Abstract:

We will explore connections between the structure of high-dimensional convex polytopes and information acquisition for compressible signals. A classical result in the field of convex polytopes is that if N points are distributed Gaussian iid at random in dimension n\<\< N then only order (log N) ^{n} of the points are vertices of their convex hull. Recent results show that provided n grows slowly with N, then with high probability all of the points are vertices of its convex hull. More surprisingly, a rich "neighborliness" structure emerges in the faces of the convex hull. One implication of this phenomenon is that an N-vector with k non-zeros can be recovered computationally efficiently from only n random projections with n=2e k log(N/n). Alternatively, the best k-term approximation of a signal in any basis can be recovered from 2e k log(N/n) non-adaptive measurements, which is within a log factor of the optimal rate achievable for adaptive sampling. Additional implications for randomized error correcting codes will be presented.

This work was joint with David L. Donoho.