Alexander Olevskii

The talk is based on joint work with Alexander Ulanovskii

э

Introduction

Given $f \in L^2(\mathbb{R})$, consider the set of the translates

$${f(t-\lambda), \lambda \in \mathbb{R}}.$$

WIENER: When the translates span the whole space $L^2(\mathbb{R})$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Introduction

Given $f \in L^2(\mathbb{R})$, consider the set of the translates

```
{f(t-\lambda), \lambda \in \mathbb{R}}.
```

WIENER: When the translates span the whole space $L^2(\mathbb{R})$?

Theorem (Wiener). ... if and only if the Fourier transform \hat{f} is non-zero almost everywhere on \mathbb{R} .

Introduction

Given $f \in L^2(\mathbb{R})$, consider the set of the translates

```
\{f(t-\lambda), \lambda \in \mathbb{R}\}.
```

WIENER: When the translates span the whole space $L^2(\mathbb{R})$?

Theorem (Wiener). ... if and only if the Fourier transform \hat{f} is non-zero almost everywhere on \mathbb{R} .

Let $f \in L^1(\mathbb{R})$.

Theorem (Wiener). The set of translates $\{f(t - \lambda), \lambda \in \mathbb{R}\}$ spans the whole space $L^1(\mathbb{R})$ if and only if \hat{f} has no zeros on \mathbb{R} .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

$$Z(\hat{f}) := \{w : \hat{f}(w) = 0\}.$$

Wiener expected that similar characterizations hold for the spaces $L^{p}(\mathbb{R})$ in terms of "smallness" of $Z(\hat{f})$.

< 回 > < 回 > < 回 >

$$Z(\hat{f}) := \{ w : \hat{f}(w) = 0 \}.$$

Wiener expected that similar characterizations hold for the spaces $L^{p}(\mathbb{R})$ in terms of "smallness" of $Z(\hat{f})$.

Beurling (1951): The set of translates spans $L^p(\mathbb{R})$ if $DIM_H(Z(\hat{f})) < 2(p-1)/p$.

Sharp, but not necessary.

$$Z(\hat{f}) := \{ w : \hat{f}(w) = 0 \}.$$

Wiener expected that similar characterizations hold for the spaces $L^{p}(\mathbb{R})$ in terms of "smallness" of $Z(\hat{f})$.

Beurling (1951): The set of translates spans $L^p(\mathbb{R})$ if $DIM_H(Z(\hat{f})) < 2(p-1)/p$.

Sharp, but not necessary.

Pollard, Herz, Newman, ...

$$Z(\hat{f}) := \{ w : \hat{f}(w) = 0 \}.$$

Wiener expected that similar characterizations hold for the spaces $L^{p}(\mathbb{R})$ in terms of "smallness" of $Z(\hat{f})$.

Beurling (1951): The set of translates spans $L^p(\mathbb{R})$ if $DIM_H(Z(\hat{f})) < 2(p-1)/p$.

Sharp, but not necessary.

Pollard, Herz, Newman, ...

Theorem (N.Lev, A.O., Annals 2011). For every $p, 1 , there are two functions <math>f_1, f_2 \in (L^1 \cap L^p)(\mathbb{R})$ such that

(i) $Z(\hat{f}_1) = Z(\hat{f}_2)$; (ii) The set of translates of f_1 spans $L^p(\mathbb{R})$, while the set of translates of f_2 does not.

くぼう くほう くほう

Let Λ be a discrete subset of \mathbb{R} . Given $f \in L^2(\mathbb{R})$, consider the set of its Λ -translates

$${f(t-\lambda), \lambda \in \Lambda}.$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Let Λ be a discrete subset of \mathbb{R} . Given $f \in L^2(\mathbb{R})$, consider the set of its Λ -translates

$${f(t-\lambda), \lambda \in \Lambda}.$$

Definition. *f* is called a generator for Λ if its Λ -translates span the whole space $L^2(\mathbb{R})$.

< 回 > < 回 > < 回 >

Let Λ be a discrete subset of \mathbb{R} . Given $f \in L^2(\mathbb{R})$, consider the set of its Λ -translates

$${f(t-\lambda), \lambda \in \Lambda}.$$

Definition. *f* is called a generator for Λ if its Λ -translates span the whole space $L^2(\mathbb{R})$.

