Dual Geometry of Laplacian Eigenfunctions

and Graph Spatial-Spectral Analysis

Alex Cloninger

Department of Mathematics
and
Halicioglu Data Science Institute
University of California, San Diego







Collaborators

@ Dual Geometry:

Stefan Ste
-

inerberger (Yale)
F BT OECE

@ Graph Wavelets:
Naoki Saito (UC Davis) Haotian Li (UC Davis)

B




0 Introduction and Importance of Eigenfunctions of Laplacian



Geometric Data Representation

@ In many data problems, important to create dictionaries that
induce sparsity
e Function regression / denoising
e Combining nearby sensor time series to filter out sensor dependent
information
@ Consider problem of building dictionary on graph G = (V, E, K)
e Similarly induced graph from point cloud and kernel similarity
@ Many graph representations built in similar way to classical
Fourier / wavelet literature
e Laplacian Eigenmaps
@ Global wave-like ONB with increasing frequency
@ Belkin, Niyogi 2005
@ Spectral wavelets
@ Localized frame built from filtering LE
@ Hammond, Gribonval, Vanderghyst 2009

Eigenfunction Spectral Wavelet



This Talk

Topic of This Talk

@ “Fourier transform on graphs” story, while tempting, is more
complicated than previously understood

@ Relationship between eigenvectors isn’t strictly monotonic in
eigenvalue




This Talk

Topic of This Talk

@ “Fourier transform on graphs” story, while tempting, is more
complicated than previously understood

@ Relationship between eigenvectors isn’t strictly monotonic in
eigenvalue

Real Topic of This Talk

@ Prove to JJB | paid attention in all the “applied harmonic
analysis” classes | took here.




Kernels as Networks

@ Collection of which points similar to which forms a local network
graph G = (X, E, W)

@ Graph Laplacian £ :=7 — D="2WD~1/2 for D,y = >, Wy

@ Winds up only need a few eigenfunctions to describe global
characteristics

Loy = Neopy, 0=X <A < < At

e Diffusion Maps, Laplacian Eigenmaps, kPCA, Spectral Clustering
e Filters g(t);) used to form localized wavelets

Low-dim. data Local covering
Li Yang



Laplacian Eigenfunctions

@ Common to view ¢, as Fourier basis and ), as “frequencies” of
be
e Parallel exists for paths, cycles, bipartite graphs
e Problematic view once move beyond simple graphs

@ Fourier interpretation used to build spectral graph wavelets

Ymt(x) = Y G(EA)be(Xm)de(X)
L

o Filter smooth in A\, implies ¥m ¢(x) decays quickly away from x
e Choose gso ;. g(th) ~ 1




Why Parallel Exists and Why Breaks Down

Connection:
@ Idea exists because £ — —A, Laplacian on manifolds
o A efikx — k2. efikx
@ Parallel is convenient because easy to define low-pass filters and
wavelets in Fourier space



Why Parallel Exists and Why Breaks Down

Connection:
@ |dea exists because £ — —A, Laplacian on manifolds
o A efikx — k2. efikx
@ Parallel is convenient because easy to define low-pass filters and
wavelets in Fourier space
However:
@ In multiple dimensions eigenfunctions are multi-indexed
according to oscillating direction (i.e. separable)
o F(u,v)= [ [f(x,y)e ™ Mdxdy = [ [f(x,y)buv(X,y)dxdy
@ Exists entire dual geometry
e Level-sets of equal frequency, eigenfunctions invariant in certain
directions, deals with differing scales, etc.
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Indexing Empirical Eigenvectors

@ Graph/empirical Laplacian eigenvectors have single index \;
regardless of dimension/structure

20=0 ), =033986 A, =13179 2\, =27872 2\, =3.9250

02 02 02 02 02 g -
; ' PR cEE

02 02 02 02 -02 -
Bl 0 1 0 1 0 1A 0 1A 0 1

g =3.9281 2 = 45268 2, = 52439 g =5:8826 g =6.3474

02 - “v.x.] 02 ~— 02— — ozvvx x

J02 Yy 2| L 202 C— 2 b — 02| -
- 0 1 Bl 0 1A 0 1

@ Reinterpretation of multi-index is defining metric
p(¢u,v»¢u’,v’) = |U - U/| + |V - V/|
@ Naive metrics on empirical eigenvectors insufficient

i — djll = V26,
p(®i d5) = |i — jl



Effect of Local Scale and Number of Points

@ Few points in cluster leads to most eigenfunctions concentrating
in large cluster

@ Geometric small cluster leads to large eigenvalue before any
concentration

@ If few edges connecting clusters, even fewer eigenfunctions
concentrate in small cluster

e Cloninger, Czaja 2015

@ Means low-freq eigenfunctions will give rich information about
large cluster only
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Larger Questions Beyond Separability

@ Dual structure only readily known for small number of domains

Transform Original domain | Transform domain
Fourier transform R R
Fourier series T Z
Discrete-time Fourier transform (DTFT) Z T
Discrete Fourier transform (DFT) Z/(n) Z/(n)

@ Does there exist structure on general graph domains?
e How do eigenfunctions on manifold organize?
e What is dual geometry on social network?

