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“Don’t judge each day by the harvest you reap
but by the seeds that you plant”
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What is fractal geometry?

Geometry dealing with irregular sets

How can one quantify this irregularity?



Classification of fractals sets

Box dimension
Let N(ε) be the minimal number of balls of radius ε needed to cover
the set A

N(ε) ∼ ε−dimB(A)

Advantage :
Numerically computable through log-log plot regressions : log(N(ε))
is plotted as a function of log(ε)

The slope yields the dimension

Triadic Cantor set Van Koch curve

dimB =
log 2
log 3

dimB =
log 4
log 3



Everywhere irregular functions

The existence of everywhere irregular
functions was doubted by mathematicians untill
Weierstrass proposed his example in 1872
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Fonction de Weierstrass : Espace x frequence = 1000x20

WH(x) =
+∞∑
j=0

2−Hj cos(2jx)

0 < H < 1H = 1/2

C. Hermite : I turn my back with fright and horror to this appalling
wound : Functions that have no derivative

H. Poincaré called such functions “monsters”



Everywhere irregular functions
Jean Perrin, in his book, “Les atomes” (1913), stated that irregular
(nowhere differentiable) functions, far from being exceptional, are
common in natural phenomena

Jet turbulence Eulerian velocity signal (ChavarriaBaudetCiliberto95)
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Multifractal analysis studies classification parameters for data
(functions, measures, signals, images) based on regularity
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Orthonormal wavelet bases

An orthonormal wavelet basis on Rd

is generated by 2d − 1 smooth,

well localized, oscillating

functions ψi such that the

2dj/2ψi (2jx − k),

i = 1, · · · 2d − 1, j , k ∈ Zd

form an orthonormal basis of L2(Rd )

Credit to : http ://www.kfs.oeaw.ac.at/content/blogcategory/0/502/lang,8859-1/



Why use wavelet bases?

• Fast algorithms

• Sparse representations

• Characterization of regularity
(global and pointwise)

∫
ψ(x)dx =

∫
xψ(x)dx = · · · =

∫
xNψ(x)dx = 0

=⇒ Wavelet analysis is blind to superimposed polynomial and
(more generally) smooth trends

Wavelets translate hard problems on functions on (more)
simple problems on sequences
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Wavelet structure functions

Notations :

Dyadic cubes : λ =

[
k1

2j ,
k1 + 1

2j

)
× · · · ×

[
kd

2j ,
kd + 1

2j

)

Wavelet coefficients : cλ = 2dj
∫
Rd

∫
f (x , y) ψi

(
2jx − k

)
dx

Dyadic cubes at scale j : Λj = {λ : |λ| = 2−j}

Wavelet structure functions :

∀p > 0, Sf (p, j) = 2−dj
∑
λ∈Λj

|cλ|p

Wavelet scaling function :

∀p > 0, Sf (p, j) ∼ 2−ζf (p)j when j → +∞
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Wavelet scaling function

=⇒ ζf (p) = p · sup{s : f ∈ Lp,s} = p · sup{s : f ∈ Bs,∞
p }

Advantages of using the wavelet scaling function
for classification :

I Effectively computable on experimental data through log-log plot
regressions with respect to the scale parameter

I Independent of the (smooth enough) wavelet basis

I Invariant under the addition of polynomials or (smooth enough)
trends

I “deformation invariant” (i.e. under a smooth change of
coordinates)

I deterministic for large classes of stochastic processes
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Limitations of wavelet structure functions

Classification only based on structure functions proved insufficient in
several occurrences (turbulence, ... )

This motivated new developments based on seminal ideas introduced
by Uriel Frisch and Georgio Parisi, and led to the construction of new
structure functions

Giorgio Parisi Uriel Frisch



Pointwise regularity
A function f is continuous at x0 if, in a neighborhood of x0,

f (x) = f (x0) + o(1)

f is differentiable at x0 if there exists an affine function, i.e. a
polynomial P(x − x0) of degree at most 1, such that in a
neighborhood of x0

f (x) = P(x − x0) + o(|x − x0|)

Extension to non-integer orders of derivation :
Let f be a locally bounded function Rd → R and x0 ∈ Rd ; f ∈ Cα(x0)
if there exist C > 0 and a polynomial P of degree less than α such
that

f (x) = P(x − x0) + O(|x − x0|α)

The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}
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Functions with constant Hölder exponents

Fractional Brownian motions with Hölder exponents 0.3, 0.4, 0.5, 0.6 and 0.7



Functions with varying Hölder exponent

hf (x) = x

Constructions obtained by K. Daoudy, J. Lévy-Véhel and Y. Meyer



Wavelet leaders
Idea : In the scaling function, replace increments by quantities which
encapsulate information on pointwise regularity

Let λ be a dyadic cube ; 3λ is the cube of same center and three
times wider

Let f be a locally bounded function ; the wavelet leaders of f are the
quantities

dλ = sup
λ′⊂3λ

|cλ′ |

dλ = supλ’∈  3 λ |cλ|

λ’∈  3 λ

c(j, k)

2j+2

2j+1

2j

...

