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Outline

* Impact of mathematics/statistics on computer vision, machine learning and Al
* A brief history of Al

* Three at scale case studies
e Unconstrained face verification and recognition
* Vehicle detection and re-identification
e Action detection in untrimmed videos

* Challenges in Al and partial solutions
* Bias
 Domain adaptation/generalization
* Vulnerability to attacks

* Looking ahead
* Al'simpact on medicine and healthcare
* Some open problems for math/stat folks



1970’s - 2010s —The golden decades for
math/statistics, computer vision and Al

* MRF representations, estimation methods, neighborhood selection
rules, texture synthesis, classification, image restoration

* Performance bounds, robust statistics for computer vision and
machine learning

* Invariants

* Mumford-Shah segmentation algorithm
e Calculus of variations

* Lie group



Statistics on manifolds
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More on math/statistics

* Fisher-Rao metric
e Shape statistics (Mardia, Srivastava)
* Dictionary learning on statistical manifolds

* Model order selection
e Bayes information criterion

* Object recognition

* Bayesian graphical models — shallow hierarchy — uncertainty in Al
e Simulated annealing, particle filter, MCMC

e Statistics on special manifolds



Statistics is struggling

e Statistical methods were mostly absent when compressive sensing
and sparse representations were popular (2005-2012)

e Statistics likes 12 more than /1 and /0!

 When hierarchical models are considered
* Multi-resolution time series models, MRFs have challenging inference
problems

e Statistical methods for hierarchical and non-linear models (Deep
learning) are even more challenging!
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Directions in Al |

50's 60’s 70’s 80’s 90’s 00’s 10’s 2020

Theorem proving
Heuristic search

Planning Chess, Go Search Engines
Search Problem Solving Game Strategies Browsers >
“Can machines think?” Common-sense reasoning
Knowledge representation Machine translation
Language Natural Language Processing (NLP) Language Understanding
Rule-based SHRDLU: Blocks world Statistical Speech Text ' '
Eliza: Text response to Text analytics Voice assistants
Vision Computer Vision
Optical character Scene Robotics Object Recognition Deep Learning  Synthesis: GANs
recognition Understanding
Expertise Expert Systems Recommenders
Prospector Medial Configuration Affinity Marketing  ~g

diagnosis Design

Credit to Robert Hummel



Many Al techniques have led to many applications

Symbologists

Analogizers Bayesians Evolutionaries Connectionists
Heuristic Expert Clusterin Bayesian Reinforcement Genetic Simulated Neural Deep
Search Systems & Networks Learning Algorithms Annealing Nets Learning
Hand-crafted Trained Tutored
* Rules * Pre-trained * Trend Analysis
* Features * Big Data corpus
Approaches * Measures

* Observed behaviors

Applications ~ Chess

Object _ Browser Voice
Recognition Medical search .
Job Diagnosis Assistants
Scheduling tt}gglfigg Configuration ~ NLP  Affinity CTR
Planning Design

marketing

Credit to Robert Hummel



Deep learning - miracle or mirage?

* Since 2012, computer vision has become a one-trick pony

* Even more troublesome — Al and deep learning are used
synonomously

* Impressive performance on many tasks
* Object/ face detection, classification, verification

* For face verification at 10-7 false acceptance rate, > 90% true acceptance rate
on faces in the wild (IARPA JANUS program)

* Not there yet

* For action detection, probability of miss for the best systems are 0.34 and
0.53 for known and unknown facilities and 37 actions. 0.6 for detecting
surprise activities



Unconstrained face verification

2014 — 2020, Supported by the IARPA JANUS program
UMD (Lead) with CMU, Columbia, JHU, UB, UCCS, UTD.

Multi-task learning in deep networks
* Face and gender detection, pose and age estimation, fiducial extraction

Network of networks
e Fusion of short and tall networks

Current template size is 384 floats (1536 bytes or 12288 bits)
* Hashing reduces size to 3072 bits

State-of-the art performance on face verification, search,
clustering tasks using relatively small training data set.

