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Halicioğlu Data Science Institute
University of California, San Diego





Collaborators

Dual Geometry:

Stefan Steinerberger (Yale)

Graph Wavelets:

Naoki Saito (UC Davis) Haotian Li (UC Davis)



Outline

1 Introduction and Importance of Eigenfunctions of Laplacian

2 Local Correlations and Dual Geometry

3 Graph Spatial-Spectral Analysis

4 Natural Wavelet Applications



Geometric Data Representation

In many data problems, important to create dictionaries that
induce sparsity

Function regression / denoising
Combining nearby sensor time series to filter out sensor dependent
information

Consider problem of building dictionary on graph G = (V ,E ,K )
Similarly induced graph from point cloud and kernel similarity

Many graph representations built in similar way to classical
Fourier / wavelet literature

Laplacian Eigenmaps
Global wave-like ONB with increasing frequency
Belkin, Niyogi 2005

Spectral wavelets
Localized frame built from filtering LE
Hammond, Gribonval, Vanderghyst 2009

Eigenfunction Spectral Wavelet



This Talk

Topic of This Talk

“Fourier transform on graphs” story, while tempting, is more
complicated than previously understood
Relationship between eigenvectors isn’t strictly monotonic in
eigenvalue

Real Topic of This Talk

Prove to JJB I paid attention in all the “applied harmonic
analysis” classes I took here.
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Kernels as Networks

Collection of which points similar to which forms a local network
graph G = (X ,E ,W )
Graph Laplacian L := I − D−1/2WD−1/2, for Dxx =

∑
y Wx,y

Winds up only need a few eigenfunctions to describe global
characteristics

Lφ` = λ`φ`, 0 = λ0 ≤ λ1 ≤ ... ≤ λN−1

Diffusion Maps, Laplacian Eigenmaps, kPCA, Spectral Clustering
Filters g(tλi ) used to form localized wavelets

Low-dim. data Local covering (φ1, φ2) Embedding
Li Yang



Laplacian Eigenfunctions

Common to view φ` as Fourier basis and λ` as “frequencies” of
φ`

Parallel exists for paths, cycles, bipartite graphs
Problematic view once move beyond simple graphs

Fourier interpretation used to build spectral graph wavelets

ψm,t (x) =
∑
`

g(tλ`)φ`(xm)φ`(x)

Filter smooth in λ` implies ψm,t (x) decays quickly away from x
Choose g so

∑
t∈T g(tλ) ≈ 1



Why Parallel Exists and Why Breaks Down
Connection:

Idea exists because L → −∆, Laplacian on manifolds
∆ e−ikx = k2 · e−ikx

Parallel is convenient because easy to define low-pass filters and
wavelets in Fourier space

However:
In multiple dimensions eigenfunctions are multi-indexed
according to oscillating direction (i.e. separable)

F (u, v) =
∫ ∫

f (x , y)e−i(xu+yv)dxdy =
∫ ∫

f (x , y)φu,v (x , y)dxdy
Exists entire dual geometry

Level-sets of equal frequency, eigenfunctions invariant in certain
directions, deals with differing scales, etc.
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Indexing Empirical Eigenvectors

Graph/empirical Laplacian eigenvectors have single index λi
regardless of dimension/structure

Reinterpretation of multi-index is defining metric

ρ(φu,v , φu′,v ′) = |u − u′|+ |v − v ′|

Naive metrics on empirical eigenvectors insufficient

‖φi − φj‖2 =
√

2 · δi,j

ρ(φi , φj ) = |i − j |



Effect of Local Scale and Number of Points

Few points in cluster leads to most eigenfunctions concentrating
in large cluster
Geometric small cluster leads to large eigenvalue before any
concentration
If few edges connecting clusters, even fewer eigenfunctions
concentrate in small cluster

Cloninger, Czaja 2015

Means low-freq eigenfunctions will give rich information about
large cluster only

φ2 φ3 φ4 Energy in small cluster



Larger Questions Beyond Separability

Dual structure only readily known for small number of domains

Does there exist structure on general graph domains?
How do eigenfunctions on manifold organize?
What is dual geometry on social network?

