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Something very old

The following is a direct consequence of the Wiener Tauberian Theorem

on the real line:

Theorem

Let f be a bounded holomorphic function on the unit disc ∆. For

0 < r < 1, let γr ⊂ ∆ be the circle of radius r tangent to ∂∆ at 1.

If, for some r ∈ (0, 1),

lim
z→1
z∈γr

f (z) = ` ,

then the same holds true for every other r .
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Proof

Via the Cayley transform C : z 7−→ i 1+z
1−z = w , the disc ∆ is replaced by

the upper half plane U = {w = x + iy : y > 0} and γr by the horizontal

line y = 1−r
r .

The function g = f ◦ C−1 is bounded and holomorphic on U. By Fatou’s

theorem, g is the Poisson integral of a bounded function g0 on ∂U = R,

g(x + iy) = g0 ∗ py (x) , py (x) =
1

π

y

x2 + y2
.

The hypothesis implies that, for a fixed y > 0, limx→∞ g0 ∗ py (x) = `.

Since p̂y (ξ) = e−y |ξ| 6= 0 and
´
R py ′ = 1 for every y ′ > 0, the WTT gives

limx→∞ g0 ∗ py ′(x) = ` for all y ′.
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An analogue for the ball in Cn

The same argument can be adapted to the unit ball in Cn, n ≥ 2

(A. Hulanicki, F. R., Adv. Math. 1980) proceeding as follows:

• interpret the γr (resp. the horizontal lines in U) as the horocycles

pointed at 1 ∈ ∂∆ (resp. at ∞ ∈ ∂U) in the Poincaré metric;

• transform the ball Bn into the Siegel domain

Un =
{
w = (w1,w

′) ∈ C× Cn−1 : Imw1 − |w ′|2 > 0
}

via a

generalized Cayley transform C ;

• identify the boundary ∂Un = {w : Imw1 − |w ′|2 = 0} with the

Heisenberg group Hn−1;

• recognize that the horocycles in Un pointed at infinity are the

vertical translates of ∂Un;

• use the n-dimensional Fatou theorem to express g = f ◦ C−1 on the

hypersurface Imw1 − |w ′|2 = y > 0 as a convolution g0 ∗ p(n)
y , with

g0 ∈ L∞(Hn−1) and p
(n)
y the generalized Poisson kernels.
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Commutativity of L1

The Wiener Tauberian Theorem (for a locally compact abelian group G )

is the statement that L1(G ) has the Wiener property, i.e., a closed ideal

containing a function ϕ with ϕ̂ 6= 0 at all points of Ĝ is all of L1(G ).

In the above proof for ∆ this has been used with G = R and ϕ = py .

The proof in higher dimension makes use of a “rotation invariance”

property of the Poisson kernels p
(n)
y .

This property identifies a closed subalgebra of L1(Hn−1) which is

commutative and satisfies the Wiener property (with Ĝ replaced by its

Gelfand spectrum).
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In the above proof for ∆ this has been used with G = R and ϕ = py .

The proof in higher dimension makes use of a “rotation invariance”

property of the Poisson kernels p
(n)
y .

This property identifies a closed subalgebra of L1(Hn−1) which is

commutative and satisfies the Wiener property (with Ĝ replaced by its
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z-radial functions on Hd

The Heisenberg group Hd is Cd × R with product

(z , t) · (w , u) =
(
z + w , t + u + 2 Im〈z ,w〉

)
.

Convolution of two functions f , g is defined as

f ∗ g(z , t) =

ˆ
Hd

f
(
(z , t) · (w , u)−1

)
g(w , u) dw du .

A function f is z-radial if it depends on |z |, t only (i.e., it is invariant

under unitary transformations in the Cd -component).

If f , g are both z-radial, then f ∗ g is also z-radial and f ∗ g = g ∗ f .

Due to this commutativity property, Fourier analysis of z-radial functions

on Hd can be done using the scalar-valued Gelfand transform of

L1
z-rad(Hd) rather than the operator-valued group Fourier transform.
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Commutative pairs

The context described above is the simplest, but nontrivial, example of

commutative pair 1.

If G is a locally compact group and K is a compact group of

automorphisms of G , we say that (G ,K ) is a commutative pair if the

convolution algebra L1
K (G ) of K -invariant functions on G is

commutative.

The spectrum Σ(G ,K ) of L1
K (G ) consists of the bounded spherical

functions ϕ, satisfying the equation

ϕ(x)ϕ(y) =

ˆ
K

ϕ
(
x · (ky)

)
dk .