Implications to forensics (Collaborations with Jonathon Phillips,
ggdzﬁélilcse O’Toole) — Proc. National Academy of Sciences, May

Dfrfs. Rajeev Ranjan, Ankan Bansal, Hui Ding contributed to this
effort.



Ranjan, et al., T-PAMI, 2018

Hyperface architecture (PAMI 2017
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Unconstrained video-based face identification

* Recognize the identity of the target face in a video

| Enrollment

: || I P T
=T s oy
vl @
(1) School

1JB-B (Multi-shot Videos)

(b) Building 17 (3) Interior Bus (4) Exterior Bus
assy

(5) Embassy
Emb Station Bus Station  Station

CS6 video dataset
An unconstrained video-based face recognition dataset.
Galleries: high-resolution still images. Probes: low quality, remotely captured

6) Martpla (c) Law Firm (d) School

surveillance videos. Marketplace
202 subjects from 1421 images and 398 single-shot surveillance videos.
We focus on surveillance-to-single , surveillance-to-booking and surveillance-to- CS6 (single-shot surveillance Videos)

surveillance identification protocols.
Zheng, et al, T-BIOM 2019, Ranjan, et al., T-BIOM 2019



Other problems we have Worked on

e Large gallery face dataset

* The large-scale dataset used in this work consists of 14,728,804 images from 4,233,581 distinct individuals of non-
U.S. individuals. On average there are 3.47 images per individual - the number of images for each individual varies
from a minimum of 1 to a maximum of 139, with most of the individuals having only 1 image.

* Faces at 300m 650m 1000m

LEIEEF

* |ARPA Janus Benchmark Multi-Domain Face (IJB-MDF) dataset.

* Source domain is in the visible domain and the target domains are from four SWIR cameras.

Lau, et al, T-BIOM, 2021, Lau, et al., JST Special Issue on Deep learning, 2020



AlCity challenges (2019-2021)

® Algorithms developed for multiple tasks (vehicle re-id, vehicle counting and anomaly
detection)

® Datasets for challenge are carefully curated, with annotations
O High Resolution: Most images are 1920x1080
O High Frame Rate: Usually 10 frames per second

Clean curated data



Challenges on trafficView/CATT data

» Operational cameras tend to be lower quality/less maintained by local governments than curated
challenge datasets

. Lower Resolution: Most images are 320x240
. Lower Frame Rate
. Artifacts such as compression artifacts, video tearing, etc

. Various Scales
. (large vehicles + closer to camera vs small vehicles + further from camera)

\DOT (@  FREETRAFFIC INFO | 511virginia.org \VDOT (@) FREE TRAFFIC INFO | 511virginia.org




Activity detection in nntrimmed videos-DIVA

UMD-JHU system: Modular,
generalizable, proposal-based system
for action detection. Uses objects and
motion for activity detection.

UCF system: Takes untrimmed RGB
videos as input and provides spatio-
temporal localization of activities
present in videos

Columbia System: Takes the UMD/JHU
proposals as input and replace the TRI-
3D classifier with a 2-stage classifier to
detect long-tail events (12 few-shot
classes). For surprise activity detection,
takes the UMD/JHU proposals as input,
and combines a few-shot visual-based
module and a text-based cross-modal
module.

CMU Surprise activity retrieval

system: Uses UMD/JHU’s pipeline.
Takes both visual and text surprise
queries as input.

Retrieves activity cuboids for each
surprise query

(JHU, UMD, UCF, CMU, Columbia)

Proposal Generation Action Classification
Object H](,I‘dl‘[,hl(,d] Temporal Proposal TRL3 Post
Detection Clubtermg Jittering Sampling : Processing

F 3

I

Best results: https://acev.nist.gov/sdl All p_miss numbers are at TFA=0.02

KF (EOQ): p_miss: 0.34, relative time: 0.41

KF (IR): p_miss: 0.68, relative time: 0. 38.
UF (Known activities): p_miss: 0.54, relative time: 0.68
UF (Surprise activities) p_miss: 0.78, relative time: 0.61.

p_miss is the portion of activities where the system did not detect the activity for at least 1
second. TFA is the portion of time that the system detected an activity when in fact there was

none

Gleason, et al.,
WACV 2019,
WACV2020


https://acev.nist.gov/sdl

Challenges of using deep learning for
pathology

* High cross-institutional data variation in staining protocols, patient population, etc.