How do we apply this indexing?
Filtering
Wavelets / filter banks
Graph cuts



Outline

1 Introduction and Importance of Eigenfunctions of Laplacian

2 Local Correlations and Dual Geometry

3 Graph Spatial-Spectral Analysis

4 Natural Wavelet Applications



Local Vs. Global Correlation

Ideal model:
1 Define some non-trivial notion of distance/affinity α(φi , φj )

Will be using pointwise products
2 Use subsequent embedding of affinity to define dual geometry

on eigenvectors
MDS / KPCA

3 Apply clustering of some form to define indexing
k-means, greedy clustering, open to more ideas here



Local Vs. Global Correlation

Affinity:
Due to orthogonality, can’t look at global correlation of
eigenvectors
Instead interested in notions of local similarity/correlation

LCij (y) =

∫
M(x , y) (φi (x)− φi (y))

(
φj (x)− φj (y)

)
dx

for some local mask M(x , y)

Notion of affinity α(φi , φj ) = ‖LCij‖
Characterize if φi and φj vary in same direction “most of the time”

φ4,2 & φ2,4 Mean cent. (π/2, π) φ4,2 & φ4,3 Mean cent. (π/2, π)



Intuition Behind Local Correlation

Consider cos(x) compared to cos(2x) and cos(10x)

Exists wavelength ≈ π/2 for which most LC12(y) 6= 0
Even at small bandwidth L1,10(y) ≈ 0 for large number of y

Similarly cos(x1) and cos(x2) on unit square
LC ≈ 0 at most (x1, x2)

Questions:
How to define mask/bandwidth
How to compute efficiently
Proper normalization



Formalizing Relationship

Oberved by Steinerberger in 2017 that low-energy in φλφµ(x0) is
related to angle between at x0 and local correlation
In particular, making mask the heat operator yields notion of
scale

Pointwise Product of Eigenfunctions

At t such that e−tλ + e−tµ = 1, for heat kernel pt (x , y),

[
et∆(φλφµ)

]
(y) =

∫
pt (x , y) (φλ(x)− φλ(y)) (φµ(x)− φµ(y)) dx

Main relationship comes from Feynman-Kac formula
Was considered as question about characterizing behavior of
triple product 〈φi , φjφk 〉



Efficient Notion of Affinity

Pointwise product yields much easier computation that’s
equivalent at diffusion time t
Also gives notion of scale for masking function that changes with
frequency

If mask size didn’t scale, all high freq eigenvectors would cancel
itself out (a la Riemann-Lebesgue lemma)

Also want to put on the same scale to measure
constructive/destructive interference

Can normalize by raw pointwise product

Want geometry on data space to define geometry on the dual
space through heat kernel

Eigenvector Affinity (C., Steinerberger, 2018)

We define the non-trivial eigenvector affinity for −∆ = ΦΛΦ∗ to be

α(φi , φj ) =
‖et∆φiφj‖2

‖φiφj‖2 + ε
for e−tΛi + e−tΛj = 1.



Landscape of Eigenfunctions

Embedding:
Given α : Φ× Φ→ [0,1], need low-dim embedding
Use simple KPCA of α

α = V ΣV ∗, V =
[
v1, v2, ... vk

]
Embedding

[
v1, v2, v3

]
captures relative relationships

Parallel Work:
Saito (2018) considers similar question of eig organization using
ramified optimal transport on graph

Only defines d(|φi |, |φj |) and slower to compute
Natural when eigenvectors are highly localized/disjoint



Recovery of Separable Eigenfunction Indexing
Rectangular region [0,4]× [0,1]

Eigenvectors sin(mπx) sin(nπy) and eigenvalues m2

16 + n2

1



Spherical Harmonics

Y m
` (θ, φ) such that

π∫
θ=0

2π∫
φ=0

Y m
` Y m′

`′ sin(θ)dφdθ = δm.m′δ`,`′ , −m ≤ ` ≤ m

Harmonics are oriented according to (θ, φ), so no issue of rotational
invariance



General Cartesian Product Duals

Empirical eigenvectors of graph Laplacian on Cartesian product
domains for:

X ∼ N (0, σ2Id ) for σ = 0.1 and 100 points
Y ⊂ [0,1] for 10 equi-spaced grid points
A being adjacency matrix of an Erdos-Reyni graph

Eigs of L on X × Y Eigs of I −
(

A .∗ e−‖xi−xj‖2/ε
)



Chaotic Domains and Random Networks

Lack of structure is also captured
Erdos-Reyni graph won’t have expected structure because node
neighborhood has exponential growth
Semicircle capped rectangle (billiards domain) lacks eigenvector
structure by ergodic theory (quantum chaos)

Unnormalized Erdos-Reyni Graph p = 0.2 Billiards domain
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Utilizing Eigenvector Dual Geometry

Recent work on eigenvector dual applications with Saito and Li
Applications in spectral graph wavelet literature (Vanderghyst, et
al)

Ideas inform modern graph CNN algorithms as well
Revolve around Fourier/Laplacian parallel

