(X’), P(Y|X) ≈ P(Y’|X’)

Source domain
Data: X, Labels: Y

Target domain
Data: X’, Labels: Y’



Finite vs infinite intermediate subspaces for domain adaptation

geodesic geodesic 
0S

1S

1tS

2tS

[1] R. Gopalan, R. Li, and R. Chellappa, "Domain Adaptation for Object Recognition: An Unsupervised Approach", ICCV, 
2011, PAMI 2014
[2] Gong et al., Generalized Kernel flow, CVPR 2012

Finite intermediate subspaces [1] Infinite intermediate subspaces 
[2] 

• samples a limited number of 
intermediate subspaces
• concatenates the subspace projection as 
the final features for learning. 
• train a discriminative learner on the 
projected source data

•Samples infinite intermediate subspaces
•Integrates the distance of sample 
projections along the geodesic 



Unsupervised domain adaptation using 
hierarchical non-linear dictionaries

Domain-specific transformations
Joint training of PS and PT

Sparse coding
Shared dictionary 

Max-pooling 
across 4x4 
pixels for each 
dictionary 
atom

Higher layer adaptation

Multi-level feature 
aggregation with
1x1, 2x2, 3x3 spatial 
blocks

Contrast-
normalization



Synthetic to real domain adaptation for 
semantic segmentation

Supervisory 
loss from C

Auxiliary 
loss from D

Cross-
domain 
loss from D



Domain adaptation on traffic camera data

• Motivation
• Absence of annotations
• Significantly lower resolution cameras 
• Suffering from artifacts such as video tear and compression artifacts
• Taking advantage of annotated dataset 

• Adapt annotated datasets (source) to CATT data (target) using cycle consistency GANs
• Train object detectors on the adapted source data 
• Deploy on the actual target data



Qualitative results (UA-DETRAC to CATT v1)
Original OriginalTransferred Transferred



Quantitative results

Base Models

CityCam models

UADETRAC models

Domain Adapted 
UADETRAC models

Domain Adapted + CityCam
UADETRAC models



Detection results



City-scale multi-camera vehicle re-identification
(Khorramshai, et al, ICCV 2019, ECCV 2020)

• Objective
• Retrieve all images of a particular vehicle identity in a large gallery set, 

composed of vehicle images captured by a network of traffic cameras in 
different locations, time, weather condition  and varying orientation.

• Challenges
• Vehicles with different identities can be of same make, model, year and color.

• Vehicle’s appearance and orientation can extremely vary from camera to camera



City scale multi-camera vehicle re-identification
Vehicle Re-Identification is the task of locating all instances of a
particular vehicle identity in a gallery set consisting of a large volume of
vehicle images which have been captured under diverse conditions
using a network of traffic cameras.



Unsupervised domain adaptation training for Re-id

• Transfer knowledge from source domain to target domain
• Train a Re-ID model on the source domain
• Mine pseudo-labels from the target domain

• Extract features from the target domain samples using the model trained on source domain
• Use a clustering method to group extract features from target domain
• Fine-tune the Re-ID model on the mined pseudo-labels 

• For a limited number of epochs
• With a small learning rate

Gu, Jianyang, et al. "1st place solution to visda-2020: Bias elimination for domain adaptive 
pedestrian re-identification." arXiv preprint arXiv:2012.13498 (2020).



City-scale multi-camera vehicle tracking and 
multi-camera vehicle re-identification

(Evaluation Metric: mean Average Precision 
of top 100 results)



Adversarial examples

• The classifier misclassifies adversarially manipulated images

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction

Samagouei, et al, 
ICLR 2018, Lin, et al, 
NeurIPS, 2020



Attack types

Other attacks: Patch attacks on object detectors
Projected Gradient descent (PGD attack), the multi-step variant of FGSM attack
DARPA GARD program



Defending Object Detectors Against Patch Attacks
• Object detection plays a key role in many security critical systems

• E.g., autonomous driving, security surveillance, identity verification, and robot manufacturing

• Adversarial patch attacks pose serious threats to real-world object detection 
systems

• Attacker can arbitrarily distort pixels within a region of bounded size.
• Easy to implement in the physical world. 

(a) Predictions on clean image. (b) Predictions on adversarial image.



Segment and complete (SAC) defense
• Adversarial patches are localized but affect predictions on whole images because 

object detectors utilize spatial context for reasoning.
• Our strategy: “detect and remove”
• SAC: a general, efficient, and effective defense for object detectors  against patch 

attacks



Experiments and results
• Dataset: MS-COCO and xView
• Evaluation metrics:  mean Average Precision (mAP) at Intersection over Union 

(IoU) 0.5
• SAC achieves superior robustness under attacks of various patch sizes without 

decreasing clean performance



(a) Ground-truth labels on clean image. (b) Predictions on clean image.

(c) Predictions on adversarial image. (d) Predictions on SAC masked image.



(a) Ground-truth labels on clean image. (b) Predictions on clean image.

