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Party like it’s 1999...



A Research Problem

In the fall of 2000, inspired by a talk by Ed Saff at a conference
in Bommerholz and a follow-up question by Hans Feichtinger,
John asked me the following question (paraphrased):

How is the problem of equally-distributing points on a
sphere related to finite unit norm tight frames?

This talk is the 2019 progress update.
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Optimal Packings
on

Spheres



Spherical equidistribution: Thomson vs. Tammes
Over all sets of N unit vectors {xn}Nn=1 in RD , we can try to:

I minimize
N∑

n=1

N∑
n′=1
n′ 6=n

1

‖xn − xn′‖
(Thomson, 1904)

I maximize min
n 6=n′
‖xn − xn′‖ (Tammes, 1930)

For example, when N = 5, D = 3:
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Solving Tammes in the Simplest Case

Theorem: [Rankin 55] When N ≤ D + 1, every solution to
Tammes problem is a N-vector regular simplex.

Proof: For any unit vectors {xn}Nn=1 in RD ,

‖xn − xn′‖2 = 2(1− 〈xn, xn′〉).

Thus, argmax
{xn}

min
n 6=n′
‖xn − xn′‖ = argmin

{xn}
max
n 6=n′
〈xn, xn′〉. Also,

0 ≤
∥∥∥∥ N∑
n=1

xn

∥∥∥∥2

=
N∑

n=1

N∑
n′=1

〈xn, xn′〉 ≤ N+N(N−1) max
n 6=n′
〈xn, xn′〉.

Equality only holds ⇔
∑N

n=1 xn = 0 and 〈xn, xn′〉 is constant
over all n 6= n′.
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Solving Tammes in the Next Simplest Case

Theorem: [Rankin 55] max
n 6=n′
〈xn, xn′〉 ≥ 0 when N ≥ D + 2.

Moreover, for N ≤ 2D, this bound can be achieved.

Example: D = 3, N = 2, 3, 4, 5, 6:

4/21



Finite Unit-Norm
Tight Frames



Notation
Let F be either R or C. We usually regard N vectors {ϕn}Nn=1

in FD as the columns of a D × N matrix

Φ =
[
ϕ1 . . . ϕN

]
.

Multiplying Φ by its N × D conjugate-transpose Φ∗ gives its

I N × N Gram matrix Φ∗Φ =

 〈ϕ1,ϕ1〉 · · · 〈ϕ1,ϕN〉
...

. . .
...

〈ϕN ,ϕ1〉 · · · 〈ϕN ,ϕN〉


I D × D frame operator ΦΦ∗ =

N∑
n=1

ϕnϕ
∗
n

In this talk, every ϕn is unit-norm, meaning the diagonal of
Φ∗Φ is all ones and ΦΦ∗ is a sum of rank-one projections.
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Orthonormal Bases (ONBs)

Fact: If {ϕn}Nn=1 is an ONB for FN then Φ is square and
satisfies Φ∗Φ = I. Thus, Φ∗ = Φ−1 and so we also have

ΦΦ∗ = I, i.e., x = ΦΦ∗x =
N∑

n=1

〈ϕn, x〉ϕn, ∀x ∈ FN .

Example: Φ = 1√
7



1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5

1 ω3 ω6 ω2 ω5 ω1 ω4

1 ω4 ω ω5 ω2 ω6 ω3

1 ω5 ω3 ω ω6 ω4 ω2

1 ω6 ω5 ω4 ω3 ω2 ω


, ω = exp(2πi

7
).

6/21



Finite Unit-Norm Tight Frames (FUNTFs)

Definition: Unit vectors {ϕn}Nn=1 in FD form a FUNTF for
FD if there exists C > 0 such that

ΦΦ∗ = C I, i.e., Cx = ΦΦ∗x =
N∑

n=1

〈ϕn, x〉ϕn, ∀x ∈ FN .

Here, C = N
D

since CD = Tr(ΦΦ∗) = Tr(Φ∗Φ) = N .