ψm,t (x) =
∑
`

g(tλ`)φ`(xm)φ`(x)

Problem is wavelets are inherently isotropic and use same filters
∀xm

t = 1 t = 1 t = 5 t = 5



Graph Spatial-Spectral Analysis
Motivates need to construct a time-frequency tiling for nodes on
graphs and their dual space

Relationship between nodes is more complex than path graph on
time
Relationship between eigenfunctions is more complex than path
graph on frequency

Main problems
Each domain is multidimensional
Eigenfunction localization
Local correlations behave differently in different regions of network

Basic version using Fiedler vector and eigenvalue for
visualization (Ortega, et al, 2019)



Localized Eigenfunction Organization

Can split nodes via spectral clustering into K clusters {Wk}K
k=1

Can also build hierarchical tree from iterative k-means
Partial node affinity α(φi , φj ; Wk ) on each cluster

Non-normalized local correlation affinity using heat kernel and
eigenfunctions restricted to Wk ⊂ V

Allows for natural organization on each region separately



Dual Space Filters

Graph eigenvectors give (local) similarity α(k) ∈ RN×N on Wk

Each row α
(k)
i,· yields potential filter

On path graph, reduces to function of eigenvalues (indices) only

Filter F (t)
i,k [j] =

(
α

(k)
i,j

)1/t

∑
`

(
α

(k)
`,j

)1/t

Goes to constant across spectrum as t →∞
Goes to indicator at j = i as t → 0

Ψ
(t)
i,k = Φ · diag(F (t)

i,k ) · Φ∗

Wavelet ψ(t)
i,j,k is row of Ψ

(t)
i,k centered at j ∈ Wk

g(tλi ) F (t)
i



Reducing Redundancy Through QR

With no reduction, there are N filters per cluster and |Wk |
wavelets per filter

Both αk and ΦFi,k Φ∗ are low rank
Rank revealing QR with pivoting to select “prototypical points”
(Chan 1990, Rokhlin 2005)

Low-rank, symmetric A
QR = AP for permutation matrix P
Keep columns of AP such that Rjj > τ · R11

Correspond to equivalent small set of columns E of A s.t.
‖A·,E A∗·,E − A2‖ < τ 2

R α α[:,E ]



Natural Wavelet Frame

Frame Bound (C., Li, Saito, 2019)

Dictionary {ψ(t)
i,j,k}

k∈ZK
i∈Eαk ,j∈EWk

is a frame with diagonal frame operator
such that:

if point sampled from smooth manifold with global
eigenfunctions, S = K · I,
if eigenfunction localization exists, Sjj = cj for j ∈Wk where cj
depends on

∑
i
∑

k Fi,k [j]
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Clustered Data

Sparsely connected clustered graph with significantly
larger/denser cluster

Most eigenfunctions concentrate on one cluster
Generic spectral wavelets don’t scale for sparse representation on
small clusters



Neuronal Data

Scan of neuron dendrite
Eigenfunctions quickly localize on branches

Eigenfunctions with eigenvalue above 4 concentrate only at
junctions (Saito 2011)

Eigenfunction ordering by eigenvalue depends on length of
branch



Traffic Data

Nodes at intersections of roads in Toronto
No clear cluster structure, though eigenfunctions still localize

Low oscillations inside downtown subgraph are higher frequency
than in surrounding areas

Ordering still highly location dependent

Density of People Reconstruction MSE

Density of Vehicles Reconstruction MSE



Flow Cytometry

Flow cytometry: each patient is represented by 9D point cloud of cells

Used to tell if people have blood disease

Medical test is to look at every 2D slice

Healthy AML



Interpretability Using Coefficients

Wavelet Application:
Pool healthy and sick, and build network on cells
Express cell label as function in terms of natural graph wavelets
Examine reconstruction of largest wavelet coefficients

Denoise label function with low resolution wavelets that have large
coefficient

Creates function on point cloud of maximum deviation between
healthy and sick cells

2D Slice Witness 2D Slice Witness



Conclusions

Kernel/Laplacian eigenfunctions aren’t like PCA
Don’t divide into directions with independent information
Capable of overrepresenting certain large variance directions at
expense of small scale

Detecting relationships between eigenfunctions yields more
powerful techniques while still representing geometry
Parallel to multi-dimensional Fourier leads to new insights from
harmonic analysis
Localizing the behavior leads to appropriate scale in different
places
Using global eigenfunctions maintains smoothness across cut
boundaries



Thank you!

HAPPY BIRTHDAY, JOHN!
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