Scattering Transform for Art Investigation

Yang Wang

Department of Mathematics Hong Kong University of Science and Technology

Joint Work with Roberto Leonarduzzi and Haixia Liu

Celebrating the 80th Birthday of John Benedetto

Scattering Transform for Art Investigation

Yang B. Wang

Department of Mathematics Hong Kong University of Science and Technology

Joint Work with Roberto Leonarduzzi and Haixia Liu

Celebrating the 80th Birthday of John Benedetto

Scattering Transform

Art Authentication

Neural style transfer

Deep Neural Networks

Scattering Transform

Art Authentication

Neural style transfer

Scattering Transform

Art Authentication

Neural style transfer

Deep Neural Networks

Scattering Transform

Art Authentication

Neural style transfer

Scattering Transform

Art Authentication

Neural style transfer

Linear Classification Problem

Notation

- Feature vector: $f \in \mathbb{R}^p$
- **Output**: $y \in \{1, 2\}$
- Training data: $\mathcal{T} = \{f_i, y_i = y(f_i)\}_{i=1,\dots,N}$

Scattering Transform

Art Authentication

Neural style transfer

Linear Classification Problem

Notation

- Feature vector: $f \in \mathbb{R}^p$
- **Output**: $y \in \{1, 2\}$
- Training data: $\mathcal{T} = \{f_i, y_i = y(f_i)\}_{i=1,...,N}$

General Form

$$\hat{y}(f) = egin{cases} 1 & ext{if } \hat{w}^T f > \hat{t} \ 2 & ext{otherwise}, \end{cases}$$

Scattering Transform

Art Authentication

Neural style transfer

Linear Classification Problem

Notation

- Feature vector: $f \in \mathbb{R}^p$
- **Output**: $y \in \{1, 2\}$
- Training data: $\mathcal{T} = \{f_i, y_i = y(f_i)\}_{i=1,...,N}$

General Form

$$\hat{y}(f) = \begin{cases} 1 & \text{if } \hat{w}^T f > \hat{t} \\ 2 & \text{otherwise,} \end{cases}$$

Learning Algorithm

 $(\hat{w}, \hat{t}) \in \operatorname{arg\ min} \mathcal{L}(y_i, \hat{y}(f_i)) \ (+ \gamma \|w\|_1)$

Several choices of loss $\mathcal{L} \colon$ LDA, SVM, perceptron

Scattering Transform

Art Authentication

Neural style transfer

Linear Perceptron

• Simple linear classifier

$$y = \operatorname{sgn}\left(\sum_{i} w_{i} x_{i}\right) = GWx$$

- W, G: linear, nonlinear operators
- Weight learning: gradient descent
- Simplified model of real neurons

Scattering Transform

Art Authentication

Neural style transfer

Deep Neural Networks (DNNs)

• Large array of perceptrons in many layers

- Output: $\hat{y} = G_M W_M \cdots G_2 W_2 G_1 W_1 x$
- Deep: $M \gg 2$
- Linear operators $\{W_m\}$ learned from data
 - \longrightarrow Error back-propagation algorithm

Scattering Transform

Art Authentication

Neural style transfer

Convolutional Neural Networks (CNNs)

DNN CNN

- "Parameter sharing" and "sparse activations"
- Operators *W_m* are convolutions
- Easier to learn (less weights)
- Successfully used in image processing tasks

[LeCun et al., 1989] [Ciresan et al., 2012] [Krizhevsky et al., 2012]

Source [Goodfellow, et al., 2016]

Scattering Transform

Art Authentication

Neural style transfer

Deep Neural Networks

Scattering Transform

Art Authentication

Neural style transfer

Scattering Transform

Art Authentication

Neural style transfer 000000

Scattering Transform

[Mallat, 2012]

- Structure of Convolutional Neural Network
- Replace linear filters by wavelets
- Use modulus as nonlinearity

Scattering Transform

Art Authentication

Neural style transfer

Scattering Transform

[Mallat, 2012]

- Structure of Convolutional Neural Network
- Replace linear filters by wavelets
- Use modulus as nonlinearity

Notation

Scattering Transform

Art Authentication

Neural style transfer

Scattering Transform

[Mallat, 2012]

- Structure of Convolutional Neural Network
- Replace linear filters by wavelets
- Use modulus as nonlinearity

Notation

•
$$\lambda = \lambda(j, \theta) = a^{-j}\theta, \ j \in \mathbb{Z}, \ \theta \in R \subset SO(d)$$