@ How do we apply this indexing?

o Filtering
o Wavelets / filter banks
e Graph cuts



@ Local Correlations and Dual Geometry



Local Vs. Global Correlation

Ideal model:
@ Define some non-trivial notion of distance/affinity a(¢;, ¢;)
e Will be using pointwise products

@ Use subsequent embedding of affinity to define dual geometry
on eigenvectors

e MDS/KPCA
© Apply clustering of some form to define indexing
e k-means, greedy clustering, open to more ideas here



Local Vs. Global Correlation

Affinity:
@ Due to orthogonality, can’t look at global correlation of
eigenvectors

@ Instead interested in notions of local similarity/correlation
LCy(y) = [ MOx.y) (6100 — (1) (6(x) ~ (1) ox
for some local mask M(x, y)

@ Notion of affinity a(¢;, ¢;) = ||LCj|
o Characterize if ¢; and ¢; vary in same direction “most of the time”

P42 & P24 Mean cent. (7/2,7) D42 & P43 Mean cent. (7/2,7)



Intuition Behind Local Correlation

@ Consider cos(x) compared to cos(2x) and cos(10x)

e Exists wavelength = /2 for which most LCi2(y) # 0
o Even at small bandwidth Ly 1o(y) = 0 for large number of y

@ Similarly cos(xy) and cos(x2) on unit square
o LC =~ 0 at most (x1, x2)
@ Questions:

e How to define mask/bandwidth
e How to compute efficiently
@ Proper normalization



Formalizing Relationship

@ Oberved by Steinerberger in 2017 that low-energy in ¢»¢,.(Xxo) is
related to angle between at xo and local correlation

@ In particular, making mask the heat operator yields notion of
scale

Pointwise Product of Eigenfunctions

At t such that e~ + e~ = 1, for heat kernel p;(x, y),

[e®(paen)] (¥) = /pr(x, ) (@a(X) = oa(¥)) (¢u(X) — ¢u(y)) dx

@ Main relationship comes from Feynman-Kac formula

@ Was considered as question about characterizing behavior of
triple product (¢;, ¢jdk)



Efficient Notion of Affinity

@ Pointwise product yields much easier computation that's
equivalent at diffusion time t
@ Also gives notion of scale for masking function that changes with
frequency
o If mask size didn’t scale, all high freq eigenvectors would cancel
itself out (a la Riemann-Lebesgue lemma)
@ Also want to put on the same scale to measure
constructive/destructive interference
@ Can normalize by raw pointwise product

@ Want geometry on data space to define geometry on the dual
space through heat kernel

Eigenvector Affinity (C., Steinerberger, 2018)
We define the non-trivial eigenvector affinity for —A = $Ad* to be

tA 4
(i, ¢) = NleZdidillz o g-tni 4 g~y — 1.

pigjll2 + €




Landscape of Eigenfunctions

Embedding:
@ Given a: ¢ x & — [0, 1], need low-dim embedding
@ Use simple KPCA of «

o = VZV*7 V= [V17 Vo, ... Vk]

@ Embedding [v1, Vo, v3] captures relative relationships
Parallel Work:

@ Saito (2018) considers similar question of eig organization using
ramified optimal transport on graph
@ Only defines d(|¢i|, |#;|) and slower to compute
e Natural when eigenvectors are highly localized/disjoint



Recovery of Separable Eigenfunction Indexing

Rectangular region [0, 4] x [0, 1]
@ Eigenvectors sin(mmnx)sin(nry) and eigenvalues T—é + ”TZ
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Spherical Harmonics

T 27
Y(6, 6) such that / / YOV Sin(0)d6d0 = mmdre, —m< < m
=0 =0
Harmonics are oriented according to (6, ), so no issue of rotational
invariance
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General Cartesian Product Duals

Empirical eigenvectors of graph Laplacian on Cartesian product
domains for:

@ X ~ N(0,0?ly) for o = 0.1 and 100 points
@ Y C [0, 1] for 10 equi-spaced grid points
@ A being adjacency matrix of an Erdos-Reyni graph
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Chaotic Domains and Random Networks

Lack of structure is also captured

@ Erdos-Reyni graph won’t have expected structure because node
neighborhood has exponential growth

@ Semicircle capped rectangle (billiards domain) lacks eigenvector
structure by ergodic theory (quantum chaos)
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e Graph Spatial-Spectral Analysis



