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Abstract

Quantum computers are moving out of physics labs and becoming
generally programmable. In this talk, we start from quantum protocols like
magic state distillation and Shor factoring algorithm that make essential
use of diagonal logical gates. The difficulty of reliably implementing these
gates in some quantum error correcting code (QECC) is measured by their
level in the Clifford hierarchy, a mathematical framework that was defined
by Gottesman and Chuang when introducing the teleportation model of
quantum computation. We describe a method of working backwards from
a target logical diagonal gate at some level in the Clifford hierarchy to a
quantum error correcting code (CSS code) in which the target logical can
be implemented reliably.
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Computation + Resilience

Role of Quantum Error Correcting Code (QECC):

Information |x〉L |x̃〉L

|ψx〉 |ψx̃〉

target logical operation

[[n, k, d ]]
QECC

encode

physical operation

[[n, k , d ]]
QECC
decode

Generator Coefficients: Mathematical Framework
for reasoning about Diagonal Logical Channels
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The Pauli Group PN (N = 2m)

Pauli Group P2 : Generated by ıI2, X =

[
0 1
1 0

]
, and Z =

[
1 0
0 −1

]
Pauli Group PN = P⊗m2 : Generated by ıIN , and matrices D(a,b)
parametrized by binary vectors a = [a1, . . . , am],b = [b1, . . . , bm]

D(a,b) := X a1Zb1 ⊗ · · · ⊗ X amZbm

D(a, b) |v〉 = (−1)vb
T |v ⊕ a〉 for all v ∈ Fm

2

Hermitian Paulis: E (a, b) := ıab
T (mod 4)D(a, b), E (a, b)2 = IN

Pauli Group PN := {ıκD(a, b) : a, b ∈ Fm
2 , κ ∈ Z4} (ı =

√
−1)

E (a, b), a, b ∈ Fm
2 : X ⊗ Z ⊗ Y︸ ︷︷ ︸

m=3 qubits

= E ( 1 0 1︸︷︷︸
a

, 0 1 1︸︷︷︸
b

)
a = 1 0 1
b = 0 1 1

E (a, b) = X1 Z2 Y3
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Why Target Logical Diagonal Gates

1 Magic State Distillation

2 Period finding in the Shor factoring algorithm
Unitary operator U = Z 1/2l , eigenvector v , eigenvalue e2πıψ
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Level of Difficulty

Measured by level in the Clifford Hierarchy

l-th level: Unitaries
C(l) := {U ∈ UN : UPNU† ⊂ C(l−1)}

...
3rd level
|

2nd level: The Clifford Group
Cliff := {U ∈ UN : UPNU† ⊂ PN}

|
1st level: The Pauli Group
PN := P⊗m2 , P2 := 〈ıκI ,X ,Z 〉

Diagonal Gates

Z
1

2l−1 , CZ
1

2l−2 , . . . , Cl−1Z
...

T =
√

P = Z
1
4 , CP, CCZ

|

P = Z
1
2 , CZ

|
Z
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Representing Diagonal Gates

Quantum Gate: 2n × 2n complex diagonal unitary matrix

Walsh-Hadamard matrix: H2n = H2 ⊗ H2 ⊗ · · · ⊗ H2 = H⊗n2

where H2 = 1
2

[
1 1
1 −1

]

Pauli Basis

UZ =
∑

v∈Fn
2

f (v)E (0, v)

Dirac Basis

UZ =
∑

u∈Fn
2

du |u〉 〈u|

H2n

[f (v)]v∈Fn
2

= [du ]u∈Fn
2
H2n
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CSS Codes Defined as Projections

{0}

C2

C1

Fn
2

k2

k1

{0}

C⊥1

C⊥2

Fn
2

n − k1

n − k2

Stabilizer Group S ⊆ PN
S = {ε(a,0)E (a, 0) ε(0,b)E (0,b) : a ∈ C2,b ∈ C⊥1 },

where ε(a,0) = (−1)arT and ε(0,b) = (−1)byT
.

Matrix Representation

GS =

[
G⊥1

G2

]
,

where G2 generates C2 = SX
and G⊥1 generates C⊥1 = SZ .

