Dual Geometry of Laplacian Eigenfunctions and Graph Spatial-Spectral Analysis

Alex Cloninger

Department of Mathematics and Halicioğlu Data Science Institute University of California, San Diego

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQで

Collaborators

• Dual Geometry:

Stefan Steinerberger (Yale)

• Graph Wavelets:

Naoki Saito (UC Davis)

Haotian Li (UC Davis)

Introduction and Importance of Eigenfunctions of Laplacian

- Local Correlations and Dual Geometry
- Graph Spatial-Spectral Analysis
- 4 Natural Wavelet Applications

Geometric Data Representation

- In many data problems, important to create dictionaries that induce sparsity
 - Function regression / denoising
 - Combining nearby sensor time series to filter out sensor dependent information
- Consider problem of building dictionary on graph G = (V, E, K)
 - Similarly induced graph from point cloud and kernel similarity
- Many graph representations built in similar way to classical Fourier / wavelet literature
 - Laplacian Eigenmaps
 - Global wave-like ONB with increasing frequency
 - Belkin, Niyogi 2005
 - Spectral wavelets
 - Localized frame built from filtering LE
 - Hammond, Gribonval, Vanderghyst 2009

Topic of This Talk

- "Fourier transform on graphs" story, while tempting, is more complicated than previously understood
- Relationship between eigenvectors isn't strictly monotonic in eigenvalue

Topic of This Talk

- "Fourier transform on graphs" story, while tempting, is more complicated than previously understood
- Relationship between eigenvectors isn't strictly monotonic in eigenvalue

Real Topic of This Talk

 Prove to JJB I paid attention in all the "applied harmonic analysis" classes I took here.

Kernels as Networks

- Collection of which points similar to which forms a local network graph G = (X, E, W)
- Graph Laplacian $\mathcal{L} := \mathcal{I} D^{-1/2} W D^{-1/2}$, for $D_{xx} = \sum_{y} W_{x,y}$
- Winds up only need a few eigenfunctions to describe global characteristics

$$\mathcal{L}\phi_{\ell} = \lambda_{\ell}\phi_{\ell}, \qquad \qquad \mathbf{0} = \lambda_{\mathbf{0}} \leq \lambda_{\mathbf{1}} \leq \dots \leq \lambda_{N-1}$$

- Diffusion Maps, Laplacian Eigenmaps, kPCA, Spectral Clustering
- Filters $g(t\lambda_i)$ used to form localized wavelets

Laplacian Eigenfunctions

- Common to view ϕ_ℓ as Fourier basis and λ_ℓ as "frequencies" of ϕ_ℓ
 - Parallel exists for paths, cycles, bipartite graphs
 - Problematic view once move beyond simple graphs
- Fourier interpretation used to build spectral graph wavelets

$$\psi_{m,t}(x) = \sum_{\ell} g(t\lambda_{\ell})\phi_{\ell}(x_m)\phi_{\ell}(x)$$

- Filter smooth in λ_ℓ implies ψ_{m,t}(x) decays quickly away from x
- Choose g so $\sum_{t \in T} g(t\lambda) \approx 1$

Why Parallel Exists and Why Breaks Down

Connection:

- Idea exists because $\mathcal{L} \to -\Delta$, Laplacian on manifolds
 - $\Delta e^{-ikx} = k^2 \cdot e^{-ikx}$
- Parallel is convenient because easy to define low-pass filters and wavelets in Fourier space

Why Parallel Exists and Why Breaks Down

Connection:

- Idea exists because L → −Δ, Laplacian on manifolds
 Δ e^{-ikx} = k² ⋅ e^{-ikx}
- Parallel is convenient because easy to define low-pass filters and wavelets in Fourier space

However:

 In multiple dimensions eigenfunctions are multi-indexed according to oscillating direction (i.e. separable)

• $F(u, v) = \int \int f(x, y) e^{-i(xu+yv)} dx dy = \int \int f(x, y) \phi_{u,v}(x, y) dx dy$

- Exists entire dual geometry
 - Level-sets of equal frequency, eigenfunctions invariant in certain directions, deals with differing scales, etc.