1The name is for this talk only. The standard notion of Gelfand pair also includes

other situations that we prefer to leave aside today.
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Spherical transform

Gf (ϕ) =

ˆ
G

f (x)ϕ(x−1) dx

Properties.

• Riemann-Lebesgue: G : L1
K (G ) −→ C0(Σ),

• Uniqueness: Gf = 0 ⇒ f = 0,

• Plancherel formula: there exists a unique (up to scalar multiples)

measure ν on Σ such that ‖Gf ‖L2(Σ,ν) = ‖f ‖2,

• Inversion formula: f (x) =
´

Σ
Gf (ϕ)ϕ(x) dν(ϕ),

• Multipliers: every bounded operator T on L2(G ) which commutes

with left translations and with the automorphisms in K can be

expressed as Tf = G−1(m Gf ), for a unique m ∈ L∞(Σ, ν).
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The differentiable setting

Assume now that G is a connected Lie group.

It is then possible to obtain interesting models of Σ as closed subsets of

some Euclidean space.

Theorem

The following are equivalent:

• (G ,K ) is a commutative pair;

• the algebra DK (G ) of left- and K -invariant differential operators

on G is commutative.

Under these assumptions, the bounded spherical functions ϕ are smooth

and are characterized by the following conditions:

• ϕ is K -invariant, bounded and ϕ(e) = 1;

• ϕ is an eigenfunction of every D ∈ DK (G ).
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Embeddings

The algebra DK (G ) is finitely generated. We can then choose a finite

system of generators D = {D1, . . . ,Dk} and associate to every ϕ ∈ Σ the

k-tuple ξϕ = (ξ1, . . . , ξk) ∈ Ck of its eigenvalues,

Djϕ = ξjϕ , j = 1, . . . , k .

Theorem (F. Ferrari-Ruffino)

The map ϕ 7−→ ξϕ is a homeomorphism of Σ onto a closed subset ΣD of

Ck .
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Example 1 (Hankel transform)

G = Rn, K = On .

Then L1
K (G ) = L1

rad(Rn) and DK (G ) = C[∆].

The bounded spherical functions are expressed in terms of Bessel

functions:

ϕr (x) =

 
|ξ|=
√
r

e i ξ·x dξ = cn
(√

r |x |
)− n−2

2 J n−2
2

(√
r |x |
)
, r ≥ 0 .

With D = {−∆}, we have ΣD = [0,+∞) and ξϕr = r .
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Example 2

G = Hd , K = Ud .

Then L1
K (G ) = L1

z-rad(Hd) and DK (G ) = C[L,T ], where T = ∂t and

L =
d∑

j=1

(
(∂xj − yj∂t)

2 + (∂yj + xj∂t)
2
)

= ∆z + 2∂t

d∑
j=1

(xj∂yj − yj∂xj ) + |z |2∂2
t

Take D = {−L,−iT}. For a given eigenvalue ξ2 = λ ∈ R of −iT , the

spherical functions are

if λ = 0 , ϕr ,0(z , t) = c2d

(√
r |z |
)−(d−1)

Jd−1

(√
r |z |
)
, r ≥ 0 ,

if λ 6= 0 , ϕ|λ|(2j+d),λ(z , t) = c ′d,je
iλte−|λ||z|

2

L
(d−1)
j

(
2|λ||z2|

)
, j ∈ N ,

where L
(d−1)
j are the Laguerre polynomials.
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Picture of ΣD (the Heisenberg fan)

 
 

ξT 

ξL 

(Faraut-Harzallah, 1987)
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Fourier transforms of Schwartz functions

The problem of describing the image of the Schwartz space on the

Heisenberg group under the group Fourier transform (or of the z-radial

Schwartz space under the spherical transform) has been studies for a long

time.

In his Ph.D. thesis of 1977 under the direction of E. Stein, D. Geller

described the image of the S(Hd) under the group Fourier transform.

They are characterized by continuity and rapid decay of iterates of any

order of certain combinations of derivatives in the parameter λ

identifying the Schrödinger representation and difference operators in the

discrete parameters identifying the matrix entries at each representation.

14 / 26



Fourier transforms of Schwartz functions

The problem of describing the image of the Schwartz space on the

Heisenberg group under the group Fourier transform (or of the z-radial

Schwartz space under the spherical transform) has been studies for a long

time.

In his Ph.D. thesis of 1977 under the direction of E. Stein, D. Geller

described the image of the S(Hd) under the group Fourier transform.

They are characterized by continuity and rapid decay of iterates of any

order of certain combinations of derivatives in the parameter λ

identifying the Schrödinger representation and difference operators in the

discrete parameters identifying the matrix entries at each representation.

