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Time and band limiting on R: The Bell Labs Theory

Fourier transform: f f f(t)e 2™t dt

Bandlimiting: Pqf(x) = (?Il[ Q/2, Q/2])\/( X)
Time limiting: (Q7f)(x) = 1j_7 77(x) f(x)

Spatio—spectral limiting



Bell Labs theory: basic questions

1. What are the eigenfunctions of PoQ17?
2. What is the distribution of eigenvalues of PqQT
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Eigenvalue distribution:

Approximately 2QT — O(log(22T)) eigenvalues close to one
Plunge region of width proportional to 2QT
Exponential decay of remaining eigenvalues
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Eigenfunctions: The lucky accident!

Pq Q1 commutes with

(PDO)  (4T% —t?) &< 20 9 g2
dt? dt '
Eigenfunctions: Prolate Spheroidal Wave Functions (PSWFs)

Methods to compute PSWFs based on PDO

1S Slepian, Some comments on Fourier analysis, uncertainty and modeling,
SIAM Review, 25, 379-393 1983
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Figure: ¢,, n=10,3,10, c=7TQ/2=5
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Finite dimensional analogue: cycle

Discrete setting Z <> T: Slepian, (1978) DPSS

Finite Zy setting: Griinbaum (1981), others

Results analogous to continuous setting

Zhu et al 2018: Non-asymptotic bound on plunge region?
Many other developments in time and band limiting since 2000

27. Zhu, S. Karnik, M. A. Davenport, J. Romberg, and M. B. Wakin, The
Eigenvalue Distribution of Discrete Periodic Time-Frequency Limiting
Operators, |IEEE Signal Process. Lett,, 25, 95-99, 2018.
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Hypercubes: N =5
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Graphs and Spatio—spectral limiting

Unnormalized Graph Laplacian and Fourier transform G = (V, )

FrV R LA(v) = ) f(v) - f(w)

L = D-A

D: degree of each vertex
A: adjacency map (undirected)
Graph Fourier transform ¢,: eigenvectors of L.

F(\e) = (F, @0)

Analogue of Q7: truncation to path neighborhood of a vertex
Analogues of Pq: truncation to span{py: \; small}
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Motivation for GFT (e.g, Sardellitti Barbarossa Di Lorenzo [2016]):
identify smooth clusters in vertex data that varies across clusters

Other time—frequency analysis on graphs: Shuman, Ricaud and
Vandergheynst [e.g., ACHA 2016], Stankovi¢, Dakovi¢ and Sedji¢
[[EEE SP Magazine, 2017]

Our thesis: particular graphs admit concrete analytical expressions
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Very particular graphs: Boolean hypercubes

By =7l

Bp: unweighted metric Cayley graph
v=vs=(€1,...,en), SCH{Ll,...,. N} ieSe¢e=1
L=D-A

D=Nly

Agrs = 1 if RAS is a singleton
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Figure: Adjacency matrix for N = 8 in dyadic lexicographic order.
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Bs following dyadic lexicographic order

Y, Hamming sphere of radius r: vertices with r one-bits

00110 l 00101 ~_~00011
01101 - 01011 00111

o1l
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Why hypercubes

Historical use: Sampling
Known Fourier transform
Non-Euclidean geometry

Our thesis: particular graphs admit concrete analytical expressions
Accessible generalizations and restrictions: generalized hypercubes,
partial cubes
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Spatio—spectral limiting: Tsitsvero, Barbarossa, Di Lorenzo [2016]:
relate properties of compositions QP and PQ on graphs to
(sub)-sampling strategies for recovery of sparse vertex functions.

Sampling of bandlimited vertex functions was developed in the
setting of hypercubes by Mansour et al in early 1990s in context of
learning (sparse) Boolean functions.
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Fourier transform on By: Hadamard matrix

Lemma (Boolean Fourier transform)

Let Hs(R) = (—1)IR"Sl and L = Lp,, as above. Then Hs is an
eigenvector of L with eigenvalue 2|5]|.
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Figure: Hadamard (Fourier) matrix for N = 8 in dyadic lexicographic
order.




Spatial and spectral limiting on By

1, R=S&|S|<K

Space-limiting matrix Q@ = Qk: Qrs =
0, else

Spectrum-limiting matrix P = Px by P = HQH
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Results and approach

Results: identify eigenvectors of spatio—spectral limiting PQP
Approach:

» Work in spectral domain: QPQ = HPQPH

Identify salient invariant subspaces of QPQ

>

» These subspaces factor

» Reduce to small matrix problem on one of the factors
>

Numerical computation via almost commuting operator and
power method with a weight
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Eigenspaces of spatio-spectral limiting on By

A: adjacency matrix of By (dyadic lexicographic order)
A=A +A_ A_ = AI; A: lower triangular

A, maps data on X, to data on X,,1: outer adjacency
A_ maps data on ¥, to data on X,_1: inner adjacency

N SN

|

Figure: Highlighted: A_, X3 — ¥
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C(,) = AL B(T) o W,
W;,: the orthogonal complement of A, ¢?(X, 1) inside £>(X,).

CE) =ALL)W, = =AW G AT WL G- O W,
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Projection Matrix onto W,: columns form a Parseval frame

10 15 20 25 30 35

Figure: Matrix of projection onto W,, N =8, r = 3.
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Theorem
Let V € W, and k such that r + k < N. Then

A_ALY = (N =2r)+ -+ (N = 2(r + k)] AS V
= (k+1)(N—2r—k)AkV
Ak v
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Base case (k =0, r = 2)




Commutators of A, and A_

C=[A_,A;]=A_A; — AL A_: commutator of A; and A_.

