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Linear Classification Problem
Notation

e Feature vector: f € RP
e Output: y € {1,2}
e Training data: 7 = {f,y; = y(fi)}i=1,.n
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Linear Classification Problem
Notation

e Feature vector: f € RP
e Output: y € {1,2}
e Training data: 7 = {f,y; = y(fi)}i=1,.n

General Form

1 fwlf>+t

2 otherwise,

y(f) =

X,
Source: Wikipedia
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Linear Classification Problem
Notation

e Feature vector: f € RP
e Output: y € {1,2}
e Training data: 7 = {f,y; = y(fi)}i=1,.n

General Form

R 1 fwlf>t
y(f)={

2 otherwise,

X,
Source: Wikipedia

Learning Algorithm

(W, 1) € arg min L(y;, 9(£)) (+vlwl1)
Several choices of loss £: LDA, SVM, perceptron
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Linear Perceptron

Simple linear classifier

y =sgn Z wix; | = GWx

1

W, G: linear, nonlinear operators

Weight learning: gradient descent

Simplified model of real neurons

Inputs  Weights Net input Activation
function function
@
o)
° @ e 9 output
@re
()
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Deep Neural Networks (DNNs)

e Large array of perceptrons in many layers

° Output: yv= GuWy --- GoWsr Gt Wix
e Deep: M > 2

e Linear operators {W,,} learned from data
— Error back-propagation algorithm
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Convolutional Neural Networks (CNNs)
CNN

Source [Goodfellow, et al., 2016]

“Parameter sharing” and “sparse activations”

Operators W), are convolutions

Easier to learn (less weights)

Successfully used in image processing tasks

[LeCun et al., 1989][Ciresan et al., 2012][Krizhevsky et al., 2012]
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Scattering Transform

[Mallat, 2012]
e Structure of Convolutional Neural Network

e Replace linear filters by wavelets
e Use modulus as nonlinearity
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Scattering Transform

e Structure of Convolutional Neural Network
e Replace linear filters by wavelets
e Use modulus as nonlinearity

Notation

A=A(j,0)=a"0, j€Z, 6 € RC SO(d)
p=(A1,22,...,\m)

Pa(u) = 27 ¥p(\ix)

b (u) =27 Hp(277x)
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Scattering Transform

[Mallat, 2012]
e Structure of Convolutional Neural Network

e Replace linear filters by wavelets
e Use modulus as nonlinearity

Notation
e A=)\(j,0)=a0, j€Z, 6 € RC SO(d)
e p=(A, N2, )
o Yy(u) =2=Dyp(\ix)
o ¢ (u) =2"Yp(277x)

Scattering coefficients
SmlpIX () = [[[IX x hay | % thag| 5 - % | % thx, | % @u(u)

Sm[P]X = (Sm[p]X)pep

Y. Wang Scattering Transform for Art Investigations
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[[lustration

Source: [Mallat, 2012]
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Properties
Stability

VX, Y € 2(RY), |IS[PIX = S[P]Y|| < X =Y
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Properties
Stability

vX,Y € L2(RY), |[SIPIX = S[PIY] < [IX — Y|

Translation invariance
Let T.X(u)=X(u—c). Then,

VX € [2(RY),Yc e RY,  S[P]T.X = S[P]X, when J — o
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Properties
Stability

vX,Y € L2(RY), |[SIPIX = S[PIY] < [IX — Y|

Translation invariance
Let T.X(u)=X(u—c). Then,

VX € [2(RY),Yc e RY,  S[P]T.X = S[P]X, when J — o
Stability to deformations
Let D-X(u) = X(u—7(u)) with [V7|s < 3. Then,

vX € L2(RY),vr € C*RY),  |IS[PIX — S[PID-X| < C|IX[|[|V7|c

[Mallat2012]
Y. Wang Scattering Transform for Art Investigations 11/31
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Art Authentication: Is It a Raphael?

