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A brief introduction
For a given function f : Rd → R and ε > 0, approximation is to
find a simple function g such that

‖f − g‖ < ε.

Function g : Rn → R can be as simple as g(x) = a · x. To make
sense of this approximation, we need to find a map
T : Rd 7→ Rn, such that

‖f − g ◦ T‖ < ε.

In practice, we only have sample data {(xi, f(xi))}mi=1 of f , one
needs develop algorithms to find T .

1 Classical approximation: T is independent of f or data,
while n depends on ε.

2 Learning: T is learned from data and determined by a few
parameters. n depends on ε.

3 Deep learning: T is fully learned from data with huge
number of parameters. T is a composition of many simple
maps, and n can be independent of ε.
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Classical approximation
Linear approximation: Given a finite fixed set of generators
{φ1, . . . , φn}, e.g. splines, wavelet frames, finite elements or
generators in reproducing kernel Hilbert spaces. Define

T = [φ1, φ2, . . . , φn]
> : Rd 7→ Rn and g(x) = a · x.

The linear approximation is to find a ∈ Rn such that

g ◦ T =

n∑
i=1

aiφi ∼ f

It is linear because f1 ∼ g1, f2 ∼ g2 ⇒ f1 + f2 ∼ g1 + g2.

The best n-term approximation: Given dictionary D that can
have infinitely many generators , e.g. D = {φi}∞i=1 and define

T = [φ1, φ2, . . . , ]
> : Rd 7→∈ R∞ and g(x) = a · x

The best n-term approximation of f is to find a with n nonzero
terms such that g ◦ T ∼ f .is the best approximation among all
the n-term choices
It is nonlinear because f1 ∼ g1, f2 ∼ g2 ; f1 + f2 ∼ g1 + g2, as
the support of the a1 and a2 depends on f1 and f2.
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Examples
Consider a function space L2(Rd), let {φi}∞i=1 be an orthonormal
basis of L2(Rd).

Linear approximation
For a given n, T = [φ1, . . . , φn]

> and g = a · x where aj = 〈f, φj〉. Denote
H = span{φ1, . . . , φn} ⊆ L2(Rd).
Then,

g ◦ T =

n∑
i=1

〈f, φi〉φi

is the orthogonal projection onto the space H and is the best approximation
of f from the space H.
g ◦ T provides a good approximation of f when the sequence {〈f, φj〉}∞j=1

decays fast as j → +∞.
Therefore,

1 Linear approximation provides a good approximation for smooth
functions.

2 Advantage: It is a good approximation scheme for d is small, domain is
simple, function form is complicated but smooth.

3 Disadvantage: It does not do well if d is big and/or domain of f is
complex.
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Examples

The best n-term approximation

T = (φj)
∞
j=1 : Rd 7→ R∞ and g(x) = a · x and each aj is

aj =

{
〈f, φj〉, for the largest n terms in the sequence {|〈f, φj〉|}∞j=1

0, otherwise.

The approximation of f by g ◦ T depends less on the decay of
the sequence {|〈f, φj〉|}∞j=1. Therefore,

1 the best n-term approximation is better than the linear
approximation when f is nonsmooth.

2 It is not a good scheme if d is big and/or domain of f is
complex.
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Approximation for deep learning

Given data {(xi, f(xi))}mi=1.
1 The key of deep learning is to construct a T by the given

data and chosen g.

2 T can simplify the domain of f through the change of
variables while keeping the key features of the domain of
f , so that

3 It is robust to approximate f by g ◦ T .
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Classical approximation vs deep learning
For both linear and the best n-term approximations, T is fixed.
Neither of them suits for approximating f , when f is defined on
a complex domain, e.g manifold in a very high dimensional
space.

For deep learning, T is constructed by and adapted to the given
data. T changes variables and maps domain of f to mach with
that of a simple function g. It is normally used to approximate f
with complex domain.

What is the mathematics behind this?

Settings: construct a measurable map T : Rd 7→ Rn and a
simple function g (e.g. g = a · x ) from data such that the feature
of the domain of f can be rearranged by T to match with those
of g. This leads to g ◦ T provides a good approximation of f .
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Approximation by compositions (with Qianxiao Li and
Cheng Tai)

Question 1: For given f and g, is there a measurable
T : Rd 7→ Rn such that f = g ◦ T?

Answer: Yes! We have proven

Theorem
Let f : Rd → R and g : Rn → R and assume Im(f) ⊆ Im(g) and
g is continuous. Then, there exists a measurable map
T : Rd 7→ Rn such that

f = g ◦ T, a.e.

This is an existence proof. T cannot be written out
analytically. This leads to the following relaxed question
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Approximation by compositions

Question 2: For arbitrarily given ε > 0, can one construct a
measurable T : Rd 7→ Rn such that ‖f − g ◦ T‖ ≤ ε?

Answer: Yes!