...
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Computation of 2D wavelet leaders

Wavelet leaders allow to estimate pointwise Hölder exponents : Let
λj (x0) denote the dyadic cube of width 2−j which contains x0

dλj (x0) = sup
λ′⊂3λj (x0)

|cλ′ |

Theorem : If Hmin > 0, then ∀x0 ∈ Rd : hf (x0) = lim inf
j→+∞

log(dλj (x0))

log(2−j )



Computation of 2D wavelet leaders

Wavelet leaders allow to estimate pointwise Hölder exponents : Let
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Difficulty to use directly the pointwise regularity
exponent for classification

For classical models, such
exponents are extremely erratic

Lévy processes

multiplicative
cascades

The function h
is random
and everywhere
discontinuous

=⇒ Impossible to estimate numerically

Goal : Recover some information on h(x) from averaged quantities
which would be :
I numerically computable by log-log plot regressions
I deterministic (independent of the sample path)
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Back to scaling functions
“Improve” the scaling function by using quantities
that incorporate pointwise regularity information

Λj denotes the set of dyadic cubes of width 2−j

Wavelet scaling function Leader scaling function

2−dj
∑
λ∈Λj

|cλ|p ∼ 2−ζf (p)j 2−dj
∑
λ∈Λj

|dλ|p ∼ 2−ηf (p)j

Advantages :

I Same as the wavelet scaling function +
I ηf (p) is also defined for p < 0
I ηf (p) encapsulates information on the inter-scales correlations

of wavelet coefficients
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Heuristic derivation of the multifractal formalism
Ef (H) is the set of points where hf (x) = H
Df (H) denotes its Hausdorff dimension (i.e. the multifractal spectrum)
Λj denotes the set of dyadic cubes of width 2−j

Leader structure function : Tf (p, j) = 2−dj
∑
λ∈Λj

|dλ|p ∼ 2−ηf (p)j

Estimation of the contribution to Tf (p, j) of the cubes of length 2−j

containing a point where the Hölder exponent takes the value H :
On such a cube |dλ| ∼ 2−Hj and there are ∼ 2Df (H)j such cubes
Thus the contribution is

∼ 2−dj · (2−Hj )p ·
(

2−j
)Df (H)

= (2−j )d+Hp−Df (H)

In the limit j → +∞, the main contribution comes from the smallest
exponent, so that : ηf (p) = inf

H
(d + Hp −Df (H))

Thus ηf is expected to be the Legendre transform of Df
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The Leader Legendre Spectrum

If Df is concave, it should be recovered from ηf through an inverse
Legendre transform

Df (H) = inf
p∈R

(d + Hp − ηf (p))

The Leader Legendre Spectrum is

Lf (H) = inf
p∈R

(d + Hp − ηf (p))

Theorem : If f ∈ Cε(Rd ) for an ε > 0 then

∀H ∈ R, Df (H) ≤ Lf (H)

When Df (H) = Lf (H) the multifractal formalism is satisfied

There are two kinds of validity theorems :
I Generic results (Baire and prevalence)
I Particular models
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Model refutation : Fully developed turbulence
(joint work with Bruno Lashermes)

Jet turbulence Eulerian velocity signal (ChavarriaBaudetCiliberto95)

Log-normal vs. Log-Poisson model
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Cascade models : Binomial cascade

Courtesy of Jean-François Colonna, LACTAMME

Construction of a measure µ on the interval [0,1] : A quantity of total
mass 1 of sand is poured at the top

At each node,

1/4 of the remaining sand falls on the left and 3/4 on the right

µ(I) = quantity of sand falling inside I
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Cascade models : Binomial cascade

Quantity of sand
falling inside
intervals of
length 2−n :


far left : µ(I) =

( 1
4

)n
= |I|2

far right : µ(I) =
( 3

4

)n
= |I|log(4/3)/ log 2

average : µ(I) =
( 1

4

)n/2 ( 3
4

)n/2
= |I|log(4/

√
3)/ log 2

Exponents fluctuate from point to point



Cascade models : Binomial cascade

Quantity of sand
falling inside
intervals of
length 2−n :


far left : µ(I) =

( 1
4

)n
= |I|2

far right : µ(I) =
( 3

4

)n
= |I|log(4/3)/ log 2

average : µ(I) =
( 1

4

)n/2 ( 3
4

)n/2
= |I|log(4/

√
3)/ log 2

Exponents fluctuate from point to point



Cascade models : Binomial cascade

Repartition function
of the measure µ :

f (x) := µ([0, x ]) f(x)
= amount of sand
falling in [0, x ]

f (x + δ)− f (x) = µ([x , x + δ]) ∼ δh(x)

hf (x) ∈
[

log(4/3)
log 2 , 2

]
f is a multifractal function

Df (H)

log(4/3)

log 2
2

Rule of thumb :
The multifractal formalism holds for “homogeneous data”
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Why multivariate analysis?