Code projector ΠS for S = 〈ε(ci ,0)E (ci , 0) , ε(0,dj )E
(
0,dj

)
〉

ΠS =

k2∏
i=1

(IN + ε(ci ,0)E (ci , 0))

2

n−k1∏
j=1

(IN + ε(0,dj )E (0,dj ))

2
=: ΠSX ΠSZ
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CSS Codes States

[[n, k = k1 − k2, d ]] CSS(X , C2, r ; Z , C⊥1 , y): Stabilizer S

Codespace V(S) :=
{
|ψ〉 ∈ CN : g |ψ〉 = |ψ〉 for all g ∈ S

}
Undetectable Errors: g ∈ PN , g /∈ S, gh = hg for all h ∈ S

Distance d : Undetectable error acts on at least d qubits

X -distance dX : minx∈C1\C2
wH(x)

Z -distance dZ : minz∈C⊥2 \C⊥1
wH(z)

General Encoding Map ge : |ψ〉L ∈ Fk
2 →

∣∣ψ〉 ∈ V(S)

∣∣ψ〉 :=
1√
|C2|

∑
a∈C2

(−1)arT ∣∣ψGC1/C2
⊕ a ⊕ y

〉
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CSS Codes Oblivious to Coherent Noise

Coherent Noise: Z -rotation RZ (θ) through angle θ on each qubit

Obliviousness: Logical operator induced by RZ (θ) is the identity
V(S) is a Decoherence Free Subspace (DFS)

Necessary and Sufficient conditions for V(S) ⊆ DFS:

Product Structure: weight-2 Z -stabilizers partition qubits into clumps

Negative Signs: character vector y supported on half of each clump

[[16, 1, 4]] Shor Code with negative signs:

Four Rows: Four Clumps Γ1, Γ2, Γ3, Γ4

Character Vector: y |Γk
= [ 0 1 1 0 ]

For details see: https://arxiv.org/pdf/2011.00197
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Code States that Support Logical Transversal T

Bravyi and Haah (2012): Triorthogonal CSS codes
A binary matrix [Gi ,j ]{i∈{1,··· ,m},j∈{1,··· ,n}} is triorthogonal if for all
1 ≤ f < g < h ≤ m,

n∑
i=1

Gf ,iGg ,i = 0 (mod 2) and
n∑

i=1

Gf ,iGg ,iGh,i = 0 (mod 2).

Triorthogonal CSS(X , C2 = 〈G0〉, r = 0; Z , C⊥1 = 〈G⊥〉, y = 0) code:
G is a triorthogonal matrix and G0 is the submatrix of all even-weight rows

G =


w1
...

wk

even-weight submatrix G0 : X -Stabilizers


Triorthogonality is Sufficient: Physical transversal T preserves the
codespace and induces logical transversal T (up to logical Clifford gates)
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Necessary and Sufficient Conditions

Stabilizer Perspective: Preserving a code is equivalent to preserving the
projector that defines the code.

U
∣∣ψ〉 = UE (a,b)

∣∣ψ〉 = (UE (a,b)U†)U
∣∣ψ〉⇒ UE (a,b)U† ∈ S(U

∣∣ψ〉)
Rengaswamy, Calderbank, Newman, and Pfister (2020) show that
triorthogonality is necessary if physical transversal T is to induce logical
transversal T (up to logical Clifford gates)

Hu, Liang, and Calderbank (2021) derive necessary and sufficient
conditions for a physical diagonal gate to preserve a stabilizer code and
induce a target logical diagonal gate
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Creating an Average Logical Channel
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Generator Coefficient Framework

2n−k1 rows: the [[n, k1 − k2, d ]] CSS codes corresponding to all possible
signings of the Z -stabilizer group

2k2 columns: all possible X -syndromes µ

Logical operator Bµ is induced by

1 preparing a code state ρ1

2 applying a diagonal physical gate UZ to obtain ρ2

3 using X -stabilizers to measure ρ2, obtaining the syndrome µ with
probability pµ, and the post-measurement state ρ3