In 2013 | have received a request from a collector Edward Rosser in
Boston, asking me whether | could tell the following drawing was a
genuine Raphael.
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Art Authentication Problem

Detect art objects from forgeries or imitations

Style vs content
Database 1

e 64 van Gogh paintings (several periods)
e 15 forgeries or contemporaries in same style
e Size: 1452 x 388 px to 5614 x 7381 px

Database 2

e 21 drawings by Raphael
e 9 imitations
e Size: 2188 x 3312 to 6330 x 4288 pixels

Y. Wang Scattering Transform for Art Investigations
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Sample Images

van Gogh (VG) non van Gogh (NVG)

non Raphael (NRA)
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State of the Art

Van Gogh dataset: Features and classifiers

e Wavelets, custom frames, EMD

e SVM, clustering, Hidden Markov Models
e Accuracy < 90%

e Single layer of features

[Berezhnoy et al. 2007], [Johnson et al., 2008], [Qi et al., 2013], [Liu & Chan, 2016]
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Analysis Setup

e Preprocessing: grayscale, [0, 1] double-precision

Automatic removal of canvas edges (max 100 px)

Morlet wavelets, a = 2, 8 rotations

o J=3,4,....7

Analysis by patches: 512 x 512, 1024 x 1024 and 2048 x 2048
5-fold stratified cross-validation

Linear classifiers:

e PCA, LDA, SVM
e Sparse versions: SSVM, SLDA — /; regularization
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Example: Scattering Coefficients

Neural style transfer

Painting First Layer Second Layer

Van Gogh

Raphael

Y. Wang

Scattering Transform for Art Investigations
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Influence of Patch Size and Averaging Scale

Patches Full paintings
1 1
ACC ‘+ 512 —w— 1024 —X— 2048 ACC

0.95 (].95c

X
0.9 5 0.9
0.85 0.85

J J

0.8¢% 0.8

2 3 4 5 6 7 2 3 4 5 6 7

e Select 512 x 512 and J = 4.

e Fine-scale details preferred
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Performance: Individual Patches

Performance Features
1 ___ | | | | | | |
om om mE m = Tove
0.95 600 Jora H
IO [ N
¢
=
(:)) 0.9 = 400 N
< &
=
0-85 I 200 8
0.8 1 T 1 1 T T 1 T \m \m
PCA LDA SVM SLDA SSVM PCA LDA SVM SLDA SSVM
Classifier Classifier

e Simple is better (PCA)
e Sparse is better (SLDA/SSVM)
e Raphael easier than van Gogh
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Performance: Full Paintings

e Majority votes from patch decisions

Performance
1 | |
0.95 ] 1 |
o)
S ool |
=
0.85 [ —
lova
lorA
0.8 ! : \ \ =
PCA LDA SVM SLDA SSVM
Classifier

e SSVM: good performance & few features
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Performance: Comparison with State of the Art

e Similar Van Gogh database

Reference ACC (\?éfl\?{jé) Validation
[Liu & Chan, 2016] 0.88 64 4+ 15 LOO
[Qi et al., 2013] 0.85 65 + 15 LOO
[Johnson et al., 2008] 0.84 64 + 12 LOO
Our results 0.96 64 + 15 5-CV
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Feature Selection: van Gogh
SSVM SLDA

1
—
(Y]
>
°
=
(2]
.=
L
1
2
—
L
>
°
e ==
c 2
o
(9]
(]
99}

Y. Wang Scattering Transform for Art Investigations 23/31



Deep Neural Networks Scattering Transform Art Authentication Neural style transfer
0000 000 000000000008 000000

Feature Selection: Raphael
SSVM SLDA

1

First layer

Second layer
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Neural Style Transfer
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How Does It Work?

e Pretrained convolutional neural network
o Coefficient matrix: F,,(X) € RNir>XNpies
e Correlation matrix: Gp,(X) = 72— Fm(X)(Fn(X))"

pixels
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How Does It Work?

Pretrained convolutional neural network
Coefficient matrix: F,,(X) € RNiixNpieis
Correlation matrix: Gn(X) = 72— Fm(X)(Fm(X)) "

pixels

Loss functions:

Econtent(Xa m) = ||Fm(X) - Fm(Xcontent)H%—‘
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How Does It Work?