• $p = (\lambda_1, \lambda_2, \dots, \lambda_M)$

•
$$\psi_{\lambda}(u) = 2^{-dj}\psi(\lambda_i x)$$

• $\phi_J(u) = 2^{-dJ}\phi(2^{-J}x)$

Scattering coefficients

$$S_m[p]X(u) = || ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \cdots \star |\star \psi_{\lambda_m}| \star \phi_J(u)$$

$$S_m[P]X = \left(S_m[p]X
ight)_{\substack{p\in P \ \text{Scattering Transform for Art Investigations}}}$$

Y. Wang

Scattering Transform ○●○

Art Authentication

Neural style transfer

Illustration

Source: [Mallat, 2012]

Scattering Transform

Art Authentication

Neural style transfer

Properties

Stability

$\forall X, Y \in L^2(\mathbb{R}^d), \quad \|S[P]X - S[P]Y\| \le \|X - Y\|$

Scattering Transform

Art Authentication

Neural style transfer

Properties

Stability

$$\forall X, Y \in L^2(\mathbb{R}^d), \quad \|S[P]X - S[P]Y\| \le \|X - Y\|$$

Translation invariance

Let
$$T_c X(u) = X(u-c)$$
. Then,

$$\forall X \in L^2(\mathbb{R}^d), \forall c \in \mathbb{R}^d, \qquad S[P]T_cX = S[P]X, \text{ when } J \to \infty$$

Scattering Transform

Art Authentication

Neural style transfer

Properties

Stability

$$\forall X, Y \in L^2(\mathbb{R}^d), \quad \|S[P]X - S[P]Y\| \le \|X - Y\|$$

Translation invariance

Let
$$T_c X(u) = X(u-c)$$
. Then,

 $\forall X \in L^2(\mathbb{R}^d), \forall c \in \mathbb{R}^d, \qquad S[P]T_cX = S[P]X, \quad \text{when } J \to \infty$

$\begin{array}{ll} \text{Stability to deformations} \\ \text{Let} \quad D_{\tau}X(u) = X(u - \tau(u)) \quad \text{with } \|\nabla \tau\|_{\infty} \leq \frac{1}{2}. \ \text{Then,} \\ \\ \forall X \in L^2(\mathbb{R}^d), \forall \tau \in C^2(\mathbb{R}^d), \qquad \|S[P]X - S[P]D_{\tau}X\| \leq C\|X\| \|\nabla \tau\|_{\infty} \end{array}$

[Mallat2012]

Scattering Transform

Art Authentication

Neural style transfer

Deep Neural Networks

Scattering Transform

Art Authentication

Neural style transfer

Scattering Transform

Art Authentication

Neural style transfer

Art Authentication: Is It a Raphael?

In 2013 I have received a request from a collector Edward Rosser in Boston, asking me whether I could tell the following drawing was a genuine Raphael.

Scattering Transform

Art Authentication

Neural style transfer 000000

Art Authentication Problem

- Detect art objects from forgeries or imitations
- Style vs content
- Database 1
 - 64 van Gogh paintings (several periods)
 - 15 forgeries or contemporaries in same style
 - Size: $1452\times 388~\text{px}$ to $5614\times 7381~\text{px}$
- Database 2
 - 21 drawings by Raphael
 - 9 imitations
 - Size: 2188×3312 to 6330×4288 pixels

Scattering Transform

Art Authentication

Neural style transfer

Sample Images

van Gogh (VG)

Raphael (RA)

non van Gogh (NVG)

non Raphael (NRA)

Scattering Transform

Art Authentication

Neural style transfer

State of the Art

Van Gogh dataset: Features and classifiers

- Wavelets, custom frames, EMD
- SVM, clustering, Hidden Markov Models
- Accuracy < 90%
- Single layer of features

[Berezhnoy et al. 2007], [Johnson et al., 2008], [Qi et al., 2013], [Liu & Chan, 2016]

Art Authentication

Neural style transfer

Analysis Setup

- Preprocessing: grayscale, [0,1] double-precision
- Automatic removal of canvas edges (max 100 px)
- Morlet wavelets, a = 2, 8 rotations
- $J = 3, 4, \ldots, 7$
- Analysis by patches: 512 \times 512, 1024 \times 1024 and 2048 \times 2048
- 5-fold stratified cross-validation
- Linear classifiers:
 - PCA, LDA, SVM
 - Sparse versions: SSVM, SLDA $\longrightarrow \ell_1$ regularization