4 applying a Pauli correction to ρ3, obtaining ρ4

ρ4 =
∑

µ∈Fn
2/C⊥2

Bµρ1B†µ and Bµ =
∑

γ∈C⊥2 /C⊥1

Aµ,γ ε(0,γ⊕γµ)E (0,γ ⊕ γµ)︸ ︷︷ ︸
Logical Pauli Z Operator

Aµ,γ are the generator coefficients determined by UZ
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The Influence of Signs

Diagonal Physical Gate: UZ =
∑

v∈Fn
2

f (v)E (0, v) =
∑

u∈Fn
2

du |u〉 〈u|

For a CSS(X , C2; Z , C⊥1 ) code, let

µ ∈ Fn
2/C⊥2 be any X -syndrome

γ ∈ C⊥2 /C⊥1 be any Z -logical

The generator coefficient Aµ,γ corresponding to UZ is

Aµ,γ =
∑

z∈C⊥1 +µ+γ

ε(0,z)f (z) =
1

|C1|
∑
u∈C1

(−1)(µ⊕γ)uT
du⊕y .

Here ε(0,z) = (−1)zy
T

is the sign of Z -stabilizer E (0, z) for y ∈ Fn
2/C1
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When the Physical gate is a Transversal Z -Rotation

RZ (θ) =
[
exp

(
−ı θ2 Z

)]⊗n
=
(
cos θ2 I − ı sin θ

2 Z
)⊗n

=
∑

v∈Fn
2

f (v)E (0, v)

f (v) =

(
cos

θ

2

)n−wH(v)(
−ı sin

θ

2

)wH(v)

Generator Coefficients:

Aµ,γ(θ) =
∑

z∈C⊥1 +µ+γ

ε(0,z)

(
cos

θ

2

)n−wH(z)(
−ı sin

θ

2

)wH(z)

=
1

|C1|
∑
z∈C1

(−1)(µ⊕γ)zT
(

e−ı
θ
2

)n−2wH(z⊕y)
.

for all syndromes µ ∈ Fn
2/C⊥2 and Z -logicals γ ∈ C⊥2 /C⊥1

wH(z ⊕ y) = n
2 : Induced logical gate is the identity
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Repetition Code with Negative Stabilizers

Stabilizer S = 〈−Z1Z2,Z2Z3〉: C2 = 〈000〉, C⊥1 = 〈110, 011〉

Character Vector: y = [ 1 0 0 ]

Generator Coefficients A0,γ(θ): γ ∈ C⊥2 /C⊥1 = {000, 111}

A0,γ(θ) =
∑

z∈C⊥1 +γ

ε(0,z)

(
cos

θ

2

)n−wH(z)(
−ı sin

θ

2

)wH(z)

=

 cos θ2 , if γ = [ 0 0 0 ]

−ı sin θ
2 , if γ = [ 1 1 1 ]∑

γ |A0,γ(θ)|2 = 1 : RZ (θ) preserves the codespace

Induced Logical Operator: exp(−ı θ2 ZL)

RL
Z (θ) = A0,000(θ)IL + A0,111(θ)ZL
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Preserving the Code Space

UZ : physical diagonal gate

Theorem: UZ preserves CSS(X , C2; Z , C⊥1 ) codespace if and only if∑
γ∈C⊥2 /C⊥1

|A0,γ |2 = 1

Intuition: Invariance of the codespace is equivalent to requiring the logical
operator induced by the trivial syndrome Bµ=0 is unitary

Logical operator induced by UZ is

UL
Z =

∑
α∈Fk

2

A0,h(α)E (0,α)

where h : Fk
2 → C⊥2 /C⊥1 defined by g(α) = αGC⊥2 /C⊥1

and GC⊥2 /C⊥1
is the

generator matrix of C⊥2 /C⊥1
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The Steane Code

Example: [[7, 1, 3]] Steane Code with the trivial signs

wt 0 3 4 7
# 1 7 7 1

Table: Weight Dist of C1 = C⊥2 =RM(1,3)

wt 0 4
# 1 7

Table: Weight Dist of C⊥1 = C2

Generator Coefficients for the trivial syndrome µ = 0:

