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Introduction

Given f ∈ L2(R), consider the set of the translates

{f (t − λ), λ ∈ R}.

WIENER: When the translates span the whole space L2(R)?

Theorem (Wiener). ... if and only if the Fourier transform f̂ is non-zero
almost everywhere on R.

Let f ∈ L1(R).

Theorem (Wiener). The set of translates {f (t − λ), λ ∈ R} spans the
whole space L1(R) if and only if f̂ has no zeros on R.
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Consider the zero set of f̂ :

Z (f̂ ) := {w : f̂ (w) = 0}.

Wiener expected that similar characterizations hold for the spaces Lp(R)
in terms of ”smallness” of Z (f̂ ).

Beurling (1951): The set of translates spans Lp(R) if
DIMH(Z (f̂ )) < 2(p − 1)/p.

Sharp, but not necessary.

Pollard, Herz, Newman, ...

Theorem (N.Lev, A.O., Annals 2011). For every p, 1 < p < 2, there are
two functions f1, f2 ∈ (L1 ∩ Lp)(R) such that

(i) Z (f̂1) = Z (f̂2);
(ii) The set of translates of f1 spans Lp(R), while the set of translates of f2
does not.
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Discrete Translates

Let Λ be a discrete subset of R. Given f ∈ L2(R), consider the set of its
Λ-translates

{f (t − λ), λ ∈ Λ}.

Definition. f is called a generator for Λ if its Λ-translates span the whole
space L2(R).

Two examples:
Λ1 := {

√
n, n ∈ Z+}, Λ2 := Z.

Λ1 admits a generator while Λ2 does not.

SIZE VERSUS ARITHMETICS!
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Generators

Does there exist a uniformly discrete set Λ which admits a generator?

It was conjectured that the answer is negative (1995).

We call Λ an almost integer set if

Λ := {n + γ(n), 0 < |γ(n)| = o(1)}.

Theorem ( A.0., 1997). For any almost integer set of translates there is a
generator.

The construction is based on ”small denominators” argument.
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Lp-generators

The case p > 2:

Theorem (A.Atzmon, A.O., Journal of Approximation Theory, 1996). For
every p > 2 there is a smooth function f ∈ (Lp ∩ L2)(R) such that the
family {f (t − n), n ∈ Z} is complete and minimal in Lp(R).

Hence, Λ = Z admits an Lp-generator for every p > 2 (and it does not for
p ≤ 2).
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L1-generators

No u.d. set Λ may admit an L1-generator.

Theorem (J.Bruna, A.O., A.Ulanovskii, Rev. Mat. Iberoam., 2006) Λ
admits an L1-generator iff it has infinite Beurling-Malliavin density.

For 1 < p < 2 the problem remained open.

Alexander Olevskii (The talk is based on joint work with Alexander Ulanovskii)Discrete Translates in Function Spaces 7 / 14



Discrete Translates in Function Spaces

Which function spaces can be spanned by a uniformly discrete set of
translates of a single function?

All results below are from A.O., A.Ulanovskii:

– Bull. London Math. Soc. (2018) and
– Analysis Mathematica (2018).

Let X be a Banach function space on R, satisfying the condition:

(I) The Schwartz space S(R) is embedded in X continuously and densely;

Then the elements of X ∗ are tempered distributions.

We also assume

(II) Conditions g ∈ X ∗ and spec g ⊂ Z imply g = 0.
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Discrete Translates in Function Spaces

Theorem 1. There exist a smooth function f and a uniformly discrete set
Λ of translates such that the family {f (t − λ), λ ∈ Λ} spans X .

Below we present an explicit construction of f and Λ in this result.
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Examples

Theorem 1 is applicable to

1 Lp(R), p > 1.

2 Separable symmetric spaces (like Orlitz, Marzienkevich). The only
exception is L1(R).

3 Sobolev spaces W l ,p(R), p > 1.

4 Weighted spaces L1(w ;R), where the weight is bounded and vanishes
at infinity.

Alexander Olevskii (The talk is based on joint work with Alexander Ulanovskii)Discrete Translates in Function Spaces 10 / 14



Construction

Definition. F ∈ S(R) is said to have a deep zero at point t if

|F (t + h)| < Ce−1/|h|, |h| < 1

2
.

GENERATOR: Take an even real function F with deep zeros at all integers
(with the same constant) and at infinity, and which has no other zeros.
Consider its Fourier transform f := F̂ .

TRANSLATES: Now define the translates as exponentially small
perturbation of integers:

Λ := {n + e−|n|, n ∈ Z}.

Theorem 1’. The set of translates {f (t − λ), λ ∈ Λ} is complete in every
X satisfying (I) and (II).

Universality!
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Construction
Main Lemma. Let F and Λ be as above, g ∈ S ′. If the convolution F̂ ∗ g
vanishes on Λ then it is zero.

Model Example. If F is as above and F̂ |Λ = 0 then F = 0.

Proof. F̂ is analytic in a strip. Denote

H(t) :=
∑
k∈Z

F (t + k).

By the Poisson formula,

H(t) =
∑
n∈Z

F̂ (n)e2πint .

Since F̂ (n) is exponentially small, then H is analytic on the circle. And it
has a deep zero, so that H = 0. Hence, F̂ |Z = 0.

Iterate the argument above for tF , t2F , ... to get F̂ (k)|Z = 0, k = 1, 2, ...,
so that F̂ = 0.
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Proof of Theorem 1’

Suppose the translates {f (t − λ), λ ∈ Λ} are not complete in X . Then
there is a functional g ”orthogonal” to them, which means

g ∗ f |Λ = 0.

By the Main Lemma, g ∗ f = 0. That is ĝF = 0. So, ĝ = 0 on R \ Z.
This means Spec g ⊂ Z. Applying Property (II), we get g = 0.

Open Problem. Does there exist a set of translates of a single function,
which is complete and minimal in L2(R)?
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Two generators

Theorem 2. There are f1, f2 ∈ S(R) such that the Λ-translates of them
span every space X , satisfying property (I) only.

This shows an advantage of collective work!

THANKS!
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