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Conditioning

Notions of conditioning for vectors (fi )i∈I in a Hilbert space H:

I Linearly independent.
Quantitative version: Riesz sequence

c
∑
i∈I
|ai |2 ≤ ‖

∑
i∈I

ai fi‖2 ≤ C
∑
i∈I
|ai |2 ∀a ∈ `2(I )

c = C ⇐⇒ equal norm and orthogonal

I Spanning.
Quantitative version: Frame

c‖x‖2 ≤
∑
i∈I
|〈fi , x〉|2 ≤ C‖x‖2 ∀x ∈ H

c = C ⇐⇒ tight

CRiesz = CFrame “how uniformly the energy of (fi )i∈I is spread”
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Meta-question

Various applications point to the same meta-question:

Given an ensemble of vectors,

what can you say about

the conditioning of subensembles?

This talk: Important instances, open problems
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Conditioning of subensembles

We will consider three types of instances (cf. combinatorics):

I Ramsey type.
Conditions for existence of a well-conditioned subensemble
(cf. Ramsey’s theorem)

I Symmetric type.
Subensembles of symmetric ensembles
(cf. clique number of Paley graph)

I Design type.
Explicit ensembles with all well-conditioned subensembles
(cf. explicit Ramsey graphs)
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Part I

Ramsey type

Conditions for existence of a well-conditioned subensemble
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A warm up

B = subsets (blocks) of V of size k such that
every point in V is contained in at most r blocks in B

Lemma. There exist disjoint D ⊆ B such that |D| ≥ |B|
(r − 1)k + 1

.

Proof: Iteratively select a block and discard intersecting blocks. �

I ( 1√
k
1B)B∈D is orthonormal (well conditioned)

I r small =⇒ D large

I ( 1√
k
1B)B∈B has upper Riesz bound r
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Restricted invertibility

More general phenomenon:

Well-spread unit vectors enjoy a Riesz subensemble.

Theorem

Given n unit vectors with upper Riesz bound C , there exists a
subensemble of ≥ ε2n/C vectors with lower Riesz bound (1− ε)2.

Proof gives O(n4) time algorithm to find subensemble

Numerical analysis: column subset selection problem

Historically, this served as a stepping stone to the next result

Bourgain, Tzafriri, Israel J. Math., 1987

Spielman, Srivastava, Israel J. Math., 2012
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Kadison–Singer

Question

Does every pure state on { bounded diagonal operators on `2 }
extend uniquely to a pure state on { bounded operators on `2 } ?

Equivalent:

I Paving conjecture

I Weaver’s conjecture

I Bourgain–Tzafriri conjecture

I Feichtinger conjecture

I Rε conjecture

Answer: Yes (!)

Kadison, Singer, Amer. J. Math., 1959

Casazza, Fickus, Tremain, Weber, Operator Theory, Operator Algebras, and Applications, 2006

Bownik, Contemp. Math., 2018
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Kadison–Singer

Unit norm tight frames partition into two frames.

KS2(η): ∃θ > 0, ∀ finite-dim H, ∀η-tight frame (fi )i∈I , ‖fi‖ ≤ 1,
∃ partition I1 t I2 = I such that

θ‖x‖2 ≤
∑
i∈Ij

|〈fi , x〉|2 ≤ (η − θ)‖x‖2 ∀x ∈ H, j ∈ {1, 2}

Theorem

I KS2(η) does not hold for η = 2.

I KS2(η) holds for η > 4.

Casazza, Fickus, M., Tremain, Oper. Matrices, 2011

Marcus, Spielman, Srivastava, Ann. Math., 2015

Bownik, Casazza, Marcus, Speegle, J. Reine Angew. Math., 2019
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Part II

Symmetric type

Subensembles of symmetric ensembles
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HRT

Conjecture

For every 0 6= f ∈ L2(R) and every finite Λ ⊆ R2, the ensemble
(e2πibx f (x − a))(a,b)∈Λ is linearly independent.

Solved instances (among several):

I Λ ⊆ lattice

I Λ = 4 points, 2 on each of 2 parallel lines

I f satisfies ecx log x |f (x)| → 0 as x →∞ for each c > 0

Open instances (among several):

I Λ ⊆ Z× R

I Λ = {(0, 0), (1, 0), (0, 1), (
√

2,
√

2)}
I functions with faster-than-exponential decay

Heil, Ramanathan, Topiwala, Proc. Am. Math. Soc., 1996

Demeter, Zaharescu, J. Math. Anal. Appl., 2012

Bownik, Speegle, Bull. Lond. Math. Soc., 2013
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Fuglede

Problem

Classify spectral sets, that is, domains Ω ⊆ Rd for which L2(Ω)
admits an orthogonal basis of exponentials.

I example: segment in R ←→ Fourier series

I conjecture: a set is spectral iff it tiles by translates

I for d ≥ 3, there exists a spectral set that does not tile

Fuglede, J. Func. Anal., 1974

Tao, Math. Res. Lett., 2004

Kolounzakis, Matolcsi, Collect. Math., 2006

Farkas, Matolcsi, Móra, J. Fourier Anal. Appl., 2006

Lev, Matolcsi, arXiv:1904.12262

Iosevich, Mayeli, Pakianathan, Anal. PDE, 2017
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Fuglede

A spectral set in R3 that does not tile:

1

0.75

0.50

0.25

0.5

0.250

0.75

1

0.25 0.5 00.75 1

+ {0, . . . , 210}3

Fuglede, J. Func. Anal., 1974

Tao, Math. Res. Lett., 2004

Kolounzakis, Matolcsi, Collect. Math., 2006

Farkas, Matolcsi, Móra, J. Fourier Anal. Appl., 2006

Lev, Matolcsi, arXiv:1904.12262

Iosevich, Mayeli, Pakianathan, Anal. PDE, 2017
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Uniform uncertainty principles

Dual problem:

size-|Ω| subensembles of (χ|Ω)χ∈Ĝ are linearly independent

Problem (non-quantitative version)

For every finite abelian group G , classify subsets Ω ⊆ G such that
every 0 6= f ∈ `2(G ) with ‖f̂ ‖0 ≤ |Ω| satisfies f |Ω 6= 0.

