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Introduction



Inspiration

“When I multiply numbers together, I see two shapes. The

image starts to change and evolve, and a third shape emerges.

That’s the answer. It’s mental imagery. It’s like maths without

having to think.”

– Daniel Tammet [6]
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Idea

Idea: Embed data into spaces of “smooth”

functions over graphs, thereby extending graphical

processing techniques to arbitrary datasets.

X = {xi}Ni=1 ⊂ Rd

Rd 3 x
ΦX7−→ RG
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Implications

• With G = Ir =
(
{0, 1, . . . , r − 1}, {(k − 1, k)}k=r−1

k=1

)
, ΦX

maps into functions over an interval

• With G = Ir × Ir , ΦX maps into r by r images

• Wavelet/Curvelet/Shearlet dictionaries for images induce

dictionaries for arbitrary datasets

• Convolutional Neural Networks can be applied to arbitrary

datasets in a principled manner
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Example: Kernel Image Space Embeddings of Tumor Data

Benign Tumors

Malignant Tumors
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Smooth Image Space Embeddings



Image Space Embeddings

We will call any isometry Φ : Rd → C∞([0, 1]2) or Φ : Rd → Rr ⊗ Rr an

image space embedding.

• C∞([0, 1]2) is identified with the space of smooth images with

incomplete norm

‖f ‖2
L2([0,1]2) =

∫ 1

0

∫ 1

0

f (x , y)2 dxdy

• Rr ⊗ Rr is identified with the space of r by r matrices, or r by r

digital images with norm

‖F‖2
2 = trace(FTF ).
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Smoothness of Image Space Embeddings

We will let D denote:

• the gradient operator on C 1([0, 1]2), or

• the graph derivative D : RV → RE for a graph G = (V ,E ) defined

by

(Df )(i, j) = fi − fj

where f : RV → R and it is assumed that if (i , j) ∈ E then

(j , i) 6∈ E , and

• the discrete differential D : Rr ⊗ Rr →
(
Rr ⊗ Rr−1

)
⊕
(
Rr−1 ⊗ Rr

)
coincides with the graph derivative on a regular r by r grid

10



Smoothness of Image Space Embeddings

Given a dataset X = {xi}Ni=1 ⊂ Rd , we measure the

smoothness of an image space embedding of X by the mean

quadratic variation:

MQV (X ) =
1

N

N∑
i=1

‖D(Φ(xi))‖2.
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Optimally Smooth Image Space Embeddings

We seek the projection which minimizes the mean

quadratic variation over the dataset

min
Φ

1

N

N∑
i=1

‖D(Φ(xi))‖2
2

subject to Φ being a linear isometry.
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Optimally Smooth Discrete Image Space Embeddings

Theorem (S.)

Suppose r2 ≥ d, let {vj}dj=1 ⊂ Rd be the principal components of X

(ordered by descending singular values), and let {ξj}r
2

j=1 (ordered by as-

cending eigenvalues) denote an orthonormal basis of eigenvectors of the

graph Laplacian L = DTD. Then

Φ =
d∑

i=1

ξjv
T
j

solves the optimal mean quadratic variation embedding program.
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Observations

• The optimal isometry pairs highly variable components in

Rd with low-frequency components in L2(G).

• x 7→ F by computing the PCA scores of x , arranging them

in an r by r matrix, and applying the inverse discrete

cosine transform.

• If the data xi are drawn i.i.d. from a Gaussian, then Φ

maps this Gaussian to a Gaussian process with minimal

expected quadratic variation.

• The connection with PCA indicates that we can use

Kernel PCA to produce nonlinear embeddings into image

spaces as well
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Optimally Smooth Continuous Image Space Embeddings

Theorem (S.)

Let {vj}dj=1 ⊂ Rd be the principal components of X (ordered by descending

singular values), and let {kj}dj=1 denote the first d positive integer vectors

ordered by non-decreasing norm. Then

Φ(x) =
d∑

j=1

(
vT
j x
)

exp(2πi(kT
j ·))

solves the optimal mean quadratic variation embedding program

min
Φ

N∑
i=1

‖DΦ(xi )‖2
L2
C([0,1]2)

subject to Φ being a complex isometry.
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Connection with Regularized PCA

Theorem (S.)

In the discrete case, the solution to the minimum quadratic variation pro-

gram also provides the optimal Φ for the program

min
C ,Φ

1

2
‖X − CΦ‖2

2 +
λ

2
‖CD∗‖2

2 +
γ

2
‖C‖2

2

subject to Φ being an isometry.

16



Example: Dictionary Learning



The Sparse Dictionary Learning Problem

Problem: Given a data matrix X ∈ RN ⊗Rd , with d
large, find a linear dictionary Φ ∈ Mk , d and
coefficients C ∈ MN, k such that CΦ ≈ X , and C is
sparse/compressible.
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Regularized Factorization

The “relaxed” approach attempts to solve the non-convex

program:

min
C ,Φ

1

2
‖X − ΦTC‖2

2 + λ‖C‖1.
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Usual Suspects

min
C ,Φ

1

2
‖X − CΦ‖2

2 + λ‖C‖1

• Impose ‖φi‖2
2 = 1 for each row of

Φ =


−φ1−
−φ2−

...

−φk−


to deal with the fact that CΦ = (qC )

(
1
q Φ
)

.

