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Linear Classi�cation Problem

Notation

• Feature vector: f ∈ Rp

• Output: y ∈ {1, 2}
• Training data: T = {fi , yi = y(fi )}i=1,...,N

General Form

ŷ(f ) =

{
1 if ŵT f > t̂

2 otherwise,

Source: Wikipedia

Learning Algorithm

(ŵ , t̂) ∈ arg minL(yi , ŷ(fi )) (+ γ‖w‖1)

Several choices of loss L: LDA, SVM, perceptron

Y. Wang Scattering Transform for Art Investigations 4/31
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Linear Perceptron

• Simple linear classi�er

y = sgn

(∑
i

wixi

)
= GWx

• W ,G : linear, nonlinear operators

• Weight learning: gradient descent

• Simpli�ed model of real neurons
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Deep Neural Networks (DNNs)

• Large array of perceptrons in many layers

• Output: ŷ = GMWM · · ·G2W2 G1W1x

• Deep: M � 2

• Linear operators {Wm} learned from data
−→ Error back-propagation algorithm

Y. Wang Scattering Transform for Art Investigations 6/31
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Convolutional Neural Networks (CNNs)

DNN CNN

CHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit,s3, and
also highlight the input units in x that affect this unit. These units are known as the
receptive field of s3. (Top) When s is formed by convolution with a kernel of width , only3
three inputs affect s3. When(Bottom) s is formed by matrix multiplication, connectivity
is no longer sparse, so all of the inputs affect s3.
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Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (Fig. ) or pooling9.12
(Sec. ). This means that even though9.3 direct connections in a convolutional net are very
sparse, units in the deeper layers can be indirectly connected to all or most of the input
image.
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Source [Goodfellow, et al., 2016]

• �Parameter sharing� and �sparse activations�

• Operators Wm are convolutions

• Easier to learn (less weights)

• Successfully used in image processing tasks

[LeCun et al., 1989][Ciresan et al., 2012][Krizhevsky et al., 2012]
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Scattering Transform
[Mallat, 2012]

• Structure of Convolutional Neural Network
• Replace linear �lters by wavelets
• Use modulus as nonlinearity

Notation

• λ = λ(j , θ) = a−jθ, j ∈ Z, θ ∈ R ⊂ SO(d)

• p = (λ1, λ2, . . . , λM)

• ψλ(u) = 2−djψ(λix)

• φJ(u) = 2−dJφ(2−Jx)

Scattering coe�cients

Sm[p]X (u) = | | ||X ? ψλ1 | ? ψλ2 | ? · · · ? | ? ψλm | ? φJ(u)

Sm[P]X =
(
Sm[p]X

)
p∈P

Y. Wang Scattering Transform for Art Investigations 9/31
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Illustration

Source: [Mallat, 2012]
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Properties

Stability

∀X ,Y ∈ L2(Rd ), ‖S [P]X − S [P]Y ‖ ≤ ‖X − Y ‖

Translation invariance
Let TcX (u) = X (u − c). Then,

∀X ∈ L2(Rd ),∀c ∈ Rd , S [P]TcX = S [P]X , when J →∞

Stability to deformations

Let DτX (u) = X (u − τ(u)) with ‖∇τ‖∞ ≤ 1
2 . Then,

∀X ∈ L2(Rd ),∀τ ∈ C 2(Rd ), ‖S [P]X − S [P]DτX‖ ≤ C‖X‖‖∇τ‖∞

[Mallat2012]

Y. Wang Scattering Transform for Art Investigations 11/31
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Art Authentication: Is It a Raphael?

In 2013 I have received a request from a collector Edward Rosser in
Boston, asking me whether I could tell the following drawing was a
genuine Raphael.