Utilizing Eigenvector Dual Geometry

@ Recent work on eigenvector dual applications with Saito and Li

@ Applications in spectral graph wavelet literature (Vanderghyst, et
al)

o Ideas inform modern graph CNN algorithms as well
e Revolve around Fourier/Laplacian parallel

dmt(X) = Y G(tA) b (Xm) e (X)

e Problem is wavelets are inherently isotropic and use same filters
VXm




Graph Spatial-Spectral Analysis

@ Motivates need to construct a time-frequency tiling for nodes on
graphs and their dual space
o Relationship between nodes is more complex than path graph on
time
e Relationship between eigenfunctions is more complex than path
graph on frequency
@ Main problems
e Each domain is multidimensional
e Eigenfunction localization
e Local correlations behave differently in different regions of network
@ Basic version using Fiedler vector and eigenvalue for
visualization (Ortega, et al, 2019)
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Localized Eigenfunction Organization

@ Can split nodes via spectral clustering into K clusters { W }K_,
@ Can also build hierarchical tree from iterative k-means
@ Partial node affinity o(¢;, ¢;; Wk) on each cluster

e Non-normalized local correlation affinity using heat kernel and
eigenfunctions restricted to W, Cc V

@ Allows for natural organization on each region separately
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Dual Space Filters

@ Graph eigenvectors give (local) similarity a9} € RN*N on Wy

e Each row a ") yields potential filter
@ On path graph reduces to function of eigenvalues (indices) only

W\ 1/t
o Filter F{})[j] = ;())/
14

e Goes to constant across spectrum as t — oo
o Goesto indicator atj=iast—0

o V) = o diag(F}) - ¢~

o Wavelet v{”, is row of W'} centered at j € W
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Reducing Redundancy Through QR

@ With no reduction, there are N filters per cluster and | W]
wavelets per filter
@ Both ai and ®F; x®* are low rank
@ Rank revealing QR with pivoting to select “prototypical points”
(Chan 1990, Rokhlin 2005)
e Low-rank, symmetric A
e QR = AP for permutation matrix P
o Keep columns of AP such that R; > 7 - Ry1
e Correspond to equivalent small set of columns E of A s.t.
HA-,EAiE — A2|| < 7'2
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Natural Wavelet Frame

Frame Bound (C., Li, Saito, 2019)

Dictionary {y{? }/52« .. is a frame with diagonal frame operator
o ko k
such that:
@ if point sampled from smooth manifold with global
eigenfunctions, S = K - |/,

@ if eigenfunction localization exists, S; = ¢; for j € W where ¢;
depends on ), >", Fi«l/]




Q Natural Wavelet Applications



Clustered Data

@ Sparsely connected clustered graph with significantly
larger/denser cluster

e Most eigenfunctions concentrate on one cluster
e Generic spectral wavelets don’t scale for sparse representation on
small clusters

Natural Wavelets
‘Spectral Graph Wavelets
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Neuronal Data

@ Scan of neuron dendrite
@ Eigenfunctions quickly localize on branches
e Eigenfunctions with eigenvalue above 4 concentrate only at
junctions (Saito 2011)

@ Eigenfunction ordering by eigenvalue depends on length of
branch
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Traffic Data

@ Nodes at intersections of roads in Toronto
@ No clear cluster structure, though eigenfunctions still localize

o Low oscillations inside downtown subgraph are higher frequency
than in surrounding areas

@ Ordering still highly location dependent

Density of Vehicles Reconstruction MSE




Flow Cytometry

@ Flow cytometry: each patient is represented by 9D point cloud of cells

g{i i

@ Used to tell if people have blood disease

e Medical test is to look at every 2D slice

Healthy AML



Interpretability Using Coefficients

Wavelet Application:
@ Pool healthy and sick, and build network on cells
@ Express cell label as function in terms of natural graph wavelets

@ Examine reconstruction of largest wavelet coefficients
e Denoise label function with low resolution wavelets that have large
coefficient
@ Creates function on point cloud of maximum deviation between
healthy and sick cells

2D Slice Witness 2D Slice Witness



Conclusions

@ Kernel/Laplacian eigenfunctions aren'’t like PCA

e Don't divide into directions with independent information
e Capable of overrepresenting certain large variance directions at
expense of small scale

@ Detecting relationships between eigenfunctions yields more
powerful techniques while still representing geometry

@ Parallel to multi-dimensional Fourier leads to new insights from
harmonic analysis

@ Localizing the behavior leads to appropriate scale in different
places

@ Using global eigenfunctions maintains smoothness across cut
boundaries



Thank you!

HAPPY BIRTHDAY, JOHN!



	Introduction and Importance of Eigenfunctions of Laplacian
	Local Correlations and Dual Geometry
	Graph Spatial-Spectral Analysis
	Natural Wavelet Applications