14 / 26



Spherical transforms of z-radial Schwartz functions

In 1998 C. Benson, J. Jenkins and G. Ratcliff obtained a similar

description of spherical transforms of K -invariant Schwartz functions for

general commutative pairs (Hd ,K ).

The conditions are of the same nature as those of Geller, and the two

overlap for z-radial functions, i.e., for K = Un.

For instance, if K = Un, the difference-differential operators to be

iteratively applied to u(λ, j) = Gf (ϕ|λ|(2j+d),λ) are

u 7−→∂λu(λ, j)− j

λ

(
u(λ, j)− u(λ, j − 1)

)
(if λ > 0) ,

u 7−→∂λu(λ, j)− d + j

λ

(
u(λ, j + 1)− u(λ, j)

)
(if λ < 0) .
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The spectral perspective

It has been mentioned before that, for general commutative pairs (G ,K )

of Lie groups, each bounded operator T on L2(G ) which commutes with

left translations and with the automorphisms in K is identified by a

spherical multiplier mT ∈ L∞(ΣD, ν) through the formula

Tf = G−1(mT Gf ) .

Conversely, given m ∈ L∞(ΣD, ν), the corresponding operator Tm is

bounded on L2(G ).

Choosing D consisting of self-adjoint operators (which is always

possible), this is strictly related to the following fact:

The support of the Plancherel measure ν in ΣD is the joint L2-spectrum

of the operators in D and, for every T as above, T = mT (D1, . . . ,Dk).
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Multiplier theorems

The following statement, concerning spectral multipliers of a single

differential operator on a Lie group, is the consequence of a series of

intermediate (and sharper) results, due to A. Hulanicki and J. Jenkins,

A. Hulanicki, G. Alexopoulos.

Theorem

Let G a Lie group with polynomial volume growth and D a self-adjoint,

hypoelliptic, left-invariant differential operator on G . If m ∈ S(R), then

m(D)f = f ∗ Km with Km ∈ S(G ).

(The situation is quite different for groups with exponential volume

growth: for instance, if G is a noncompact semisimple group, the

condition Km ∈ L1(G ) already implies that m extends analytically to

some an open neighborhood of σ(D) in C.)

17 / 26



Multiplier theorems

The following statement, concerning spectral multipliers of a single

differential operator on a Lie group, is the consequence of a series of

intermediate (and sharper) results, due to A. Hulanicki and J. Jenkins,

A. Hulanicki, G. Alexopoulos.

Theorem

Let G a Lie group with polynomial volume growth and D a self-adjoint,

hypoelliptic, left-invariant differential operator on G . If m ∈ S(R), then

m(D)f = f ∗ Km with Km ∈ S(G ).

(The situation is quite different for groups with exponential volume

growth: for instance, if G is a noncompact semisimple group, the

condition Km ∈ L1(G ) already implies that m extends analytically to

some an open neighborhood of σ(D) in C.)

17 / 26



Multiplier theorems

The following statement, concerning spectral multipliers of a single

differential operator on a Lie group, is the consequence of a series of

intermediate (and sharper) results, due to A. Hulanicki and J. Jenkins,

A. Hulanicki, G. Alexopoulos.

Theorem

Let G a Lie group with polynomial volume growth and D a self-adjoint,

hypoelliptic, left-invariant differential operator on G . If m ∈ S(R), then

m(D)f = f ∗ Km with Km ∈ S(G ).

(The situation is quite different for groups with exponential volume

growth: for instance, if G is a noncompact semisimple group, the

condition Km ∈ L1(G ) already implies that m extends analytically to

some an open neighborhood of σ(D) in C.)
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Multivariate multipliers

This result extends to commuting families of self-adjoint differential

operators D1, . . . ,Dk such that some polynomial in D1, . . . ,Dk is

hypoelliptic:

m ∈ S(Rk) =⇒ m(D1, . . . ,Dk)f = f ∗ Km with K ∈ S(G ) .

For commutative pairs (G ,K ) with G of polynomial growth, one has the

following consequence.

Corollary

Let D = {D1, . . . ,Dk} be a system of self-adjoint generators of DK (G ).

If m ∈ S(Rk), then G−1(m|ΣD ) ∈ SK (G ).
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Condition (S)

The inverse implication is

(S) If f ∈ SK (G ), then Gf extends to a function m ∈ S(Rk).