* Models trained by one lab may not work well for other labs

(a) Areas Under PR-curves
5. ] -

= m ]
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i a3 N/K: Neutrophils/Karyorrhexis
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FN: Fibrinoid Necrosis
HD: Hyaline Deposits
CF: Crescent Formation
) GL: Glomerulosclerosis
l MH: Mesangial Hypercellularity

[ @ GSD: Global Subepithelial Deposits
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0.5

AUPR
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(b) Glomerular images from one lab (top) and another
lab (bottom) have different colors, brightness, and
texture due to variations in slide thickness, reagent, etc.

( a) DenseNet-121 achieves good performances on data

from the same lab (green color) but performs poorly
when applied to data from another lab (red color).

Slide from Prof. Hien Nguyen, Univ.
of Houston



Despite being successful, deep learning-based
methods have issues

* While seen as a non-linear mapping between data and labels, lack
of analytical results is worrisome.

* Learning millions of parameters from relatively small data is a
statistical blasphemy!

* Tightly clings to training data and does not generalize well
* No performance measure to say why and when it works

* We can pile on...



Open problems and partial solutions

* Bias
* Face recognition, vehicle re-identification

* Domain adaptation
* Vehicle re-identification, activity detection

e Adversarial attacks and robust defenses
e Patch attacks on object detection



The PPB dataset 6.3% 20.8%
AFRICAN SCANDINAVIAN

Classifier Metric All F M  Darker Lighter DF DM LF LM
PPV (%) 93.7 €893 9741 87.1 99.3 79.2 910 983 100
A Error Rato(%) 107 26 129 0.7 60 1.7 00
TPR (%) 937 965 91L.7 871 99.3 921 837 100 98.7
FPR (%) 63 83 35 129 0.7 163 79 13 00
PPV (%) 90.0 787 99.3 835 953  63.5 99.3 940 99.2
~ Frror Rate(%) 100 213 0.7 165 47 845 07 60 08
B TPR (%) 900 989 851 835 953 088 766 98.9 929
FPR (%) 100 149 11 16.5 4.7 234 1.2 7.1 1.1
PPV(%) 879 TOT 944 776 96.8 653 880 929 99.7
Lrror Rate(%) 121 203 56 224 32 B4y 2B Ti 03
TPR (%)  R79 921 852 776 96.8 823 748 99.6 94.3
FPR (%) 121 148 79 294 %9 952 1FF B0 GA
GenderShades.Org
PPB: Pilot Parliaments Benchmark [Buolamwini 2018]

[Buolamwini & Gebru 2018]



Error (%)

25 -

10 1

Gender Classification Error Rates on PPB dataset
Test Date: 05/01/2019

Amazon Rekognition 08/2018 on PPB

{ mmm Amazon Rekognition 08/2018 on PPB2

Amazon Rekognition 04/30/2019 on PPB2 |
S« 9 v

Sl N S

Population subgroup (labels: F=female, M=male, D=darker skin, L=lighter skin)

21



Expressivity of facial attributes

* Expressivity of an entity = the ease with which that entity can be
predicted using a given set of features.

* We compute expressivity of facial attributes (yaw, age, gender,
identity) in a given set of face descriptors

* To compute expressivity, we approximate the mutual information (Ml)
between features and attributes, by using an existing approach called
Mutual Information Neural Estimation (MINE) [Belghazi et. al, ICML
2018].



Expressivity of yaw, gender and age (Dhar, et al.,

FG2020
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Key takeaways

* Face recognition features implicitly encode attributes like yaw, gender
and age.

* During the training process, the expressivity of identity increases
while that of yaw, gender and age decreases, thus showing that un-
learning is a part of learning. Expressivity of yaw, especially, decreases
very rapidly.