Y. Wang Scattering Transform for Art Investigations 13/31
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Art Authentication Problem

• Detect art objects from forgeries or imitations

• Style vs content

• Database 1
• 64 van Gogh paintings (several periods)
• 15 forgeries or contemporaries in same style
• Size: 1452× 388 px to 5614× 7381 px

• Database 2
• 21 drawings by Raphael
• 9 imitations
• Size: 2188× 3312 to 6330× 4288 pixels

Y. Wang Scattering Transform for Art Investigations 14/31
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Sample Images

van Gogh (VG) non van Gogh (NVG)

Raphael (RA) non Raphael (NRA)

Y. Wang Scattering Transform for Art Investigations 15/31



Deep Neural Networks Scattering Transform Art Authentication Neural style transfer

State of the Art

Van Gogh dataset: Features and classi�ers

• Wavelets, custom frames, EMD

• SVM, clustering, Hidden Markov Models

• Accuracy < 90%

• Single layer of features

[Berezhnoy et al. 2007], [Johnson et al., 2008], [Qi et al., 2013], [Liu & Chan, 2016]

Y. Wang Scattering Transform for Art Investigations 16/31
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Analysis Setup

• Preprocessing: grayscale, [0, 1] double-precision

• Automatic removal of canvas edges (max 100 px)

• Morlet wavelets, a = 2, 8 rotations

• J = 3, 4, . . . , 7

• Analysis by patches: 512× 512, 1024× 1024 and 2048× 2048

• 5-fold strati�ed cross-validation

• Linear classi�ers:
• PCA, LDA, SVM
• Sparse versions: SSVM, SLDA −→ `1 regularization

Y. Wang Scattering Transform for Art Investigations 17/31
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Example: Scattering Coe�cients

Painting First Layer Second Layer

V
a
n
G
o
g
h

R
a
p
h
a
el
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In�uence of Patch Size and Averaging Scale

Patches Full paintings

Table 3: Full classification. Classification performance for full-painting classification, obtained by a majority vote over all patches,
for all considered classifiers. Displayed are the confusion matrices (with columns (T-) and rows (E-) showing true and estimated classes,
respectively) and the accuracy (ACC).

Van Gogh dataset
PCA LDA SVM SLDA SSVM

T-VG T-NVG T-VG T-NVG T-VG T-NVG T-VG T-NVG T-VG T-NVG
E-VG 63 2 62 9 64 9 61 3 62 1

E-NVG 1 13 2 6 0 6 3 12 2 14
ACC 0.962 0.861 0.886 0.924 0.962

Raphael dataset
PCA LDA SVM SLDA SSVM

T-RA T-NRA T-RA T-NRA T-RA T-NRA T-RA T-NRA T-RA T-NRA
E-RA 9 0 9 1 9 0 9 0 9 0

E-NRA 0 12 0 11 0 12 0 12 0 12
ACC 1.000 0.952 1.000 1.000 1.000

Table 4: Classification accuracy: comparison with the lit-
erature. The last row reports the best results obtained in this
paper (PCA and SLDA classifiers). Validation was repeated using
5-fold CV and leave-one-out (LOO).

Reference ACC
Data size

(VG+NVG)
Validation

[3] 0.88 64 + 15 LOO
[6]5 0.85 65 + 15 LOO

[5] (Princeton) 0.84 64 + 12 LOO
This paper 0.96 64 + 15 5-CV & LOO

error, s503, but pays the cost of two false negatives: 216a
(Plaster statuette of a female torso) and f360 (Still life
with plaster statuette, a rose and two novels). Note that
painting s503, is misclassified in both cases, suggesting
a very similar style to van Gogh. Also, painting f687 is
one of those included in Table 1, and is thus so similar
in style to van Gogh as to have been misclassified by
experts in the past; however, the remaining five paintings
in Table 1 are correctly classified in both cases, a good
outcome for our automatic method. Finally, it is also
worth noticing that the three false negatives are still lifes,
and thus might share some stylistic features that prevent
their correct classification.

Raphael dataset. Table 3 shows that classification is per-
fect except for LDA, which commits only one error. This
result is in strong agreement with the large accuracy
reported in Table 2 (bottom half) for the individual
patches. These results suggest that the classification
problem on this dataset is significantly easier than on
the van Gogh dataset.

4.4. Influence of patch size and cuto↵ scale

In this section, we explore the influence of patch size
in classification performance. Figure 3 shows classifica-
tion accuracy as a function of cuto↵ scale J , for square
patches of side 512, 1024 and 2048, on the van Gogh
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Figure 3: Influence of patch size. Classification accuracy for
individual patches (left) and full-paintings (right) as a function of
the cuto↵ scale J , for patches of size 512 ⇥ 512, 1024 ⇥ 1024 and
2048 ⇥ 2048.

dataset and using the PCA classifier. First, Fig. 3 (left)
considers the classification of individual patches. It can
be seen that performance with patches of size 512 and
2048 is remarkably similar when J � 3, whereas patches
of size 1024 yield a slightly higher accuracy. In all cases,
the best performance is achieved for J = 4, and perfor-
mance decreases rapidly as J increases. This indicates
that local, fine-scale details of size 16 ⇥ 16 are preferred
for the classification, and that the use of larger patch
sizes does not entail the use of coarser scale information.