I Chebotarëv: For p prime, every Ω ⊆ Zp

I For q prime power, every Ω ⊆ Zq such that

|Ω ∩ (H + x)| ∈
{⌊

|Ω|
|Zq :H|

⌋
,
⌈
|Ω|
|Zq :H|

⌉}
∀H ≤ Zq, x ∈ Zq

I Otherwise, open (!)

Stevenhagen, Lenstra, Math. Intelligencer, 1996

Alexeev, Cahill, M., J. Fourier Anal. Appl., 2012
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Uniform uncertainty principles

Dual problem: (harder)

size-|Ω|/r subensembles of (χ|Ω)χ∈Ĝ are uniformly Riesz

Problem (quantitative version)

For every finite ab gp G , classify subsets Ω ⊆ G such that every
f ∈ `2(G ) with ‖f̂ ‖0 ≤ |Ω|/r satisfies c‖f ‖2 ≤ ‖f |Ω‖2 ≤ C‖f ‖2.

Application: Compressed sensing

Subproblem: Smallest r for which random Ω satisfies C < 2c whp

I r . log2 |Ω| · log |G |
I r & log |G |
I r & log |Ω| · log(|G |/|Ω|) if G = Zn

2

Haviv, Oded, Geometric Aspects of Functional Analysis, 2017

Bandeira, Lewis, M., J. Fourier Anal. Appl., 2018

B lasiok, Lopatto, Luh, Marcinek, Rao, arXiv:1903.12135
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Uniform uncertainty principles

Removing randomness is hard, even without the Fourier structure

Problem

Find an explicit k-restricted isometry (fi )i∈I , meaning all
size-k subensembles are uniformly (c ,C )-Riesz for some C < 2c

terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/

terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/
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Part III

Design type

Explicit ensembles with all well-conditioned subensembles
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Projective codes

Find n unit vectors in Cd that minimize C/c with k = 2

Problem

Find n points in CPd−1 that maximize the minimum distance.

I generalization of Tammes problem

I applications in communication

I doubly transitive lines

I equiangular tight frames

I n = d2: Zauner ↔ Stark conjectures

I online competition: Game of Sloanes

Strohmer, Heath, Appl. Comput. Harmon. Anal., 2003

Iverson, M., arXiv:1806.09037, arXiv:1905.06859

Fickus, M., arXiv:1504.00253

Kopp, arXiv:1807.05877

Jasper, King, M., arXiv:1907.07848
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www.math.colostate.edu/~king/GameofSloanes.html
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Explicit restricted isometries

Problem

What is the largest k = k(d) for which there exists an explicit
k-restricted isometry of (1 + Ω(1)) · d vectors in Cd?

I nonexplicit: k � d

I Gershgorin: k � d1/2 “square-root bottleneck”

I BDFKK: k � d1/2+ε with ε = 10−16

I conjectured cancellations in Legendre symbol ⇒ larger ε

King’s problem: Why do projective codes have small spark?

Can we close the remaining gap for most subensembles?

Bandeira, Fickus, M., Wong, J. Fourier Anal. Appl., 2013

Bourgain, Dilworth, Ford, Konyagin, Kutzarova, STOC 2011

Bandeira, M., Moreira, Int. Math. Res. Not., 2017

King, SPIE 2015
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Random subensembles

Problem

Given an equiangular tight frame in Cd , what is the largest k for
which 99% of the size-k subensembles are Riesz?

I Tropp: k � d/ log d

I HZG: data suggests k � d is possible

Experiment.

I fix p = 106 + 33, d = p+1
2

I (fi )i∈I = Paley ETF in Rd

I draw random subensemble of size 103

I record Riesz bounds

c C

0.9370 1.0630
0.9356 1.0643
0.9374 1.0624
0.9349 1.0652
0.9367 1.0627

Tropp, Appl. Comput. Harmon. Anal., 2008

Haikin, Zamir, Gavish, Proc. Natl. Acad. Sci. U.S.A., 2017
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Random subensembles

Full spectrum of Gram matrix of subensemble:

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

Haikin, Zamir, Gavish, Proc. Natl. Acad. Sci. U.S.A., 2017

Magsino, M., Parshall, arXiv:1905.04360
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Consequences for compressed sensing?

Phase transitions:
fixed signal

random sensor
∼ random signal

fixed sensor
(!)

Monajemi, Jafarpour, Gavish, Stat 330/CME 362, Donoho, Proc. Natl. Acad. Sci. U.S.A., 2013
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Open problems

I Kadison–Singer gap

I HRT

I Fuglede in R and R2

I non-quantitative uniform uncertainty principle

I quantitative uniform uncertainty principle

I Zauner’s conjecture

I Game of Sloanes

I explicit restricted isometries

I King’s problem

I HZG conjectures

I MJGD phase transition
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Happy birthday, John!
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Questions?

Google short fat matrices for my research blog.