MEG recordings

A collection of signals are recorded simultaneously
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Multivariate analysis

Regularity exponents h1(x), · · · ,hm(x) are associated with each
signal yi (t)

Each exponent is associated with a multiresolution quantity d i
λ

through the formula

pour i = 1,2, ∀x0 ∈ Rd hi (x0) = lim inf
j→+∞

log
(

d i
λj (x0)

)
log(2−j )

Let E(H1,H2) = E(H1) ∩ E(H2)

E(H1,H2) is the set of points where h1(x) = H1 and h2(x) = H2

The joint multifractal spectrum is (for m = 2)

D(H1,H2) = dim (E(H1,H2))



The multivariate multifractal formalism

The multivariate structure function is

Tf (p,q, j) = 2−dj
∑
λ∈Λj

(
d1
λ

)p (
d2
λ

)q

The multivariate scaling function is

∀p,q ∈ R, η(p,q) = lim inf
j→+∞

log(Tf (p,q, j))

log(2−j )

The multivariate Legendre spectrum is

L(H1,H2) = inf
(p,q)∈R2

(d + H1p + H2q − η(p,q))

The multivariate multifractal formalism holds if

D(H1,H2) = L(H1,H2)
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Heuristic derivation of the multifractal formalism
E(H1,H2) is the set of points where h1(x) = H1 and h2(x) = H2

D(H1,H2) is the Hausdorff dimension of E(H1,H2)

Structure functions :
Tf (p,q, j) = 2−dj

∑
λ∈Λj

(
d1
λ

)p (
d2
λ

)q

We estimate the contribution to Tf (p,q, j) of dyadic cubes of width 2−j

which contain a point where h1(x) = H1 and h2(x) = H2 :
For such a cube |d1

λ| ∼ 2−H1 j , and |d2
λ| ∼ 2−H2 j

There are ∼ 2D(H1,H2)j cubes of this type. So this contribution is

∼ 2−dj · (2−H1 j )p(2−H2 j )q · 2D(H1,H2)j = (2−j )d+H1p+H2q−D(H1,H2)

When j → +∞, the main contribution is given by the smallest
exponent, so that

η(p,q) = inf
H

(d + H1p + H2q −D(H1,H2))

The bivariate multifractal spectrum is recovered by an inverse
Legendre transform

D(H1,H2) = inf
p,q

(d + H1p + H2q − η(p,q))
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Inspecting the formula
An extreme case : f1(x) = f2(x) and h1(x) = h2(x)

Both spectra are carried by the diagonal

D(H1,H2) = D(H1) if H1 = H2
= −∞ else

L(H1,H2) = L(H1) if H1 = H2
= −∞ else

Red : Theoretical
multifractal spectrum

Blue : Estimated
Legendre spectrum

Multivariate multifractal analysis of a binomial cascade with itself



Independent processes
Assumption : Wavelet leaders are stationary with short range
correlations only

Tf (p,q, j) = 2−dj
∑
λ∈Λj

(
d1
λ

)p (
d2
λ

)q ∼ E
((

d1
λ

)p (
d2
λ

)q
)

If the signals are independent, then

Tf (p,q, j) = E
((

d1
λ

)p
)
E
((

d2
λ

)q
)

Tf (p,q, j) = Tf (p, j)Tf (q, j) and η(p,q) = η(p) + η(q)

L(H1,H2) = L(H1) + L(H1)− d

This is similar to the codimension formula for intersections

dimH(A ∩ B) = dimH(A) + dimH(B)− d

codimensions add up

Generically true for fractal sets (P. Mattila et al.) under “reasonable”
assumptions

This is usually not true for the sets E(H1,H2) = E(H1) ∩ E(H2)
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Binomial cascades of parameters p and q

p and q on the
same side
of 1/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Theoretical Legendre spectrum vs. its estimation on a sample path



Binomial cascades of parameters p and q

p and q are
on opposite sides
of 1/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Theoretical Legendre spectrum vs. its estimation on a sample path



Independent lacunary wavelet series

Sample paths of
two independent
lacunary wavelet series

theoretical multifractal spectra computation on a sample path
D(H) in blue theoretical D(H) recalled in blue
L(H) in red L(H) in red



Why is the multivariate multifractal formalism so
wrong?

Multifractal spectra of many models and processes do not follow the
codimension formula

D(H1,H2) =

 D(H1) +D(H2)− d if D(H1) +D(H2)− d ≥ 0

−∞ else

but instead the large intersection formula

D(H1,H2) = min(D(H1),D(H2))

Whereas, the Legendre spectrum of independent processes follows
the codimension formula

Generic results of validity of the multivariate multifractal formalism
have been proved in products of function spaces (Mourad Ben
Slimane et al.)
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Intuitions and questions

I Univariate miracle : The leader structure functions
Tp,j = 2−dj

∑
λ∈Λj

|dλ|p ∼ 2−ηf (p)j simultaneously have a function

space and a probabilistic interpretation, whereas the multivariate
structure functions Sp,q,j = 2−dj

∑
λ∈Λj

(
d1
λ

)p (
d2
λ

)q
have no

function space interpretation and have a probabilistic
interpretation only in the independent case

I Are there “natural” function spaces which “encode” some
correlation between wavelet leaders?

I The multivariate structure functions do not take into account
cross-scale correlations between wavelet leaders

I Which information does the multivariate structure functions
yield?

I Work out more examples to get some intuition !
I What is John staring at?
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Thank you
for your attention !