(c) Predictions on adversarial image. (d) Predictions on SAC masked image.



Y. Balaji, S. Sankaranarayanan and R. Chellappa, “MetaReg: Towards Domain Generalization Using meta-
regularization”, Proc. Neural and Information Processing Systems, Montreal, Dec. 2018.

Domain generalization 
involves generalizing to novel 
test domains using variations 
in multiple source domains

Problem 1: Domain generalization



Problem 2: Model pruning/optimization

• Existing methods for model pruning/optimization are heuristic
• Is there a BIC for deep networks?
• Which parameters are statistically insignificant and what harm they 

would cause if removed?
• Learning from noisy data (errors-in-variable formulation)
• We need rigorous hypothesis testing procedures.
• Neural architecture search is an active area of research, but mostly 

adhoc.



Problem 3: Mathematical models for deep 
learning

• Five-year MURI supported by ONR
• Rich Baraniuk (PI), Moshe Vardi, Stan Osher, Ron DeVore, Ryan Tibshirani, Rob Nowak, 

Tom Goldstein and Rama Chellappa
• Research problems

• Mathematical analysis approach to explain DN representations and interpret DN functionality
• Function classes that are optimally approximated by DNs, and quantifying the rate of approximation 

error decay in terms of DN architecture
• Mathematically characterize the class of functions learned via overparameterized and data-

interpolating DNs, as well as the limitations of such models
• Model the interplay between the choice of DN architecture and training algorithms
• Mathematical interpretation of the implicit regularization properties that underlie popular training 

techniques like early stopping, gradient sampling, and preconditioning
• Training DNs with fewer, but selectively chosen, training examples
• statistical methods to rigorously quantify the uncertainty in network outputs, to identify the input 

features and network structures that resulted in a network output and estimate prediction intervals to 
test the significance and confidence of a DN’s decisions

• Understanding the behaviors of deep networks using scalable and parallelizable formal methods



1. Traditional GAN architecture involves a 
Generator (G) and Discriminator (D) pair. 

2. Both are modeled as deep networks 
(since DCGAN)

3. Optimize D to identify the generator’s 
fakes compared to real samples

4. Optimize G to fool the discriminator in 
thinking that G produced a real sample

5. Min-max adversarial game between G 
and D

Problem 4: Analysis of generative 
adversarial networks

Noise

G

D

Real 
Samples

Goodfellow 2014



Problem 5: Choosing the best subsets for training 
from a much larger pool of training data

• Setup
• Given a fixed classifier architecture
• A set of labeled training data points from L different classes

• Objective
• Iterative algorithm
• At teach time instance t, select a subset of the training data to resume training on

• Selection criteria
• The samples in the selected batch must be such that the classifier is uncertain about 

classifying them (or certain but wrong in its classification)
• The batch must have a balanced selection from all classes
• The batch should be sufficiently diverse.
• The batch should be representative of the training samples.



Problem 6: Prediction of critical events from 
heterogeneous data

• Inputs: a) Clinical, claims and specialized JHM research data on the particular patient; b) Similar data from prior system 
(consortium) experience projected from PMAP onto a clinical cohort database (registry); c) Outputs of video and speech 
processing algorithms; and d) Expert knowledge about the etiology of the health or disease condition. 

• Outputs: (1) the prediction, prevention, monitoring, and intervention of frailty and dementia, (2) the definition, 
measurement, and promotion of physical, physiological, and psychological well-being, and (3) the identification of robust 
signals, biomarkers, and processes of frailty and dementia.

• Bayesian hierarchical models (Zeger, Nishumura)

• More needs to be done!

Schematic of the information flow within the JHU Precision Medicine Analytics Platform (PMAP). The AI suite will analyze the 
integrated data and return the results to the clinician and patient to improve their interactive and collaborative shared decision 

making.



Looking ahead - 1

• AI is here to stay
• The definition of AI is broad and all encompassing.

• At scale problems will reveal the warts in AI!
• If AI does not adapt, it is not learning.
• Designers should consider

• Bias or perceived lack of fairness
• More than 20 ways bias can be introduced; there are more than 10 metrics for fairness.
• Task dependent.
• Bias vs performance tradeoff

• Domain adaptation/generalization
• Robustness to adversarial attacks
• Move from black-box decision making (interpretability)

• Human-centric AI
• Synthetic AI –AI via imagination

• “What is now proved was once only imagined”. William Blake.
• Rigorous math will be a good medicine for the alchemy of deep learning.



Looking ahead -2 

• AI’s impact on medicine and healthcare
• Johns Hopkins Artificial Intelligence and Technology Collaboratory for
Aging Research – a five-year, $20 million effort

• Peter Abadir, Rama Chellappa, Greg Hager and Jeremy Walston
• Almost weekly conversations with pathologists, endocrinologists, eye 

doctors, …
• AI’s role in prediction, prevention and diagnosis of deceases will 

fundamentally change how medicine will be practiced and care will 
be delivered.
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