Next, Fig. 3 (right) considers the classification of full
paintings through the voting procedure. In a similar way
to individual patches, the best performances are achieved
for around J = 4. Notably, in this case the best accuracy
is achieved with the smaller 512 ⇥ 512 patches, despite
their slightly worse performance for individual patches.

The results reported in this section justify our selec-
tion of J = 4 and patches of size 512⇥512, as detailed in
Sec. 4.1. These parameters provide the best performance
for full paintings and an acceptable performance for in-
dividual patches, while incurring a minimal computation
cost.

4.5. Feature selection

As previously stated, sparse classifiers crucially enable
a simple interpretation of the important features for the
classification task, thus bringing light into exactly what

7
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• Select 512× 512 and J = 4.

• Fine-scale details preferred
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Performance: Individual Patches

Performance Features

PCA LDA SVM SLDA SSVM
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• Simple is better (PCA)

• Sparse is better (SLDA/SSVM)

• Raphael easier than van Gogh
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Performance: Full Paintings

• Majority votes from patch decisions

Performance

PCA LDA SVM SLDA SSVM

0.8

0.85

0.9

0.95

1

Classifier

A
C

C

VG
RA

• SSVM: good performance & few features
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Performance: Comparison with State of the Art

• Similar Van Gogh database

Reference ACC
Data size

(VG+NVG)
Validation

[Liu & Chan, 2016] 0.88 64 + 15 LOO
[Qi et al., 2013] 0.85 65 + 15 LOO
[Johnson et al., 2008] 0.84 64 + 12 LOO
Our results 0.96 64 + 15 5-CV

Y. Wang Scattering Transform for Art Investigations 22/31
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Feature Selection: van Gogh

SSVM SLDA
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Feature Selection: Raphael

SSVM SLDA
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Neural Style Transfer
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How Does It Work?

• Pretrained convolutional neural network

• Coe�cient matrix: Fm(X ) ∈ RNfilt×Npixels

• Correlation matrix: Gm(X ) = 1
Npixels

Fm(X )
(
Fm(X )

)T

• Loss functions:

Lcontent(X ,m) = ‖Fm(X )− Fm(Xcontent)‖2F
Lstyle(X ,m) = ‖Ĝm(X )− Gm(Xstyle)‖2F
Ltotal (X ) = αLcontent(X ;m0) + β

∑
m

wmLstyle(X ;m)

• Image synthesis:

X ∈ arg min
X

(Ltotal )

[Gatys et al., 2015]
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Ltotal (X ) = αLcontent(X ;m0) + β

∑
m

wmLstyle(X ;m)

• Image synthesis:

X ∈ arg min
X

(Ltotal )

[Gatys et al., 2015]
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Style Transfer: Scattering

Ideas

1. Simple manipulation of coe�cients

2. Scattering can be inverted

• Phase retrieval + Pseudoinverse
• Seems easy...
• ...it's not
• Limitation: current phase retrieval algorithms
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Covariance Change

Notation

• Coe�cient matrix: Fm ∈ RNfilt×Npixels

• Σm = cov(Fm) = 1
Npixels

FmFT
m = UΛUT

Procedure

1. Remove current style

Fwhite
m = Λ−1/2UTFm

2. Determine new covariance

Σnew
m = αΣcont

m + (1− α)Σstyle
m

3. Transfer style

F new
m =

(
αΣcont

m + (1− α)Σstyle
m

)1/2
Λ−1/2UTFm

4. Invert Fwhite
m
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Phase Retrieval

• Gerchberg-Saxton algorithm
• Recover x such that |Ax | = b
• Input: y (1) ∈ C such that |y (1)| = b
• Iteration:

y
(k+1)
i = bi

(AA†y (k))i

|(AA†y (k))i |
• Not guaranteed to converge to solution
• Low computational complexity
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(Very) Preliminary ResultsStyle
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Happy 80th Birthday John!
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