* Rate of un-learning: Age < Gender < Yaw (opposite to the order of
attribute-wise relevance)



Protected Attributes Suppression System (PASS)

o - d md L " Lan
NS
Initializing & training M and C (Stage 1) Ensemble E
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Training Dataset f n °
Pre-trained network P ®
v
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class*

: Classification loss for training M to classify identities

Dhar, et al, ICCV 2021

L,..: Classification loss for E (discriminator) to classify sensitive attribute (gender/race)

Lyep: Adversarial loss to discourage M from encoding gender/race information
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Results (Crystalface — Skin tone bias)
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Bias-performance tradeoff

* Most adversarial de-biasing systems demonstrate a drop in face verification
performance.

* An ideal face recognition system should demonstrate high bias reduction and low
drop in performance.

* To measure this tradeoff between reduction in bias and drop in verification
performance, we propose a new metric called Bias Performance Coefficient:

. F . F F
per) _ Bias®) - Biasj,, TPR(") — TPR{])
| Bias") ] |\ TPI?<F ) J
|

% drop in bias % drop in TPR




PASS/MultiPASS systems achieve high BPCs

Crystalface — Gender bias analysis

FPR | 10°° | 10~* | 1073
Network  Acc-g({) | TPR BPC, (1) | TPR BPCy(1) | TPR BPC4(1)

Crystalface[36] 86.73 |0.833 0.000 [0.910 0.000 |[0.951 0.000
W/o hair[3] 86.04 |0.589 -8926 [0.780 0.823 |0.899 0.195
IVE(g)[47] 86.10 [0.833 0.833 |0.910 0.391 |0951 0.250

PASS-g 80.54 [0.761 0.847 |0.839 0.857 |0.921 0.968
MultiPASS 7631 |0.708 0383 |0.809 0.823 [0.881 0.426

Crystalface — Skin tone bias analysis

FPR | 10~* | 1073 | 10~2
Network  Acc-st () | TPR BPCq (1) | TPR BPCq (1) | TPR BPCgy(1)
Crystalface[36]  89.30 ‘ 0.910  0.000 ‘ 0.950  0.000 ‘ 0974  0.000

IVE(s)[42] 88.26 (0910 -0.041 |0.950 -0.407 |0974 -1.000
PASS-s 83.84 [0.844 0.261 |0914 0.702 |0919 0.125
MultiPASS 7944 |0.809 0.639 |0.881 0.927 [0.968 0.994



D&D(g) and D&D++(g) generate

more similar attention maps

for male and female frontal faces.

Qualitative results

Dissimilar attn. regions [Crystalface]
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D&D(s) and D&D++(s) generate

more similar attention maps

for dark and light frontal faces.



Bias performance tradeoff (TPR v/s bias)

High performance, High performance, High performance, High performance,
Low gender bias High gender bias Low skintone bias High skintone bias
b Original Arcface ® o b Original Arcface ® ¢ IVE(s)
% IVE(g) i
14 0-93%
8 | ® D&D++(s) >
5 002§ 0SD(s)
o 00iE @ D&D(s)
® D&D++(g) :
'0'8?5 0—9
® PASS-g
0-89
0OSD 0-88
0:85 = (©)
0-87
PASS-s
D&D(g) Gender Bias 0-86 . Skintone Bias
l
0.825 091 0.02 0.03 0.01 0.015 0.02 0.025
Low performance, Low performance, Low performance, Low performance,
Low gender bias High gender bias Low skintone bias High skintone bias

Adversarial de-basing methods like PASS reduce bias but also reduce verification performance,
but D&D++ reduces bias and minimizes the drop in verification performance



Domain adaptation: Motivation (Saenko et al.,
ECCV "10)

Source domain Target domain
Data: X, Labels: Y Data: X, Labels: Y’

Transfer Learning?