• Program has analytic solution when C is fixed, and is convex

optimization with Φ fixed.
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Algorithms

• Optimization algorithm for supervised and online

learning of dictionaries: Mairal et al. [9, 8]

• Good initialization procedures can lead to

provable results: Agarwal et al. [1]
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Identifiability

• Exactly sparse and approximation (even for large factors!) is

NP-hard: Tillmann [16]

• Probability model-based learning: Remi and Schnass [11], Spielman

et al. [14]

• Dictionary is incoherent and coefficients are sufficiently sparse, then

original dictionary is a local minimum: Geng and Wright [5], Schnass

[12]

• Full spark matrix is also identifiable given sufficient measurements:

Garfinkle and Hillar [4]
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Caveats

• Many possible local solutions

• Interpretability?

• Large systems require a large amount of

computation!
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Tight Frame Dictionaries

Recall that {ψa}a∈A ∈ L2(R2) is a frame if there are

constants 0 < A ≤ B such that

A‖x‖2 ≤
∑
a∈A

|〈f , ψa〉|2 ≤ B‖x‖2 for all f ∈ H,

where 〈·, ·〉 and ‖ · ‖ are the inner product and
induced norm on L2(R2), respectively. If A = B , we
say that the frame is tight.
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Examples of Tight Frames

• Tensor product wavelet systems

• Curvelets

• Shearlets

Fact: If {ψa}a∈A ∈ L2(R2) is a tight frame, and
Φ : Rd → L2(R2) is an isometry, then {Φ∗ψa}a∈A is
a tight frame for Rd .
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Example: Wisconsin Breast Cancer Dataset

• 569 examples in R30 describing characteristics of cells

obtained from biopsy [15]

• each example is either benign or malignant

• preprocess by removing medians and rescaling by

interquartile range in each variable

• image space embedding uses r = 32 (images are 32 by 32)
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Minimal Mean Quadratic Variation Behavior

PCA Scores vs. eigenvalues of graph Laplacian vs. product
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Normalized MMQV ≈ 38
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Raw Embeddings of Benign and Malignant Examples

Image Space Embeddings of Benign Tumor Data

Image Space Embeddings of Malignant Tumor Data
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LASSO in the Haar Wavelet Induced Dictionary

Using the 2D Haar wavelet transform W , we solve

min
C

1

2
‖X − CWΦ‖2

2 + λ‖C‖1

where Φ is the image space embedding matrix.

Using BCW dataset, average MSE is 3.4 × 10−3 when λ = 1.
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Haar Wavelet Coefficients after LASSO
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Inverse DWT of Haar Coefficients
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Compression in PCA Basis and Induced Dictionary

Consider best k-term approximations of the first 50 members of the BCW

dataset using different dictionaries

Compression in the dictionary induced by the Haar wavelet system uses

orthogonal matching pursuit:

0 5 10 15 20 25
Support size

0

10

20

30

40

Ex
am

pl
e

in
de

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25
Support size

0

10

20

30

40

Ex
am

pl
e

in
de

x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25
Support size

0

10

20

30

40

Ex
am

pl
e

in
de

x

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

First and second image: Relative SSE for k-term approximations using the PCA basis, Haar-induced dictionary

Third image: First image minus the second image
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Comparision with Dictionary Learning
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Dictionary learning clearly does better!
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Convolutional Neural Networks



Convolutional Neural Networks for Arbitrary Datasets

People already do this in insane ways!
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Convolutional Neural Networks for Arbitrary Datasets

• Exploit image structure to better deal with image collections [7]

• Cutting edge results for image classification tasks
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Lost in Translation Invariance

• Classification tasks for natural images benefits from translation

invariance of class labels

• Mallat and Bruna [2]

• Sokolić, Giryes, Sapiro, and Rodrigues [13]

• Almost all image space embeddings of datasets lack this property

• Luckily, translation invariance isn’t the whole story

• “Where” features are activated by a convolutional filter may be

decisive

• braille

• Water and Waffle
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More Parameters, More Problems

Weight sharing is comparable to regularizing the problem

• Weak evidence via better upper bounds for generalization

error [18]

• Precise combinatorial bounds for overfitting? [17]
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Experimental Setup

1. Dataset is the image space embedded BCW data

2. For each bootstrap random train/test partition of data, train and

test

• Logistic regression

• Single hidden layer CNN with softmax activation

• Single hidden layer NN with softmax activation (same number of

units as the CNN)

3. Experiments carried out by Alex Wang of University of Maryland on

AWS EC2 GPU instance using TensorFlow
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Boxplot Comparision of LR, NN, CNN

Median behavior of CNN is better, but outliers are a problem
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Dominance of CNN

CNN generally dominates, but requires more iterations and can sometimes land

on bad local minima.
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Proofs and Conclusion



Proof for Discrete Case

1. Minimizing MQV is equivalent to minimizing

‖DΦXT‖2 = trace
(
XΦTDTDΦXT

)
= trace

(
LΦXTXΦT

)
where L is the graph Laplacian.

2. Diagonalization of L reduces this to trace
(

ΛΦ̃XTX Φ̃T
)

, which is

the inner product of diag(Λ) with diag(Φ̃XTX Φ̃T ).

3. By Schur-Horn, α = diag(Φ̃XTX Φ̃T ) for some Φ̃ if and only if α is

majorized by the eigenvalues of XXT

4. This reduces the program to a linear program over the polytope

generated by permuting the eigenvalues of XTX , and the

rearrangement inequality tells us that the minimum is obtained by

pairing the eigenvalues of L and XTX in reverse order, multiplying,

and summing.

5. Continuous case is morally similar, but requires some more care
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Conclusion and Future Directions

• Interesting tool for EDA

• Experiments and theory for dictionary learning

• Exploration of overfitting theory for CNN

• Experiments for more UCI datasets

• Minimal Total Variation embeddings and exploitation of

approximation rates (Donoho [3]; Needell and Ward [10])
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Questions?
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