A0,0(θ) =
1

8

(
cos

7θ

2
+ 7 cos

θ

2

)
, A0,1(θ) =

ı

8

(
− sin

7θ

2
+ 7 sin

θ

2

)
Logical angle θL in terms of physical angle θ:

θL = 2 tan−1

(
ı
A0,1(θ)

A0,0(θ)

)
θ =

π

4
⇒ θL = −π

4
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Necessary and Sufficient Divisibility Conditions

Quadratic Form Diagonal (QFD) Gate: τ
(l)
R =

∑
v∈Fn

2
ξvRvT mod 2l

l |v〉 〈v |

Here l ≥ 1 is the level in the Clifford hierarchy, ξl = e
ı π

2l−1 , and R is an
n × n symmetric matrix with entries in Z2l = {0, 1, . . . , 2l − 1}

Rengaswamy, Calderbank, and Pfister (2019): QFD Gates include all
1-local and 2-local diagonal gates in the Clifford hierarchy.

Theorem: If UZ = τ
(l)
R , then

∑
γ∈C⊥2 /C⊥1

|A0,γ |2 = 1 if and only if

2l | (v1RvT
1 − v2RvT

2 )

for all v1, v2 ∈ C1 + y such that v1 ⊕ v2 ∈ C2

Divisibility conditions corresponding to successive levels differ only by a
factor of 2
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Climbing the Diagonal Clifford Hierarchy

physical level

logical
level

Concatenation

Removing Z -stabilizers

Adding X -stabilizers

Examples:

[[7,1,3]] [[14,1,3]]

[[14,2,2]]

[[4,2,2]] [[64,2,2]]

[[64,15,4]]

+
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Raising the Physical Level by Concatenation

Quadratic Form Diagonal Gate: τ
(l)
R =

∑
v∈Fn

2
ξvRvT mod 2l

l |v〉 〈v | ∈ C(l)

{0}

C2

C1

Fn
2

{0}

C⊥1

C⊥2

Fn
2

µ

γ

{0}

C′2 = [1, 1]⊗ C2

C′1 = [1, 1]⊗ C1

F2n
2

{0}

(C′1)⊥

(C′2)⊥

F2n
2

[[2n, k, d ′ ≥ d ]][[n, k, d ]] y ′ = [1, 1]⊗ y

µ′ = (µ, 0)

γ ′ = (γ, 0)

Aµ,γ

(
τ

(l)
R

)
= A′µ′,γ′

(
τ

(l+1)
I2⊗R

)

→

UZ ∈ C(l) and U ′Z =
√

UZ
⊗2 ∈ C(l+1): Aµ,γ (UZ ) = A′µ′,γ′ (U ′Z )
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Climbing the Physical Hierarchy: [[7, 1, 3]]→ [[14, 1, 3]]

When R = In, τ
(2)
R = P⊗n = RZ

(
π
2

)
and τ

(3)
I2⊗R = T⊗2n = RZ

(
π
4

)
Aµ,γ

(
π
2

)
: RZ

(
π
2

)
acts on [[7, 1, 3]] code

A′µ′,γ′
(
π
4

)
: RZ

(
π
4

)
acts on [[14, 1, 3]] code

Aµ=0,γ=0

(π
2

)
= A′µ′=(µ,0),γ′=(γ,0)

(π
4

)
= cos

(π
4

)
Aµ=0,γ=1

(π
2

)
= A′µ′=(µ,0),γ′=(γ,0)

(π
4

)
= ı sin

(π
4

)
[[7, 1, 3]] [[14, 1, 3]]

Physical Gates P⊗7 T⊗14

Logical Gates P† P† [[7,1,3]] [[14,1,3]]

[[14,2,2]]
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Concatenation Preserves the Logical Operator

UZ =
∑

u∈Fn
2

du |u〉 〈u|: Physical diagonal gate that preserves

an [[n, k , d ]] CSS(X , C2; Z , C⊥1 , y) code.