Indexing Empirical Eigenvectors

 Graph/empirical Laplacian eigenvectors have single index λ_i regardless of dimension/structure

Reinterpretation of multi-index is defining metric

$$\rho(\phi_{u,v},\phi_{u',v'}) = |u - u'| + |v - v'|$$

Naive metrics on empirical eigenvectors insufficient

$$\|\phi_i - \phi_j\|_2 = \sqrt{2} \cdot \delta_{i,j}$$
$$\rho(\phi_i, \phi_j) = |i - j|$$

Effect of Local Scale and Number of Points

- Few points in cluster leads to most eigenfunctions concentrating in large cluster
- Geometric small cluster leads to large eigenvalue before any concentration
- If few edges connecting clusters, even fewer eigenfunctions concentrate in small cluster
 - Cloninger, Czaja 2015
- Means low-freq eigenfunctions will give rich information about large cluster only

Larger Questions Beyond Separability

Dual structure only readily known for small number of domains

Transform	Original domain	Transform domain
Fourier transform	R	R
Fourier series	T	Z
Discrete-time Fourier transform (DTFT)	Z	T
Discrete Fourier transform (DFT)	$\mathbb{Z}/(n)$	$\mathbb{Z}/(n)$

- Does there exist structure on general graph domains?
 - How do eigenfunctions on manifold organize?
 - What is dual geometry on social network?
- How do we apply this indexing?
 - Filtering
 - Wavelets / filter banks
 - Graph cuts

1 Introduction and Importance of Eigenfunctions of Laplacian

2 Local Correlations and Dual Geometry

- Graph Spatial-Spectral Analysis
- 4 Natural Wavelet Applications

(日)(四)(日)(日)(日)(日)

Local Vs. Global Correlation

Ideal model:

- **O** Define some non-trivial notion of distance/affinity $\alpha(\phi_i, \phi_j)$
 - Will be using pointwise products
- Use subsequent embedding of affinity to define dual geometry on eigenvectors
 - MDS / KPCA
- Apply clustering of some form to define indexing
 - k-means, greedy clustering, open to more ideas here

Local Vs. Global Correlation

Affinity:

- Due to orthogonality, can't look at global correlation of eigenvectors
- Instead interested in notions of local similarity/correlation

$$LC_{ij}(y) = \int M(x, y) \left(\phi_i(x) - \phi_i(y)\right) \left(\phi_j(x) - \phi_j(y)\right) dx$$
for some local mask $M(x, y)$

- Notion of affinity $\alpha(\phi_i, \phi_j) = \|LC_{ij}\|$
 - Characterize if φ_i and φ_j vary in same direction "most of the time"

Intuition Behind Local Correlation

- Consider cos(x) compared to cos(2x) and cos(10x)
 - Exists wavelength $\approx \pi/2$ for which most $LC_{12}(y) \neq 0$
 - Even at small bandwidth $L_{1,10}(y) \approx 0$ for large number of y
- Similarly cos(x1) and cos(x2) on unit square
 - *LC* ≈ 0 at most (*x*₁, *x*₂)
- Questions:
 - How to define mask/bandwidth
 - How to compute efficiently
 - Proper normalization

Formalizing Relationship

- Observed by Steinerberger in 2017 that low-energy in φ_λφ_μ(x₀) is related to angle between at x₀ and local correlation
- In particular, making mask the heat operator yields notion of scale

Pointwise Product of Eigenfunctions

At *t* such that $e^{-t\lambda} + e^{-t\mu} = 1$, for heat kernel $p_t(x, y)$,

$$\left[e^{t\Delta}(\phi_{\lambda}\phi_{\mu})
ight](y) = \int p_t(x,y) \left(\phi_{\lambda}(x) - \phi_{\lambda}(y)
ight) \left(\phi_{\mu}(x) - \phi_{\mu}(y)
ight) dx$$

- Main relationship comes from Feynman-Kac formula
- Was considered as question about characterizing behavior of triple product $\langle \phi_i, \phi_j \phi_k \rangle$

Efficient Notion of Affinity

- Pointwise product yields much easier computation that's equivalent at diffusion time *t*
- Also gives notion of scale for masking function that changes with frequency
 - If mask size didn't scale, all high freq eigenvectors would cancel itself out (a la Riemann-Lebesgue lemma)
- Also want to put on the same scale to measure constructive/destructive interference
 - Can normalize by raw pointwise product
- Want geometry on data space to define geometry on the dual space through heat kernel