Scattering Transform

Art Authentication

Neural style transfer

Example: Scattering Coefficients

Painting

Second Layer

Scattering Transform

Art Authentication

Neural style transfer

Influence of Patch Size and Averaging Scale

- Select 512×512 and J = 4.
- Fine-scale details preferred

Scattering Transform

Art Authentication

Neural style transfer

Performance: Individual Patches

- Simple is better (PCA)
- Sparse is better (SLDA/SSVM)
- Raphael easier than van Gogh

Scattering Transform

Art Authentication

Neural style transfer 000000

Performance: Full Paintings

• Majority votes from patch decisions

• SSVM: good performance & few features

Art Authentication

Neural style transfer

Performance: Comparison with State of the Art

• Similar Van Gogh database

Reference	ACC	Data size (VG+NVG)	Validation
[Liu & Chan, 2016]	0.88	64 + 15	LOO
[Qi et al., 2013]	0.85	65 + 15	LOO
[Johnson et al., 2008]	0.84	64 + 12	LOO
Our results	0.96	64 + 15	5-CV

Scattering Transform for Art Investigations

Scattering Transform for Art Investigations

Scattering Transform

Art Authentication

Neural style transfer

Deep Neural Networks

Scattering Transform

Art Authentication

Neural style transfer

Scattering Transform

Art Authentication

Neural style transfer

Neural Style Transfer

Scattering Transform

Art Authentication

Neural style transfer

How Does It Work?

- Pretrained convolutional neural network
- Coefficient matrix: $F_m(X) \in \mathbb{R}^{N_{filt} \times N_{pixels}}$
- Correlation matrix: $G_m(X) = \frac{1}{N_{pixels}} F_m(X) (F_m(X))^T$

Scattering Transform

Art Authentication

Neural style transfer

How Does It Work?

- Pretrained convolutional neural network
- Coefficient matrix: $F_m(X) \in \mathbb{R}^{N_{filt} \times N_{pixels}}$
- Correlation matrix: $G_m(X) = \frac{1}{N_{\text{pixels}}} F_m(X) (F_m(X))^T$
- Loss functions:

$$\mathcal{L}_{content}(X,m) = \|F_m(X) - F_m(X_{content})\|_F^2$$

Scattering Transform

Art Authentication

Neural style transfer

How Does It Work?

- Pretrained convolutional neural network
- Coefficient matrix: $F_m(X) \in \mathbb{R}^{N_{filt} \times N_{pixels}}$
- Correlation matrix: $G_m(X) = \frac{1}{N_{\text{pixels}}} F_m(X) (F_m(X))^T$
- Loss functions:

$$\mathcal{L}_{content}(X,m) = \|F_m(X) - F_m(X_{content})\|_F^2$$
$$\mathcal{L}_{style}(X,m) = \|\hat{G}_m(X) - G_m(X_{style})\|_F^2$$

Scattering Transform

Art Authentication

Neural style transfer

How Does It Work?

- Pretrained convolutional neural network
- Coefficient matrix: $F_m(X) \in \mathbb{R}^{N_{filt} \times N_{pixels}}$
- Correlation matrix: $G_m(X) = \frac{1}{N_{pixels}} F_m(X) (F_m(X))^T$
- Loss functions:

$$\mathcal{L}_{content}(X, m) = \|F_m(X) - F_m(X_{content})\|_F^2$$

$$\mathcal{L}_{style}(X, m) = \|\hat{G}_m(X) - G_m(X_{style})\|_F^2$$

$$\mathcal{L}_{total}(X) = \alpha \mathcal{L}_{content}(X; m_0) + \beta \sum_m w_m \mathcal{L}_{style}(X; m)$$

Scattering Transform

Art Authentication

Neural style transfer

How Does It Work?

- Pretrained convolutional neural network
- Coefficient matrix: $F_m(X) \in \mathbb{R}^{N_{filt} \times N_{pixels}}$
- Correlation matrix: $G_m(X) = \frac{1}{N_{pixels}} F_m(X) (F_m(X))^T$
- Loss functions:

$$\mathcal{L}_{content}(X, m) = \|F_m(X) - F_m(X_{content})\|_F^2$$

$$\mathcal{L}_{style}(X, m) = \|\hat{G}_m(X) - G_m(X_{style})\|_F^2$$

$$\mathcal{L}_{total}(X) = \alpha \mathcal{L}_{content}(X; m_0) + \beta \sum_m w_m \mathcal{L}_{style}(X; m)$$

Image synthesis:

$$X \in \operatorname*{arg\,min}_X(\mathcal{L}_{total})$$

[Gatys et al., 2015]