Two examples:

$$\Lambda_1 := \{\sqrt{n}, n \in \mathbb{Z}_+\}, \quad \Lambda_2 := \mathbb{Z}.$$

 Λ_1 admits a generator while Λ_2 does not.

< 回 > < 回 > < 回 > <

Let Λ be a discrete subset of \mathbb{R} . Given $f \in L^2(\mathbb{R})$, consider the set of its Λ -translates

$${f(t-\lambda), \lambda \in \Lambda}.$$

Definition. *f* is called a generator for Λ if its Λ -translates span the whole space $L^2(\mathbb{R})$.

Two examples:

$$\Lambda_1 := \{\sqrt{n}, n \in \mathbb{Z}_+\}, \quad \Lambda_2 := \mathbb{Z}.$$

 Λ_1 admits a generator while Λ_2 does not. SIZE VERSUS ARITHMETICS!

Does there exist a *uniformly discrete* set Λ which admits a generator?

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Does there exist a *uniformly discrete* set Λ which admits a generator? It was conjectured that the answer is negative (1995).

<日

<</p>

Does there exist a *uniformly discrete* set Λ which admits a generator? It was conjectured that the answer is negative (1995). We call Λ an almost integer set if

 $\Lambda := \{ n + \gamma(n), 0 < |\gamma(n)| = o(1) \}.$

< 回 > < 回 > < 回 >

Does there exist a *uniformly discrete* set Λ which admits a generator? It was conjectured that the answer is negative (1995).

We call Λ an almost integer set if

 $\Lambda := \{n + \gamma(n), 0 < |\gamma(n)| = o(1)\}.$

Theorem (A.0., 1997). For any almost integer set of translates there is a generator.

The construction is based on "small denominators" argument.

・ 同 ト ・ ヨ ト ・ ヨ ト

L^p-generators

The case p > 2:

Theorem (A.Atzmon, A.O., Journal of Approximation Theory, 1996). For every p > 2 there is a smooth function $f \in (L^p \cap L^2)(\mathbb{R})$ such that the family $\{f(t-n), n \in \mathbb{Z}\}$ is complete and minimal in $L^p(\mathbb{R})$.

Hence, $\Lambda = \mathbb{Z}$ admits an L^p -generator for every p > 2 (and it does not for $p \leq 2$).

く 何 ト く ヨ ト く ヨ ト

L^1 -generators

No u.d. set Λ may admit an L^1 -generator.

Theorem (J.Bruna, A.O., A.Ulanovskii, Rev. Mat. Iberoam., 2006) Λ admits an L^1 -generator iff it has infinite Beurling-Malliavin density.

For 1 the problem remained open.

Which function spaces can be spanned by a uniformly discrete set of translates of a single function?

All results below are from A.O., A.Ulanovskii:

- Bull. London Math. Soc. (2018) and
- Analysis Mathematica (2018).

Which function spaces can be spanned by a uniformly discrete set of translates of a single function?

All results below are from A.O., A.Ulanovskii:

- Bull. London Math. Soc. (2018) and
- Analysis Mathematica (2018).

Let X be a Banach function space on \mathbb{R} , satisfying the condition: (I) The Schwartz space $S(\mathbb{R})$ is embedded in X continuously and densely; Then the elements of X^* are tempered distributions.

<日

<</p>

Which function spaces can be spanned by a uniformly discrete set of translates of a single function?

All results below are from A.O., A.Ulanovskii:

- Bull. London Math. Soc. (2018) and
- Analysis Mathematica (2018).

Let X be a Banach function space on \mathbb{R} , satisfying the condition:

(I) The Schwartz space $S(\mathbb{R})$ is embedded in X continuously and densely;

Then the elements of X^* are tempered distributions.

We also assume

(II) Conditions $g \in X^*$ and spec $g \subset \mathbb{Z}$ imply g = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem 1. There exist a smooth function f and a uniformly discrete set Λ of translates such that the family $\{f(t - \lambda), \lambda \in \Lambda\}$ spans X.

Theorem 1. There exist a smooth function f and a uniformly discrete set Λ of translates such that the family $\{f(t - \lambda), \lambda \in \Lambda\}$ spans X.

Below we present an explicit construction of f and Λ in this result.