Theorem: The [[2n, k , d ′ ≥ d ]] CSS(X , C′2; Z , (C′1)⊥, y ′) code is preserved
by any physical diagonal gate

U ′Z =
∑

u′∈F2n
2

d ′u′
∣∣u ′〉 〈u ′∣∣

for which d ′[u,u] = du for all u ∈ Fn
2

(U ′Z )L = UL
Z : The induced logical operator are the same, and

many degrees of freedom are available to design U ′Z
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Integration of Computation and Storage

A CSS code supporting UZ to realize UL
Z : 2n−k1 Z -resolutions of identity

After Concatenation: the CSS code with 22n−k1 Z -resolutions of identity

Computation: IN ⊗ UZ realizes UL
Z

Storage: inside a DFS

Pauli X Gates
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Removing Z -stabilizers Splits Generator Coefficients

Remove a Z -stabilizer generator z = Add z as a new Z -logical γ0

γ ∈ C⊥2 /C⊥1

µ
Aµ,γ

γ ′ ∈ 〈C⊥2 /C⊥1 ,γ0〉

µ′ = µ

A′µ,γ′=γ A′µ,γ′=γ⊕γ0

Aµ,γ = A′µ,γ + A′µ,γ⊕γ0

remove add
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Climbing the Logical Hierarchy: [[14, 1, 3]]→ [[14, 2, 2]]

[[14,1,3]] [[14,2,2]]
UZ = T⊗14

Add γ0 = (1, 1, . . . , 1)

A0,0 = cos π4

A0,γ 6=0 = ı sin π
4

A′0,0 =
(
cos π8

)2

A′0,γ0
=
(
ı sin π

8

)2

A′0,γ = ı sin π
8 cos π8

A′0,γ⊕γ0
= ı sin π

8 cos π8

P† (T †)⊗2

Magic of Trigonometry: Double-Angle Identities

↑
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When to Remove a Z -Stabilizer

UZ : a fixed diagonal physical gate

Assume UZ preserves the original CSS code:
∑

γ∈C⊥2 /C⊥1
|A0,γ |2 = 1

Admissible Split: UZ preserves the CSS(X , C2; Z , (C′1)⊥, y)
code obtained by removing the Z -stabilizer γ0

Theorem: The necessary and sufficient condition for admissibility is∑
γ′∈〈C⊥2 /C⊥1 ,γ0〉

|A′0,γ′ |2 =
∑

γ∈C⊥2 /C⊥1

|A′0,γ |2 + |A′0,γ⊕γ0
|2 = 1

Example: |(cos θ)2|2 + |(ı sin θ)2|2 + |ı sin θ cos θ|2 + |ı sin θ cos θ|2 = 1
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Climbing from Z 1/2l−1

to Z 1/2l ⊗ Z 1/2l

xl = eıπ/2l

cl = cos π
2l
, sl = −ı sin π

2l

Z 1/2l−1
=

1+xl−1

2 I +
1−xl−1

2 Z

= xl(cl I + slZ )

≡ cl I + slZ

One Step for uniform rotations:

Z 1/2l−1 → Z 1/2l ⊗ Z 1/2l

I Z

cl sl

II IZ ZI ZZ

c2
l+1

cl+1sl+1 cl+1sl+1 s2
l+1

Z 1/2l−1

(
Z 1/2l

)⊗2

Double-Angle

Formulas
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Climbing with Non-Uniform Rotations

Multi-step for non-uniform rotations: Z → Z ⊗ P† → Z ⊗ P† ⊗ T † → · · ·
Z 1/2l−1

Z 1/2l−1

⊗
(
Z 1/2l

)†

Z 1/2l−1

⊗
(
Z 1/2l

)†
⊗ · · · ⊗

(
Z 1/2l−1+j

)†
...

xl = eıπ/2l

cl = cos π
2l
, sl = −ı sin π

2l

Euler’s Formula

xl = xl+1xl+1 = xl+1(cl+1 − sl+1)

I Z

xlcl xl sl

II IZ ZI ZZ

xl+1clcl+1 −xl+1cl sl+1 xl+1slcl+1 −xl+1sl sl+1
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Climbing from C(j−1)Z 1/2l−1

to C(j)Z 1/2l−1

C(j−1)Z 1/2l−1
= diag[dj ] with dj = [12j−1 , 12j−1−1, xl−1]T & xl = eıπ/2l−1

dj → cj = H2jdj → cj+1 =
1

2

[
H2j H2j

H2j −H2j

] [
12j

dj

]
I Z

c1(0) = 1+xl−1

2 c1(1) = 1−xl−1

2

II IZ ZI ZZ

c2(00) = c1(0)+1
2 c2(01) = c1(1)