® ’ )] . )
Image credit: Saenko et al., ECCV 2010, Bergamo et al., NIPS 2010 * P(le) * P(Y |X )' P(X) - P(X )

1S.J. Panand Q. Yang. A survey on transfer learning. Doma | N ada ptation
IEEE Trans. Knowledge and Data Engineering, 22:1345 —1359,

October 2010. o P(X) # P(X’), P(Y|X) = P(Y"| X"},



Finite vs infinite intermediate subspaces for domain adaptation

Infinite intermediate subspaces

[2] \

[1] R. Gopalan, R. Li, and R. Chellappa, "Domain Adaptation for Object Recognition: An Unsupervised Approach", ICCV,
2011, PAMI 2014
[2] Gong et al., Generalized Kernel flow, CVPR 2012



Unsupervised domain adaptation using
hierarchical non-linear dictionaries
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Synthetic to real domain adaptation for
semantic segmentation

A

Adversarial
component

Real Source image

Supervised
classification

\ Real Target image / component

o [:55 g * Pixelwise classification loss

o £r‘cc : Pixelwise recanstruction loss

o £a dwv: Pixelwise adversarial loss

o L awx: Auxiliary segmentation loss

C network

Source real

Source fake

Target real

Fake Source image Target fake

[

\ Fake Target image /
/ Test phase \
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Domain adaptation on traffic camera data

* Motivation
e Absence of annotations
* Significantly lower resolution cameras
 Suffering from artifacts such as video tear and compression artifacts

e Taking advantage of annotated dataset
* Adapt annotated datasets (source) to CATT data (target) using cycle consistency GANs
* Train object detectors on the adapted source data
* Deploy on the actual target data



Qualitative results (UA-DETRAC to CATT v1)

Original Transferred Original Transferred




Base Models

CityCam models

UADETRAC models

Domain Adapted
UADETRAC models

Domain Adapted + CityCam
UADETRAC models

Quantitative results

Model
FasterRcnnR101-base
RetinaNetE101-base

CityCam-FasterRcnnRE101
CityCam-RetinaMNetR 101

UA-DETRAC-FasterRennR 101
UA-DETRAC-RetinaNetR101

DomainAdpt-FasterRennR 101
DomainAdpt-RetinaNetR101FPN

DomainAdpt+CityCam-FasterRcnnR101
DomainAdpt+CityCam-RetinaNetR101

mAP

64.8
62.24

73.92
69.95

37.86
36.21

61.49
60.62

77.83
75.84



Detection results
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(Khorramshai, et al, ICCV 2019, ECCV 2020)

* Objective

* Retrieve all images of a particular vehicle identity in a large gallery set,
composed of vehicle images captured by a network of traffic cameras in
different locations, time, weather condition and varying orientation.

e Challenges




City scale multi-camera vehicle re-identification

Vehicle Re-ldentification is the task of locating all instances of a
particular vehicle identity in a gallery set consisting of a large volume of
vehicle images which have been captured under diverse conditions
using a network of traffic cameras.
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Unsupervised domain adaptation training for Re-id

* Transfer knowledge from source domain to target domain
e Train a Re-ID model on the source domain

* Mine pseudo-labels from the target domain
* Extract features from the target domain samples using the model trained on source domain
e Use a clustering method to group extract features from target domain

* Fine-tune the Re-ID model on the mined pseudo-labels
* For a limited number of epochs

Source Ip
Classifier loss

Triplet [ .
loss

* With a small learning rate

Triplet |
loss

Target ID
Classifier loss

——————

Gu, Jianyang, et al. "1st place solution to visda-2020: Bias elimination for domain adaptive Clustering
pedestrian re-identification." arXiv preprint arXiv:2012.13498 (2020).



City-scale multi-camera vehicle tracking and
multi-camera vehicle re-identification

Rank Team Name Score (IDF1) Rank Team Name Score (mMAP)
| Cyber Tracking 0.8188 1 DMT 0.7445
2 Mcmt 0.8095 2 NewGeneration 0.7151
3 Fivefive 0.7787 3 CyberHu 0.6650
- CyberHu 0.7651 4 For Azeroth 0.6555
5 aiem2021 (Ours) 0.7189 5 IDo 0.6373
6 Track mtmc 0.7061 6 KeepMoving 0.6364
7 FraunhoferlOSB 0.6910 7 MegVideo 0.6252
8 Starwars 0.6575 8  aiem2021 (Ours) 0.6216
9 Aiforward 0.5812 9 CyberCoreAl 0.6134

10 Janus Wars 0.5763 10 Janus Wars 0.6083

(Evaluation Metric: mean Average Precision
of top 100 results)