Eigenvector Affinity (C., Steinerberger, 2018)

We define the non-trivial eigenvector affinity for $-\Delta=\Phi\Lambda\Phi^*$ to be

$$\alpha(\phi_i, \phi_j) = \frac{\|\boldsymbol{e}^{t\Delta}\phi_i\phi_j\|_2}{\|\phi_i\phi_j\|_2 + \epsilon} \text{ for } \boldsymbol{e}^{-t\Lambda_i} + \boldsymbol{e}^{-t\Lambda_j} = 1.$$

Landscape of Eigenfunctions

Embedding:

- Given $\alpha : \Phi \times \Phi \rightarrow [0, 1]$, need low-dim embedding
- Use simple KPCA of α

$$\alpha = V \Sigma V^*, \qquad V = \begin{bmatrix} v_1, & v_2, & \dots & v_k \end{bmatrix}$$

• Embedding $[v_1, v_2, v_3]$ captures relative relationships

Parallel Work:

- Saito (2018) considers similar question of eig organization using ramified optimal transport on graph
 - Only defines $d(|\phi_i|, |\phi_i|)$ and slower to compute
 - Natural when eigenvectors are highly localized/disjoint

Recovery of Separable Eigenfunction Indexing

Rectangular region $\left[0,4\right]\times\left[0,1\right]$

• Eigenvectors $\sin(m\pi x)\sin(n\pi y)$ and eigenvalues $\frac{m^2}{16} + \frac{n^2}{1}$

Spherical Harmonics

$$Y_{\ell}^{m}(\theta,\phi) \text{ such that } \int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} Y_{\ell}^{m} Y_{\ell'}^{m'} \sin(\theta) d\phi d\theta = \delta_{m.m'} \delta_{\ell,\ell'}, \quad -m \leq \ell \leq m$$

Harmonics are oriented according to (θ, ϕ) , so no issue of rotational invariance

General Cartesian Product Duals

Empirical eigenvectors of graph Laplacian on Cartesian product domains for:

- $X \sim \mathcal{N}(0, \sigma^2 I_d)$ for $\sigma = 0.1$ and 100 points
- $Y \subset [0, 1]$ for 10 equi-spaced grid points
- A being adjacency matrix of an Erdos-Reyni graph

Chaotic Domains and Random Networks

Lack of structure is also captured

- Erdos-Reyni graph won't have expected structure because node neighborhood has exponential growth
- Semicircle capped rectangle (billiards domain) lacks eigenvector structure by ergodic theory (quantum chaos)

Billiards domain

Introduction and Importance of Eigenfunctions of Laplacian

2 Local Correlations and Dual Geometry

Graph Spatial-Spectral Analysis

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ◆□ ● → のへの

Utilizing Eigenvector Dual Geometry

- Recent work on eigenvector dual applications with Saito and Li
- Applications in spectral graph wavelet literature (Vanderghyst, et al)
 - Ideas inform modern graph CNN algorithms as well
 - Revolve around Fourier/Laplacian parallel

$$\psi_{m,t}(x) = \sum_{\ell} g(t\lambda_{\ell})\phi_{\ell}(x_m)\phi_{\ell}(x)$$

• Problem is wavelets are inherently isotropic and use same filters $\forall x_m$

Graph Spatial-Spectral Analysis

- Motivates need to construct a time-frequency tiling for nodes on graphs and their dual space
 - Relationship between nodes is more complex than path graph on time
 - Relationship between eigenfunctions is more complex than path graph on frequency
- Main problems
 - Each domain is multidimensional
 - Eigenfunction localization
 - Local correlations behave differently in different regions of network
- Basic version using Fiedler vector and eigenvalue for visualization (Ortega, et al, 2019)

Localized Eigenfunction Organization

- Can split nodes via spectral clustering into K clusters $\{W_k\}_{k=1}^{K}$
 - Can also build hierarchical tree from iterative k-means
- Partial node affinity $\alpha(\phi_i, \phi_j; W_k)$ on each cluster
 - Non-normalized local correlation affinity using heat kernel and eigenfunctions restricted to W_k ⊂ V
- Allows for natural organization on each region separately