Theorem
Let f : Rd → R and g : Rn → R and assume Im(f) ⊆ Im(g). For
an arbitrarily given ε > 0, a measurable map T : Rd 7→ Rn can
be constructed in terms of f and g, such that

‖f − g ◦ T‖ ≤ ε

While T can be written out in terms of f and g, T can be
complex to be constructed when only sample data of f is
given. This leads to
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Approximation by compositions

Question 3: Can T be a composition of simple maps? That is,
can we write T = T1 ◦ · · · ◦ TJ , where each Ti, i = 1, 2, . . . , J is
simple, e.g. “perturbation of identity.”

Answer: Yes!

Theorem
Denote f : Rd → R and g : Rn → R. For an arbitrarily given
ε > 0, if Im(f) ⊆ Im(g), then there exists J simple maps
Ti, i = 1, 2, . . . , J such that T = T1 ◦ T2 . . . ◦ TJ : Rd 7→ Rn and

‖f − g ◦ T1 ◦ · · · ◦ TJ‖ ≤ ε

The proof of existence of Ti, i = 1, 2, . . . , J is constructive. In
fact, an algorithm can be devised to carry it out approximately
in practice.



Algorithm

Input: Hypothesis spaces: I, H; Loss functions: L,L′;
Tolerance: ε

Data: {xi, f(xi)}Ni=1

Result: A function fn that approximates a given f
initialization: Set f0 = g, Img ⊃ Imf ;
for j from 0 to n− 1 do

Ij = argminI∈I
1
N

∑N
i=1 L(I(xi),1{|fj−f |>ε}(xi));

hj = argminh∈H
1
N

∑N
i=1 L

′(f(xi), fj ◦ Th,j(xi))
where Th,j(x) := Ij(x)h(x) + [1− Ij(x)]x;
Set fj+1 = fj ◦ Thj ,j

end



Advantage of Multi-level Composition

For any given any approximator, this algorithm
systematically improve its performance by adding one
more layer of composition

The performance improvement can be quantified by

Dε(f, g ◦ t) = Dε(f, g)

[
1− r

(
1− a

p

)]
a, r, p can be estimated at each stage to see if we can go
further
This procedure also naturally picks up some multi-scale
structure
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Ideas
Classical approximation sub-divides the domain, The key
to a good approximation is to reproduce poly locally. The
smoothness of f is needed. It is a local approach (e.g.
Riemann integration, TV method ).
Alternative approach sub-divides the range. The key to
good approximation is the location, volume, and geometry
of f−1(Bi), The smoothness of f is no more important. It is
non-local (e.g. Lebesgue integration, non-local TV method)
Our theory and algorithm iteratively rearranges f−1(Bi) by
constructing T , so that it matches with g−1(Bi),
Consequently, g ◦ T approximates f well.

x

f

x

f Bi
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A Binary Classification Toy Problem
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Other Classification and Regression Benchmarks
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(b) Fashion-MNIST
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(c) SGEMM1

Remark: For the image classification problems, h, I composes
of small convolution blocks with 4-32 channels, and 2-4 layers
each. f0 is linear.
Q. Li, Z. Shen, and C Tai Deep approximation of functions via composition (2019).

1Cedric Nugteren and Valeriu Codreanu. MCSoC, 2015
(http://ieeexplore.ieee.org/document/7328205/)
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Remark: The last problem is regression, with fully connected
blocks for h, I. “Accuracy” is defined as in the preceding theory:
Dε(f, fj) = µ{|f − fj | > ε}. Here, we take ε = 0.1.
Q. Li, Z. Shen, and C Tai Deep approximation of functions via composition (2019).

1Cedric Nugteren and Valeriu Codreanu. MCSoC, 2015
(http://ieeexplore.ieee.org/document/7328205/)
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The best N -term Approximation via Dictionary with
Compositions(with Haizhao Yang and Shijun Zhang)

N-term approximation Given a dictionary D and f , the best

n-term approximation from D is to find φ∗i ∈ D and a∗i ∈ R such
that

g =

n∑
i=1

a∗iφ
∗
i

is a solution of

inf
ai∈R, φi∈D

∥∥∥f − n∑
i=1

aiφi

∥∥∥.



The best N -term Approximation via Dictionary with
Compositions

First dictionary is defined as

D1 := {σ(W · x+ b) : W ∈ Rd, b ∈ R}

Each element of D1 is a piecewise linear function.

When d = 1, for arbitrary Lipchitz continuous f on [0, 1], the
best n-term approximation from D1 achieve the approximation
rate O(n−1).
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The best N -term Approximation via Dictionary with
Compositions

Dictionary via compositions:

Choosing h1, h2, · · · , hn ∈ D1, denote column vector
[h1, h2, · · · , hn]T by h, the second dictionary is defined as

D2 := {σ(W · h+ b) : W ∈ Rn, b ∈ R}.