Examples

Theorem 1 is applicable to

- $L^{p}(\mathbb{R}), p > 1.$
- Separable symmetric spaces (like Orlitz, Marzienkevich). The only exception is L¹(ℝ).
- Sobolev spaces $W^{l,p}(\mathbb{R}), p > 1$.
- Weighted spaces L¹(w; ℝ), where the weight is bounded and vanishes at infinity.

< 回 > < 回 > < 回 > <

Definition. $F \in S(R)$ is said to have a deep zero at point t if

$$|F(t+h)| < Ce^{-1/|h|}, \quad |h| < \frac{1}{2}.$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

Definition. $F \in S(R)$ is said to have a deep zero at point t if

$$|F(t+h)| < Ce^{-1/|h|}, \quad |h| < \frac{1}{2}.$$

GENERATOR: Take an even real function F with deep zeros at all integers (with the same constant) and at infinity, and which has no other zeros. Consider its Fourier transform $f := \hat{F}$.

TRANSLATES: Now define the translates as exponentially small perturbation of integers:

$$\Lambda:=\{n+e^{-|n|},n\in\mathbb{Z}\}.$$

Theorem 1'. The set of translates $\{f(t - \lambda), \lambda \in \Lambda\}$ is complete in every X satisfying (I) and (II).

Universality!

- 4 同 ト 4 三 ト - 4 三 ト - -

Main Lemma. Let F and Λ be as above, $g \in S'$. If the convolution $\hat{F} * g$ vanishes on Λ then it is zero.

э

< □ > < 同 > < 回 > < 回 > < 回 >

Main Lemma. Let F and Λ be as above, $g \in S'$. If the convolution $\hat{F} * g$ vanishes on Λ then it is zero.

Model Example. If F is as above and $\hat{F}|_{\Lambda} = 0$ then F = 0.

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Lemma. Let F and Λ be as above, $g \in S'$. If the convolution $\hat{F} * g$ vanishes on Λ then it is zero.

Model Example. If *F* is as above and $\hat{F}|_{\Lambda} = 0$ then F = 0. **Proof**. \hat{F} is analytic in a strip. Denote

$$H(t) := \sum_{k \in \mathbb{Z}} F(t+k).$$

By the Poisson formula,

$$H(t) = \sum_{n \in \mathbb{Z}} \hat{F}(n) e^{2\pi i n t}.$$

Since $\hat{F}(n)$ is exponentially small, then H is analytic on the circle. And it has a deep zero, so that H = 0. Hence, $\hat{F}|_{\mathbb{Z}} = 0$.

Iterate the argument above for tF, t^2F , ... to get $\hat{F}^{(k)}|_{\mathbb{Z}} = 0, k = 1, 2, ...,$ so that $\hat{F} = 0$.

Proof of Theorem 1'

Suppose the translates $\{f(t - \lambda), \lambda \in \Lambda\}$ are not complete in X. Then there is a functional g "orthogonal" to them, which means

$$g * f|_{\Lambda} = 0.$$

By the Main Lemma, g * f = 0. That is $\hat{g}F = 0$. So, $\hat{g} = 0$ on $\mathbb{R} \setminus \mathbb{Z}$. This means Spec $g \subset \mathbb{Z}$. Applying Property (II), we get g = 0.

Proof of Theorem 1'

Suppose the translates $\{f(t - \lambda), \lambda \in \Lambda\}$ are not complete in X. Then there is a functional g "orthogonal" to them, which means

$$g * f|_{\Lambda} = 0.$$

By the Main Lemma, g * f = 0. That is $\hat{g}F = 0$. So, $\hat{g} = 0$ on $\mathbb{R} \setminus \mathbb{Z}$. This means Spec $g \subset \mathbb{Z}$. Applying Property (II), we get g = 0.

Open Problem. Does there exist a set of translates of a single function, which is complete and minimal in $L^2(\mathbb{R})$?

く 何 ト く ヨ ト く ヨ ト

Theorem 2. There are $f_1, f_2 \in S(\mathbb{R})$ such that the Λ -translates of them span every space X, satisfying property (I) only.

This shows an advantage of collective work!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 2. There are $f_1, f_2 \in S(\mathbb{R})$ such that the Λ -translates of them span every space X, satisfying property (I) only.

This shows an advantage of collective work!

THANKS!

<日

<</p>