Adversarial examples

* The classifier misclassifies adversarially manipulated images

Pelican

DNN
(p=0.97)

(same as before)

pl(c)

€2)
A Speed boat Samagouei, et al,

p(cs) .
ICLR 2018, Lin, et al,

(p=0.97) NeurlPS, 2020

plcn)

Jeans
(p=0.97)

[Szegedy et al., ICLR “14]

Slide credit: Binghui Wang: Adversarial Machine Learning — An Introduction



Attack types

« White-box: the adversary knows all the parameters of the model that is
trained with loss J(x, y).

— FGSM: Given an image x and its true class y, FGSM finds a perturbation & by
moving the input pixels in the direction of the sign of the gradient components, by a

fixed amount e. 8 = e-sign(VeJ (x, 1))

— Rand+FGSM: First adds a random noise to the input image to make the attack
stronger against defense methods that assume an FGSM attack:

x' = x+a-sign(N(0", 1)) x =x"+ (e —a) -sign(Vuw J (X', 1))

— CW:is an optimization-based technique to find the optimal perturbation.
min |l +c- f(x+9)
s. t. x+4d € [0,1]",
e [ is an objective function that drives the example x to be misclassified

- Black-box: the adversary does not know the parameters of the model.

— Train a substitute network that mimics the behavior of the target model, perform a
white-box attack on the substitute model and transfer it to the target model.

Other attacks: Patch attacks on object detectors

Projected Gradient descent (PGD attack), the multi-step variant of FGSM attack
DARPA GARD program



Defending Object Detectors Against Patch Attacks

* Object detection plays a key role in many security critical systems
* E.g., autonomous driving, security surveillance, identity verification, and robot manufacturing

* Adversarial patch attacks pose serious threats to real-world object detection
systems
 Attacker can arbitrarily distort pixels within a region of bounded size.
* Easy to implement in the physical world.

(a) Predictions on clean image. (b) Predictions on adversarial image.



Segment and complete (SAC) defense

* Adversarial patches are localized but affect predictions on whole images because
object detectors utilize spatial context for reasoning.

e Our strategy: “detect and remove”

* SAC: a general, efficient, and effective defense for object detectors against patch
attacks

Robust Shape
Completion

N\

Binary patch mask

Object

Detector
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Experiments and results

e Dataset: MS-COCO and xView

e Evaluation metrics: mean Average Precision (mAP) at Intersection over Union
(loU) 0.5

* SAC achieves superior robustness under attacks of various patch sizes without
decreasing clean performance

Table 1: mAP (%) under non-adaptive attacks with different patch sizes.
Dataset Method Clean 75x75 100 x 100 125x 125
Undefended  49.0 19.84+0.8 14.4+0.5 99404

MS-COCO LGS [29] 42.7 36.840.1 35.240.4 32.840.7
SAC (Ours) 49.0 47.240.3 45.940.4 44.14+0.3

Dataset Method Clean 50x50 75x75 100 100
Undefended 27.18 8.40+1.32 7.064+0.34 5.284 (.86
xView LGS [29] 19.08 11.864+042 10.864+0.26 9.7740.37

SAC (Ours) 27.18 25.80+0.34 23.7541.24 23.2140.04




(c) Predictions on adversarial image.

(d) Predictions on SAC masked image.



(c) Predictions on adversarial image. (d) Predictions on SAC masked image.



Problem 1: Domain generalization

Domain generalization
involves generalizing to novel
test domains using variations
in multiple source domains

Y. Balaji, S. Sankaranarayanan and R. Chellappa, “MetaReg: Towards Domain Generalization Using meta-
regularization”, Proc. Neural and Information Processing Systems, Montreal, Dec. 2018.



Problem 2: Model pruning/optimization

* Existing methods for model pruning/optimization are heuristic
* Is there a BIC for deep networks?

 Which parameters are statistically insignificant and what harm they
would cause if removed?

* Learning from noisy data (errors-in-variable formulation)
* We need rigorous hypothesis testing procedures.

* Neural architecture search is an active area of research, but mostly
adhoc.