27/31

Scattering Transform

Art Authentication

Neural style transfer

Style Transfer: Scattering

- 1. Simple manipulation of coefficients
- 2. Scattering can be inverted

Scattering Transform

Art Authentication

Neural style transfer 00000

Style Transfer: Scattering

- 1. Simple manipulation of coefficients
- 2. Scattering can be inverted
 - Phase retrieval + Pseudoinverse

Scattering Transform

Art Authentication

Neural style transfer

Style Transfer: Scattering

- 1. Simple manipulation of coefficients
- 2. Scattering can be inverted
 - Phase retrieval + Pseudoinverse
 - Seems easy…

Scattering Transform

Art Authentication

Neural style transfer

Style Transfer: Scattering

- 1. Simple manipulation of coefficients
- 2. Scattering can be inverted
 - Phase retrieval + Pseudoinverse
 - Seems easy...
 - ...it's not
 - Limitation: current phase retrieval algorithms

Scattering Transform

Art Authentication

Neural style transfer

Covariance Change

Notation

• Coefficient matrix: $F_m \in \mathbb{R}^{N_{filt} \times N_{pixels}}$

•
$$\Sigma_m = cov(F_m) = \frac{1}{N_{pixels}}F_mF_m^T = U\Lambda U^T$$

Procedure

Scattering Transform

Art Authentication

Neural style transfer

Covariance Change

Notation

• Coefficient matrix: $F_m \in \mathbb{R}^{N_{filt} \times N_{pixels}}$

•
$$\Sigma_m = cov(F_m) = \frac{1}{N_{pixels}}F_mF_m^T = U\Lambda U^T$$

Procedure

1. Remove current style

$$F_m^{white} = \Lambda^{-1/2} U^T F_m$$

Scattering Transform

Art Authentication

Neural style transfer

Covariance Change

Notation

- Coefficient matrix: $F_m \in \mathbb{R}^{N_{filt} \times N_{pixels}}$
- $\Sigma_m = cov(F_m) = \frac{1}{N_{pixels}}F_mF_m^T = U\Lambda U^T$

Procedure

1. Remove current style

$$F_m^{white} = \Lambda^{-1/2} U^T F_m$$

2. Determine new covariance

$$\Sigma_m^{new} = \alpha \Sigma_m^{cont} + (1 - \alpha) \Sigma_m^{style}$$

Scattering Transform

Art Authentication

Neural style transfer

Covariance Change

Notation

- Coefficient matrix: $F_m \in \mathbb{R}^{N_{filt} \times N_{pixels}}$
- $\Sigma_m = cov(F_m) = \frac{1}{N_{pixels}} F_m F_m^T = U \Lambda U^T$

1

Procedure

1. Remove current style

$$F_m^{white} = \Lambda^{-1/2} U^T F_m$$

2. Determine new covariance

$$\Sigma_m^{new} = \alpha \Sigma_m^{cont} + (1 - \alpha) \Sigma_m^{style}$$

3. Transfer style $F_{m}^{new} = \left(\alpha \Sigma_{m}^{cont} + (1 - \alpha) \Sigma_{m}^{style}\right)^{1/2} \Lambda^{-1/2} U^{T} F_{m}$

Scattering Transform

Art Authentication

Neural style transfer

Covariance Change

Notation

- Coefficient matrix: $F_m \in \mathbb{R}^{N_{filt} \times N_{pixels}}$
- $\Sigma_m = cov(F_m) = \frac{1}{N_{pixels}} F_m F_m^T = U \Lambda U^T$

1

Procedure

1. Remove current style

$$F_m^{white} = \Lambda^{-1/2} U^T F_m$$

2. Determine new covariance

$$\Sigma_m^{new} = \alpha \Sigma_m^{cont} + (1 - \alpha) \Sigma_m^{style}$$

3. Transfer style

$$F_m^{new} = \left(\alpha \Sigma_m^{cont} + (1-\alpha) \Sigma_m^{style}\right)^{1/2} \Lambda^{-1/2} U^T F_m$$

4. Invert F_m^{white}

Scattering Transform

Art Authentication

Neural style transfer

Phase Retrieval

Gerchberg-Saxton algorithm

- Recover x such that |Ax| = b
- Input: $y^{(1)} \in \mathbb{C}$ such that $|y^{(1)}| = b$
- Iteration:

$$y_i^{(k+1)} = b_i \frac{(AA^{\dagger}y^{(k)})_i}{|(AA^{\dagger}y^{(k)})_i|}$$

- Not guaranteed to converge to solution
- Low computational complexity

Scattering Transform

Art Authentication

Neural style transfer

(Very) Preliminary Results

Happy 80th Birthday John!