Proposition
C is diagonal with Crr = N — 2|R)|.

Theorem follows from induction on k
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Adjacency invariant subspaces

VeV if V=SN7aA W, Wew,

Lemma
Ay and A_ map V), to itself.

Corollary
A maps V, to itself. Polynomials p(A) preserve V,.
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Proposition
The spectrum-limiting operator P = Py can be expressed as a
polynomial p(A) of degree N.

Proof.
N . K
x—(N—-2j)
Pk:. H W P(X):Zpk
Jj=0,j#k k=0

Then P = p(A) as verified on Hadamard basis. O
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Py factors through V, ~ W, @ RN-"+1

Matrix of Spectral limiting Pk on V,

I\/I(N K,y Of size (N —r+1): represents Px on V,

N—r
PAKW) = My ko, OALW, (W eW,)
(=0
N—r N—r
PV = Z A AW =N Mly k(K DcALW (W e W)
=0 k=0 ¢=0
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Matrix of QPQ on ),

M(C,?VPS 5’ (K — r + 1)-principal minor of M(ljv,K,r)'
K—r K—r
QPQV = Z AW =N My i (kO AW, (W e W)
k=0 k=0 ¢=0
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Corollary (Coefficient eigenvectors of QPQ)
If c = [co,...ck_,]T is a \-eigenvector of the principal minor

M3 k.r) Of size (K = r+1) of the matrix M{y, ., then

V = _Z/’f;or ckAf‘|r W, any W € W,, is a A-eigenvector of QPQ
and HV is a A-eigenvector of PQP.

Remark (Completeness)
Any eigenvector of QPQ is attached to one of the spaces V),
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M(Fl)\/,K,r) = p(MA)

AL as right shift on 2nd component of V, ~ W, x RN+1-r:
Ar (ot aAr+ .. )W (AL + aAl +...)W
A_ as multiplicate left shift on V,:
0 m(r, 0) 0 0
0 0 m(r, 1) 0 ]
0 (’)‘ m(,,KJ:r1—r)
Matrix of M/,

Matrices Ma,, Ma_ on RN-"+1:
(N,k,r) Of P by substituting Ma for Ain P = p(A)

0 [ . 0 0

1 0 0 0

M _ 0 1 0 0
A =

+

Ma_ =

0

0 1 0

Ma = Ma, +Mga
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Figure: Matrices Mgy and MP | N =9, K =4, r = 1. (log scale)

Problem: large numbers
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Inner product on V,

(AKWh, AAWh) = w(r k) (Wi, Wa)

k—1
w(r,k) = Hm(r.j)
j=0

N—

—r N—r
O aA WA, T dAS Wh) = (Wh, Wh) Z crdw(r, k)
— = k=

<C7 d>Wr

Proposition
Coefficient eigenvectors of M(
[w(r,0),...,w(r,K+1—r)]
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Boolean analogue of prolate differential operator

(BDO)  D(al — T?)D + T2,
T: diagonal, sqrts of eigenvalues of L
D=HTH, A=2"N2H
D? = L.
Proposition

If 8 =2y/K(K + 1) then BDO commutes with Px. Equivalently,
the conjugation of BDO by H commutes with Q.

BUT BDO does not commute with Qk
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Matrix of HBDO on V,

el —-1)—=p)m(r,t —1—r); k=L—-1>r

20 — )+5/v k=10>r

2+ 1)—Bik=0+1r<l<N

0, else.

MHBDO(/{, E) —

If a =0 =2/K(K—-1):
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Figure: Matrix MHBDO "N —9 K =4
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Theorem (V, is HBDO-invariant)
IFV eV, V=320 A W, then HBDOV = S V7 di Ak W
where d = MHTBPO¢ where ¢ = [cp, ..., cn_/] .

» Entries of MQPQ can exceed maxint for moderate sized N
» MHBDO s tridiagonal and eigendecomposition is fine
» HBDO and QPQ almost commute

> Eigenvectors of HBDO as seeds for weighted power method
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Figure: Eigenvectors of PQP, N =8, K =3, r = 2.

Dotted curves: two different elements W of W,

Dashed curves: corresponding eigenvectors V of QPQ

Solid curves: Eigenvector HV of PQP for eigenvector V of QPQ
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Algorithm 1 Adapted power method eigen-decomposition of QPQ
1 Inputs: N, K €{0,...,N}, re{0,...,K}

2: Compute coefficient matrix MH\IBE% of 2”"NHBDOH on V,

3: Compute eigenvectors ¢ of /\/I(If\,]?}]?%

4: Sort eigenvectors c* = [c&, ..., ck_ ] CfQH =...=cf =0
5: Sub My for A: Compute M(C;VP?;(?,,): principal minor of I\/I('E,)V,K’r)
6: for k=0to K —r do

7 while stopping criteria = False do

8: Apply Mﬁf:,%r) factor-wise to d*

0: Project output onto (span{d®,...,d*"1})+ wrt (-, -),,
10: Update d* = normalized projection (wrt || - ||w)

11: end while

12: end for

13: Return: approximate coefficient eigenvectors d°, ...,d*~" of

M@PQ  the matrix of QPQ acting on V.
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Figure: Eigenvalues of PQP with multiplicity (60460), N = 20, K = 6.
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HAPPY BIRTHDAY JOHNNY!!

https://www.youtube.com/channel/
UCKChX5APWWHOLwu4CVestDA/featured?disable_polymer=1
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