Problem 3: Mathematical models for deep
learning

* Five-year MURI supported by ONR

* Rich Baraniuk (PI), Moshe Vardi, Stan Osher, Ron DeVore, Ryan Tibshirani, Rob Nowalk,
Tom Goldstein and Rama Chellappa

* Research problems

Mathematical analysis approach to explain DN representations and interpret DN functionality

Function classes that are optimally approximated by DNs, and quantifying the rate of approximation
error decay in terms of DN architecture

Mathematically characterize the class of functions learned via overparameterized and data-
interpolating DNs, as well as the limitations of such models

Model the interplay between the choice of DN architecture and training algorithms

Mathematical interpretation of the implicit regularization properties that underlie popular training
techniques like early stopping, gradient sampling, and preconditioning

Training DNs with fewer, but selectively chosen, training examples

statistical methods to rigorously quantify the uncertainty in network outputs, to identify the input
features and network structures that resulted in a network output and estimate prediction intervals to
test the significance and confidence of a DN’s decisions

Understanding the behaviors of deep networks using scalable and parallelizable formal methods



Problem 4: Analysis of generative
adversarial networks

. Traditional GAN architecture involves a
Generator (G) and Discriminator (D) pair.
. Both are modeled as deep networks s
(since DCGAN)

. Optimize D to identify the generator’s

fakes compared to real samples

. Optimize G to fool the discriminator in
thinking that G produced a real sample
. Min-max adversarial game between G

and D

min max E;.p,,,, (log(D(x))

+E,, ... log(1 — D(G(2))) Goodfellow 2014



Problem 5: Choosing the best subsets for training
from a much larger pool of training data

* Setup

* Given a fixed classifier architecture
* A set of labeled training data points from L different classes

* Objective
* |terative algorithm
e At teach time instance t, select a subset of the training data to resume training on

e Selection criteria

 The samples in the selected batch must be such that the classifier is uncertain about
classifying them (or certain but wrong in its classification)

* The batch must have a balanced selection from all classes
* The batch should be sufficiently diverse.
* The batch should be representative of the training samples.



Problem 6: Prediction of critical events from
heterogeneous data

Inputs: a) Clinical, claims and specialized JHM research data on the particular patient; b) Similar data from prior system
(consortium) experience projected from PMAP onto a clinical cohort database (registry); c) Outputs of video and speech
processing algorithms; and d) Expert knowledge about the etiology of the health or disease condition.

Outputs: (1) the prediction, prevention, monitoring, and intervention of frailty and dementia, (2) the definition,
measurement, and promotion of physical, physiological, and psychological well-being, and (3) the identification of robust
signals, biomarkers, and processes of frailty and dementia.

Bayesian hierarchical models (Zeger, Nishumura)
More needs to be done!
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Schematic of the information flow within the JHU Precision Medicine Analytics Platform (PMAP). The Al suite will analyze the
integrated data and return the results to the clinician and patient to improve their interactive and collaborative shared decision
making.



Looking ahead - 1

Al is here to stay
* The definition of Al is broad and all encompassing.

At scale problems will reveal the warts in Al!
If Al does not adapt, it is not learning.

Designers should consider

* Bias or perceived lack of fairness
* More than 20 ways bias can be introduced; there are more than 10 metrics for fairness.
* Task dependent.
* Bias vs performance tradeoff

* Domain adaptation/generalization

* Robustness to adversarial attacks

* Move from black-box decision making (interpretability)
Human-centric Al

Synthetic Al —Al via imagination
* "What is now proved was once only imagined”. William Blake.

Rigorous math will be a good medicine for the alchemy of deep learning.



Looking ahead -2

* Al's impact on medicine and healthcare
* Johns Hopkins Artificial Intelligence and Technology Collaboratory for

Aging Research — a five-year, $20 million effort
e Peter Abadir, Rama Chellappa, Greg Hager and Jeremy Walston

* Almost weekly conversations with pathologists, endocrinologists, eye
doctors, ...

* Al's role in prediction, prevention and diagnosis of deceases will
fundamentally change how medicine will be practiced and care will
be delivered.
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