Example: Scaling the any three rows of the previous matrix
gives a complex FUNTF(3, 7). For example, for rows {1, 2, 4},

Φ =
1√
3

 1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5

1 ω4 ω ω5 ω2 ω6 ω3

 , ω = exp(2πi
7

).
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Some real FUNTFs for R3 with N = 3, 4, 5, 6
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Relating FUNTFs
to the

Tammes Problem



A Big Idea from Conway, Hardin, Sloane 96

A unit vector ϕ lifts to a rank-one projection ϕϕ∗. The set

{ϕϕ∗ : ϕ ∈ FD , ‖ϕ‖ = 1}

is a projective space and lies in the real space of all D × D
self-adjoint operators, which is a Hilbert space under the
Frobenius inner product 〈A,B〉Fro := Tr(A∗B).

Moreover, for unit vectors {ϕn}Nn=1 and any n, n′,

〈ϕnϕ
∗
n,ϕn′ϕ

∗
n′〉Fro = Tr(ϕnϕ

∗
nϕn′ϕ

∗
n′) = |〈ϕn,ϕn′〉|2,

and so the squared-distance between two such projections is:

‖ϕnϕ
∗
n −ϕn′ϕ

∗
n′‖2

Fro = Tr[(ϕnϕ
∗
n−ϕn′ϕ

∗
n′)

2] = 2(1−|〈ϕn,ϕn′〉|2).
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Applying a Trivial Bound in Projective Space

Theorem: [Rankin 56] For any unit vectors {ϕn}Nn=1 in FD ,

N2

D
≤

N∑
n=1

N∑
n′=1

|〈ϕn,ϕn′〉|2

where equality holds if and only if {ϕn}Nn=1 is a FUNTF for FD .

Proof:

0 ≤
∥∥∥∥ N∑
n=1

(ϕnϕ
∗
n − 1

D
I)

∥∥∥∥2

Fro

= Tr[(ΦΦ∗ − N
D

I)2]

=
N∑

n=1

N∑
n′=1

|〈ϕn,ϕn′〉|2 − N2

D
.
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FUNTF Characterization and Construction

Theorem: [Benedetto, F 03] When N ≥ D, every local
minimizer of the frame potential

N∑
n=1

N∑
n′=1

|〈ϕn,ϕn′〉|2

is a FUNTF (and so is necessarily a global minimizer).

Theorem: [Cahill, F, Mixon, Poteet, Strawn 13] Every
FUNTF can be explicitly constructed from eigensteps.
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Born Again



Equiangular Tight Frames (ETFs)

Theorem: [Strohmer, Heath 03]

Any unit vectors {ϕn}Nn=1 in FD satisfy the Welch bound:

max
n 6=n′
|〈ϕn,ϕn′〉| ≥

√
N−D

D(N−1)
,

and achieve equality ⇔ {ϕn}Nn=1 is an ETF for FD , namely a
FUNTF where |〈ϕn,ϕn′〉| is constant over all n 6= n′.

Proof: Apply Rankin’s simplex bound to {ϕnϕ
∗
n − 1

D
I}Nn=1:

N2

D
≤

N∑
n=1

N∑
n′=1

|〈ϕn,ϕn′〉|2 ≤ N + N(N − 1) max
n 6=n′
|〈ϕn,ϕn′〉|2.

See also: Rankin 56; Welch 74; Conway, Hardin, Sloane 96].
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Example: A 6-vector ETF for R3

ΦΦ∗ =

 2 0 0
0 2 0
0 0 2

 , Φ∗Φ = I +
1√
5


0 1 1 1 1 1
1 0 1 −1 −1 1
1 1 0 1 −1 −1
1 −1 1 0 1 −1
1 −1 −1 1 0 1
1 1 −1 −1 1 0


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Some Remarks on the (Rankin-)Welch Bound

I Following [Rankin 55], Rankin studied packing antipodal
pairs of points of spheres and discovered the Welch
bound about two decades before Welch [Rankin 56].