Each element of D2 is compositions of piecewise linear
functions.
Compositions of piecewise linear functions are still piecewise
linear functions.
This process can continue inductively to derive multilayer
composition dictionaries D3, . . .DL.
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The best N -term Approximation via Dictionary with
Compositions

The N -term approximation from D2 can be implemented
numerically by the ReLU networks with 2 hidden layer
approximation.

When d = 1, for any Lipchitz continuous f on [0, 1], the best
n-term approximation from D2 achieve the approximation rate
O(n−2).
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The answer is unlikely, unless one do something else...

Given L ≥ 1, there exists f with Lipchitz constant 1 such that
the n-term approximation error from DL cannot be better than

O(n−(2+ρ))

for sufficiently large n and any ρ > 0.

Multilayer implying multiplication of the approximate rate is only
true for 2 hidden layers but not for L ≥ 3.

That means that one cannot expect to reach the n -term
approximation rate O(n−L) for multilayer composition dictionary
DL for fixed L ≥ 3.

How about the case d > 1?

For any Lipchitz continuous f on [0, 1]d, the best N -term
approximation from the dictionary with composition achieves
the approximation rate O(n−2/d).

Z. Shen, H. Yang, and S. Zhang, Nonlinear Approximation via Compositions, arXiv
e-prints, (2019), arXiv:1902.10170,601p. arXiv:1902.1017.
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Approximation Rate of ReLU Networks

For given N,L > 1 ∈ N+, design a network of order O(NL)

φ=

Question: What is the approximation rate for this ReLU
network?

Suppose f is Lipchitz with constant ν, then

‖f − φ‖Lp([0,1]d) ≤ 40ν
√
dN−2/dL−2/d,

for p ∈ [1,∞).
When d > 1, the width is max

{
8dbN1/dc+ 4d, 12N + 14

}
.
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Approximation Rate of ReLU Networks

For general continuous functions, define the modulus of
continuity, for any r > 0, as

ωf (r) := sup{|f(x)− f(y)| : x,y ∈ [0, 1]d, |x− y| ≤ r}.

Theorem
Let f be continuous, ∀ L > 1, N ∈ N+ and ∀ p ∈ [1,∞), ∃ a
ReLU network φ with width max

{
8dbN1/dc+ 4d, 12N + 14

}
and

depth 9L+ 12 such that

‖f − φ‖Lp([0,1]d) ≤ 5ωf (8
√
dN−2/dL−2/d).

The rate O(N−2/dL−2/d) is nearly optimal.
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Approximation Rate of ReLU Networks

: N ≥ 1, L = 1, rate O(N−1/d), well known.

: N = 2d+ 10, L sufficient large, rate O(L−2/d),
Yarotsky, 2018.

: N ≥ 1, L = 2, 3, rate O(N−2/d), implied by the results
of N -term approximation, Shen, Yang, Zhang, 2019.

: N ≥ 1, L ≥ 1, rate O(N−2/dL−2/d), Shen, Yang,
Zhang, 2019.
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Approximation on Low-Dimensional Manifold

Question: When data is concentrated around a low dimension
manifold, can we use the intrinsic dimension in the
approximation rate estimate?

Answer: Yes, we can achieve the rate O(N−2/dδL−2/dδ), for
Lipschitz functions on a small neighborhood of dM-dim
manifoldM⊆ [0, 1]d where dδ = O(dM ln d),

How about the general continuous functions?

We can extend our result to arbitrary continuous functions by
using ωf (·) as we defined previously.
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Approximation on Low-Dimensional Manifold

Define ε-neighborhood of dM-dim manifoldM⊆ [0, 1]d as

Mε :=
{
x ∈ [0, 1]d : inf{|x− y| : y ∈M} ≤ ε

}
,

Let %(·) be a PDF supported onMε and we say µ%(·) is a
measure of a probability density function (PDF) %(·) if

µ%(E) :=

∫
E
%(x)dx, for any measurable set E.

Theorem
Let f ∈ C([0, 1]d). ∀, N,L ∈ .N+, and ε ∈ (0, 1), ( ε can be
O(N−2/dδL−2/dδ)), ∃ a ReLU network φ with width
max

{
8dδbN1/dδc+ 4dδ, 12N + 14

}
and depth 9L+ 12 s.t.

‖f − φ‖Lp([0,1]d,µ%) ≤ 3ωf
(
8d ε

)
+ 5ωf

(
32dN−2/dδL−2/dδ

)
,

where dδ = O(dM ln d) and p ∈ [1,∞).

Zuowei Shen, Haizhao Yang, Shijun Zhang. Deep Network Approximation
Characterized by Number of Neurons. 2019.
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Happy Birthday John!

http://www.math.nus.edu.sg/∼matzuows/


	Introduction of approximation theory
	Approximation of functions by compositions
	Approximation rate in term of number of nurons