At the moment, condition (S) is known to hold for all commutative pairs

(G ,K ) satisfying either of the following:

• G compact (easy);

• G = Rn (easy after G. Schwartz’s extension of Whitney’s theorem);

• G = Hd (F. Astengo, B. Di Blasio, F. R.);

• G nilpotent with G/[G ,G ] irreducible w.r. to K (V. Fischer, F. R.,

O. Yakimova);

• G = Un nCn, n ≤ 2, K = Int(Un) (F. Astengo, B. Di Blasio, F. R.).
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Bootstrapping

Level 0.0 G = Rn , K = On (same for G = Cd , K = Ud)

D = {−∆}, ΣD = [0,+∞).

f ∈ Srad(Rn) =⇒ f̂ ∈ Srad(Rn)
Whitney

=⇒ f̂ (ξ) = g
(
|ξ|2
)
, g ∈ S(R)

Gf = g|[0,+∞)

Level 0.1 G = Rn, K ⊂ On.

D = {p1(−i∂), . . . , pk(−i∂)}, with P = (p1, . . . , pk) real Hilbert basis of

PK (Rn). ΣD = P(Rn) ⊂ Rk .

f ∈ SK (Rn) =⇒ f̂ ∈ SK (Rn)
G. Schwartz

=⇒ f̂ (ξ) = g
(
P(ξ)

)
, g ∈ S(Rk)

Gf = g|ΣD

20 / 26



Bootstrapping

Level 0.0 G = Rn , K = On (same for G = Cd , K = Ud)

D = {−∆}, ΣD = [0,+∞).

f ∈ Srad(Rn) =⇒ f̂ ∈ Srad(Rn)
Whitney

=⇒ f̂ (ξ) = g
(
|ξ|2
)
, g ∈ S(R)

Gf = g|[0,+∞)

Level 0.1 G = Rn, K ⊂ On.

D = {p1(−i∂), . . . , pk(−i∂)}, with P = (p1, . . . , pk) real Hilbert basis of

PK (Rn). ΣD = P(Rn) ⊂ Rk .

f ∈ SK (Rn) =⇒ f̂ ∈ SK (Rn)
G. Schwartz

=⇒ f̂ (ξ) = g
(
P(ξ)

)
, g ∈ S(Rk)

Gf = g|ΣD

20 / 26



Level 1

G = Hd , K = Ud , D = {−L,−iT}, ΣD =Heisenberg fan⊂ R2.

In ΣD we distinguish between the regular half-lines with slopes

±1/(2j + d) and the singular half-line with slope 0.

Step 1. It is not hard to prove that property (S) holds for f ∈ SK (Hd)

with
´
R tmf (z , t) dz dt = 0 for every m ≥ 0, i.e., when Gf

vanishes of infinite order on the singular half-line.

Step 2. For general f ∈ SK (Hd), on the singular half-line Gf coincides

with the spherical transform for (Cd ,Ud) of

f [(z) =
´
R f (z , t) dt. Hence Gf (·, 0) admits a Schwartz

extension to the full horizontal line.
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Continuation

Step 3. (Geller) There exists f1 ∈ SK (Hd) such that

Gf1(ξ1, ξ2) =
Gf (ξ1, ξ2)− Gf (ξ1, 0)

ξ2
.

Iterating one obtains f2, . . . , fm, . . . ,∈ SK (Hd) such that, for

every m,

Gf (ξ1, ξ2) = Gf (ξ1, 0) + ξ2Gf1(ξ1, 0) + · · ·+ ξm2
m!
Gfm(ξ1, 0)

+
ξm+1

2

(m + 1)!
Gfm+1(ξ1, ξ2) .
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End of the proof

Using property (S) at level 0.0, we can extend each Gfm(·, 0) = GCd f [m to

a Schwartz function ψm on the real line.

The family {ψm : m ≥ 0} is a Whitney jet on {ξ2 = 0} and we can

construct a function ψ ∈ S(R2) such that

∂mξ2
ψ(ξ1, 0) = ψm(ξ1) .

By Corollary, ψ = Gg with g ∈ SK (Hd). Then G(f − g) vanishes of

infinite order on the singular half line, hence it extends to a Schwartz

function η ∈ S(R2). Finally

Gf = (ψ + η)|ΣD .
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Level 2, an example

G = R3 × R3, K = SO3.

(x , y) · (x ′, y ′) = (x + x ′, y + y ′ + x ∧ x ′)
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Spherical transforms of distributions

Property (S) is the equality

G
(
SK (G )

)
= S(ΣD)

def
= S(Rk)/{ψ : ψ|ΣD = 0} .

This allows to define GΦ for Φ ∈ S ′K (G ) by duality as a “synthesisable”

tempered ditribution supported on ΣD:

G
(
S ′K (G )

)
=
{

Ψ ∈ S ′(Rk) : 〈Ψ, g〉 = 0 ∀ g = 0 on ΣD
}
.
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Happy Birthday, John
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