2 c2(10) = c1(0)−1
2 c2(11) = c1(1)

2

III IIZ IZI IZZ ZII ZIZ ZZI ZZZ

c2(00)+1
2

c2(01)
2

c2(10)
2

c2(11)
2

c2(01)
2

c2(11)
2

c2(00)−1
2

c2(10)
2

Z 1/2l−1

CZ 1/2l−1

CCZ 1/2l−1

C(j)Z 1/2l−1

...

j is odd

j is even

Hadamard

Construction

Recursion for the coefficients cj(v) comes from the recursive construction
for the Walsh-Hadamard matrix

Robert Calderbank Climbing the Diagonal Clifford Hierarchy Nov 8, 2021 32 / 36



Overview

1 Diagonal Gates in the Clifford Hierarchy

2 CSS Codes Preserved by Diagonal Gates

3 Generator Coefficient Framework Describing Average Logical Channels

4 Climbing the Diagonal Clifford Hierarchy - Concatenation

5 Climbing the Diagonal Clifford Hierarchy - Removing Z -stabilizers

6 Climbing the Diagonal Clifford Hierarchy - Adding X -stabilizers

Robert Calderbank Climbing the Diagonal Clifford Hierarchy Nov 8, 2021 32 / 36



Adding an X -stabilizer Permutes Generator Coefficients

Adding an X -stabilizer x0 transforms the Z -logical µ0 to a X -syndrome

γ ∈ C⊥2 /C⊥1

µ
A0,γ′⊕µ0

A′µ0,γ′
= A0,γ′⊕µ0

γ ′ ∈ 〈C2, x0〉⊥/C⊥1

µ

µ+ µ0

remove

add

Introducing x0: doubles the number of X -syndromes and
halves the number of Z -logicals

The blue rectangle shifts as the generator coefficients evolve
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When to Add an X -Stabilizer

UZ : a fixed diagonal physical gate

Assume UZ preserves the original CSS code:
∑

γ∈C⊥2 /C⊥1
|A0,γ |2 = 1

Admissible Addition: UZ preserves the CSS(X , 〈C2, x0〉; Z , C⊥1 , y) code
obtained by adding the X -stabilizer x0

Theorem: Addition of x0 is admissible if and only if

A0,γ = 0 for all γ ∈ D + µ0, where C⊥2 /C⊥1 = 〈D,µ0〉

Admissibility requires that half the generator coefficients A0,γ vanish
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Quantum Reed-Muller (QRM) Code Family

Physical levels:

Logical levels:

m/r

m/r

(m + r)/r = m/r + 1

m/r

m/r + 1

m/r + 1

{0}

C2 = RM(r − 1,m)

C1 = RM(r ,m)

F2m
2

[[2m,
(m
r

)
, 2min{r ,m−r}]]

{0}

C′2 = 12r ⊗ RM(r − 1,m)

C′1 = 12r ⊗ RM(r ,m)

F2m+r

2

[[2m+r ,
(m
r

)
, 2min{r ,m−r}]]

{0}

C′′2 = RM(r − 1,m + r)

C′′1 = RM(r ,m + r)

F2m+r

2

[[2m+r ,
(m+r

r

)
, 2min{r ,m}]]

Concatenating r times
removing Z -stabilizers

adding X -stabilizers
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Conclusions

Prior work focuses on CSS code states and derives sufficient
conditions for a CSS code to be fixed by a transversal Z -rotation.
The generator coefficient framework provides necessary and sufficient
conditions. It has the advantage of tracking the logical operator
induced by a physical diagonal gate.

Generator coefficients support synthesis of a target logical diagonal
operator by combining three basic operations.

1 Concatenation: increases physical level
2 Removal of Z-stabilizers: increases logical level and code rate
3 Addition of X-stabilizers: increases the distance

When coherent noise dominates, Pauli X matrices can be used to
switch between computation and storage of intermediate results in a
decoherence-free subspace
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