Pretrained convolutional neural network
Coefficient matrix: F,,(X) € RNiixNpieis
Correlation matrix: G,(X) = 72— Fm(X)(Fm(X))

pixels

T

Loss functions:

Econtent(Xa m) = ||Fm(X) - Fm(Xcontent)H%—‘
Estyle(Xv m) = ||Gm(X) — Gm(Xster)H%‘
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How Does It Work?

Pretrained convolutional neural network
Coefficient matrix: F,,(X) € RNiixNpieis
Correlation matrix: Gn(X) = 72— Fm(X)(Fm(X)) "

pixels

Loss functions:
Econtent(Xa m) = ||Fm(X) - Fm(Xcontent)H%—‘
Estyle(Xv m) = || Gm(X) — Gm(Xster)H%‘
['total(X) = a»ccontent(X; mO) + 8 Z Wm‘csty/e(X; m)
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How Does It Work?

Pretrained convolutional neural network
Coefficient matrix: F,,(X) € RNiixNpieis
Correlation matrix: Gn(X) = 72— Fm(X)(Fm(X)) "

pixels

Loss functions:
»Ccontent(Xa m) = ||Fm(X) - Fm(Xcontent)H%—'
Estyle(Xv m) = || Gm(X) — Gm(Xster)H%‘
['total(X) = a»ccontent(X; mO) + 8 Z Wm‘csty/e(X; m)

¢ Image synthesis:
X € arg min(Lorar)
X

[Gatys et al., 2015]
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Style Transfer: Scattering

Ideas

1. Simple manipulation of coefficients
2. Scattering can be inverted
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Style Transfer: Scattering

Ideas

1. Simple manipulation of coefficients
2. Scattering can be inverted
e Phase retrieval + Pseudoinverse
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Style Transfer: Scattering

Ideas

1. Simple manipulation of coefficients
2. Scattering can be inverted

e Phase retrieval + Pseudoinverse
e Seems easy...
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Style Transfer: Scattering

Ideas

1. Simple manipulation of coefficients
2. Scattering can be inverted

Phase retrieval + Pseudoinverse
Seems easy...
...it's not

[ ]
[ ]
]
e Limitation: current phase retrieval algorithms
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Covariance Change
Notation

o Coefficient matrix: F;, € RV Noixeis
o Sy = cov(Fm) = s FmFl = UNUT

Procedure
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Covariance Change
Notation

o Coefficient matrix: F;, € RV Noixeis
o Sy = cov(Fm) = s FmFl = UNUT

Procedure

1. Remove current style
F[I;Vhlte — /\71/2 UTFm
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Covariance Change
Notation

o Coefficient matrix: F;, € RV Noixeis
o Sy = cov(Fm) = i FmF = UNUT

Procedure

1. Remove current style
F[I;Vhlte — /\71/2 UTFm

2. Determine new covariance
new __ cont style
YW =X+ (1 —a)Xs;
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Covariance Change
Notation

o Coefficient matrix: F;, € RV Noixeis
o Sy = cov(Fm) = i FmF = UNUT

Procedure

1. Remove current style
F,:,Vhlte — /\71/2 UTFm

2. Determine new covariance
new __ cont style
YW =X+ (1 —a)Xs;

3. Transfer style
F:qew — (azer::nt + (1 _ a)zﬁyle)l/zA—1/2UTFm
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Covariance Change
Notation

o Coefficient matrix: F;, € RV Noixeis
o Sy = cov(Fm) = i FmF = UNUT

Procedure
1. Remove current style

F,:,Vhite — /\71/2 UTFm

2. Determine new covariance
new __ cont style
YW =X+ (1 —a)Xs;

3. Transfer style
F:qew — (azer::nt + (1 _ a)zﬁyle)l/zA—1/2UTFm

4. Invert Fwhite
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Phase Retrieval

e Gerchberg-Saxton algorithm

Recover x such that |Ax| = b
Input: y() € C such that [y®| = b
[teration:

YT U (AATy )]

Not guaranteed to converge to solution
Low computational complexity

(k+1) (AATy(k))i
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