Dual Space Filters

- Graph eigenvectors give (local) similarity $\alpha^{(k)} \in \mathbb{R}^{N \times N}$ on W_k
 - Each row $\alpha_{i,\cdot}^{(k)}$ yields potential filter
 - On path graph, reduces to function of eigenvalues (indices) only

• Filter
$$F_{i,k}^{(t)}[j] = \frac{\left(\alpha_{i,j}^{(k)}\right)^{1/t}}{\sum_{\ell} \left(\alpha_{\ell,j}^{(k)}\right)^{1/t}}$$

- Goes to constant across spectrum as $t \to \infty$
- Goes to indicator at *j* = *i* as *t* → 0

•
$$\Psi_{i,k}^{(t)} = \Phi \cdot \operatorname{diag}(F_{i,k}^{(t)}) \cdot \Phi^*$$

• Wavelet
$$\psi_{i,j,k}^{(t)}$$
 is row of $\Psi_{i,k}^{(t)}$ centered at $j \in W_k$

Reducing Redundancy Through QR

- With no reduction, there are N filters per cluster and |W_k| wavelets per filter
 - Both α_k and $\Phi F_{i,k} \Phi^*$ are low rank
- Rank revealing QR with pivoting to select "prototypical points" (Chan 1990, Rokhlin 2005)
 - Low-rank, symmetric A
 - QR = AP for permutation matrix P
 - Keep columns of AP such that $R_{jj} > \tau \cdot R_{11}$
 - Correspond to equivalent small set of columns *E* of *A* s.t. $||A_{.E}A_{.E}^* A^2|| < \tau^2$

Frame Bound (C., Li, Saito, 2019)

Dictionary $\{\psi_{i,j,k}^{(t)}\}_{i\in E_{\alpha_k},j\in E_{W_k}}^{k\in\mathbb{Z}_K}$ is a frame with diagonal frame operator such that:

- if point sampled from smooth manifold with global eigenfunctions, $S = K \cdot I$,
- if eigenfunction localization exists, S_{jj} = c_j for j ∈ W_k where c_j depends on ∑_i ∑_k F_{i,k}[j]

Introduction and Importance of Eigenfunctions of Laplacian

- Local Correlations and Dual Geometry
- Graph Spatial-Spectral Analysis
- A Natural Wavelet Applications

Clustered Data

- Sparsely connected clustered graph with significantly larger/denser cluster
 - Most eigenfunctions concentrate on one cluster
 - Generic spectral wavelets don't scale for sparse representation on small clusters

Neuronal Data

- Scan of neuron dendrite
- Eigenfunctions quickly localize on branches
 - Eigenfunctions with eigenvalue above 4 concentrate only at junctions (Saito 2011)
- Eigenfunction ordering by eigenvalue depends on length of branch

Traffic Data

- Nodes at intersections of roads in Toronto
- No clear cluster structure, though eigenfunctions still localize
 - Low oscillations inside downtown subgraph are higher frequency than in surrounding areas
- Ordering still highly location dependent

Flow Cytometry

• Flow cytometry: each patient is represented by 9D point cloud of cells

- Used to tell if people have blood disease
 - Medical test is to look at every 2D slice

Interpretability Using Coefficients

Wavelet Application:

- Pool healthy and sick, and build network on cells
- Express cell label as function in terms of natural graph wavelets
- Examine reconstruction of largest wavelet coefficients
 - Denoise label function with low resolution wavelets that have large coefficient
- Creates function on point cloud of maximum deviation between healthy and sick cells

Conclusions

- Kernel/Laplacian eigenfunctions aren't like PCA
 - Don't divide into directions with independent information
 - Capable of overrepresenting certain large variance directions at expense of small scale
- Detecting relationships between eigenfunctions yields more powerful techniques while still representing geometry
- Parallel to multi-dimensional Fourier leads to new insights from harmonic analysis
- Localizing the behavior leads to appropriate scale in different places
- Using global eigenfunctions maintains smoothness across cut boundaries

HAPPY BIRTHDAY, JOHN!