I The Welch bound is equivalent to

max
n 6=n′
‖ϕnϕ

∗
n −ϕn′ϕ

∗
n′‖2

Fro ≤
2N(D−1)
D(N−1)

. (1)

In particular, if an ETF(D,N) exists, then every optimal
packing of N lines in FD is necessarily tight.

I [Conway, Hardin, Sloane 96] calls (1) the simplex bound
since it’s achieved ⇔ {ϕnϕ

∗
n − 1

D
I}Nn=1 is a simplex.

They also consider subspaces of dimension > 1.
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More Remarks on the (Rankin-)Welch Bound

I (Gerzon) If {ϕnϕ
∗
n − 1

D
I}Nn=1 is a simplex, then

N ≤ D(D+1)
2

when F = R, N ≤ D2 when F = C.

I For larger N , applying Rankin’s other bound
to{ϕnϕ

∗
n − 1

D
I}Nn=1 gives the orthoplex bound:

max
n 6=n′
|〈ϕn,ϕn′〉| ≥ 1√

D
.

I An ETF with N = D2 is a SIC-POVM. Zauner has
conjectured that these exist for all D [Zauner 99].

I ETFs arise in algebraic coding theory [Grey 62], quantum
information theory [Zauner 99], wireless communication
[Strohmer, Heath 03], and compressed sensing.
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Equiangular Tight Frames



Harmonic ETFs: Difference Sets

Definition: Extracting rows from the character table of a
finite abelian group G yields a harmonic frame.

Example: G = Z7, D = {1, 2, 4},

Φ =
1√
3

 1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5

1 ω4 ω ω5 ω2 ω6 ω3

 , ω = exp(2πi
3

).

Theorem: [Turyn 65] The harmonic ETF arising from D ⊆ G
is an ETF for CD ⇔ D is a difference set for G.

Idea:

ϕnϕ
∗
n =

1

3

 ωn

ω2n

ω4n

 [ω−n ω−2n ω−4n
]

=
1

3

 1 ω6n ω4n

ωn 1 ω5n

ω3n ω2n 1

 .
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Steiner ETFs
Theorem: [Goethals, Seidel 70] Every balanced incomplete
block design (BIBD) with Λ = 1 yields an ETF.

Example: Combine


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

 and

+ − + −
+ + − −
+ − − +

 to form

Φ =
1√
3


+ − + − + − + − 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 + − + − + − + −
+ + − − 0 0 0 0 + + − − 0 0 0 0
0 0 0 0 + + − − 0 0 0 0 + + − −
+ − − + 0 0 0 0 0 0 0 0 + − − +
0 0 0 0 + − − + + − − + 0 0 0 0

 .
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Some Recent Progress on ETFs
[Jasper, Mixon, F 14] Every McFarland harmonic ETF is a
rotated Steiner ETF. New infinite family of optimal codes.

[F, Mixon, Jasper 16] New infinite family of complex ETFs
arising from finite projective planes containing hyperovals.

[F, Jasper, Mixon, Peterson 18]: Tremain’s construction of an
ETF(15, 36) generalizes. New infinite family of real ETFs.
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Some More Recent Progress on ETFs
[F, Jasper, King, Mixon 18] Some ETFs can be represented in
terms of the regular simplices they contain.

[F, Jasper 19] Generalizing Davis-Jedwab difference sets gives
new infinite families of ETFs from group divisible designs.
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Some Future Directions

Fundamental mysteries: Lifting, spectral estimation.

Some mature open problems:

I Zauner’s conjecture.

I Optimal projective packings when no ETF/OGF exists.

I Integrality conditions on the existence of complex ETFs.

I Breaking the square-root bottleneck for deterministic RIP.

Not-so-high hanging fruit:

I New constructions of ETFs, OGFs, ECTFFs, EITFFs.

I New connections to combinatorial designs.
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Thank you, John! Happy Birthday!


