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1. Introduction
Assume that X = {X1, . . . , Xm}, 2 ≤ m ≤ n, on a smooth
manifold Mn with smooth measure µ. Denote

D = spanX ⊂ TMn.

Such vector bundles are often called horizontal. Define the
following real vector bundles

D1 = D , Dk+1 = [Dk,D ] + Dk for k ≥ 1,

which naturally give rise to the flag

D = D1 ⊆ D2 ⊆ D3 ⊆ . . . .

Then we say that a distribution satisfy bracket generating
condition if ∀ x ∈Mn ∃ k(x) ∈ Z+ such that

Dk(x)
x = TxMn. (0.1)

If the dimensions dim Dk
x do not depend on x for any k ≥ 1, we

say that D is a regular distribution. The least k such that (0.1)
is satisfied is called the step of D .
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A piecewise smooth curve γ : [0, 1]→Mn is called horizontal if
γ̇(t) =

∑m
k=1 ak(t)Xk, or equivalently γ̇(t) ∈ Dγ(t), ∀ t ∈ I. Chow 1

proved the following theorem.

Theorem 0.1

If a manifold Mn is topologically connected and the distribution
D = span{X1, . . . , Xm} is bracket generating, then any two points
can be connected by a horizontal curve.

Figure 1. Chow’s Theorem.

1
W.L. Chow : Über System Von Lineaaren Partiellen Differentialgleichungen erster Orduung,

Math. Ann., 117, 98-105 (1939)
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A subRiemannian structure over a manifold Mn is a pair
(D , 〈·, ·〉), where D is a bracket generating distribution and 〈·, ·〉 a
fibre inner product defined on D . The length of the horizontal
curve γ is

`(γ) :=

∫ τ

0

√
〈γ̇(s), γ̇(s)〉ds =

∫ τ

0

√
a2

1(s) + · · ·+ a2
m(s)ds.

The shortest length dcc(A,B) is called the Carnot-Carathéodory
distance between A, B ∈Mn which is given by

dcc(A,B) := inf `(γ)

where the infimum is taken over all absolutely continuous
horizontal curves joining A and B. Hence, we may define a
geometry on Mn which is so-called sub-Riemannian geometry 2

.

2
O. Calin and D.C. Chang: Sub-Riemannian Geometry: General Theory and Examples,

Encyclopedia of Mathematics and Its Applications, 126, Cambridge University Press, (2009).
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Example 0.1

Consider a kinematic cart with two equal wheels of radius R
that can roll at different speeds on a plane, so the orientation of
the cart might change at any time; see Figure 2.

The motion can be described by a curve
(
x(t), y(t), θ(t), φ1(t),

φ2(t)
)

on M = R2 × S1 × S1 × S1. The midpoint (x, y) satisfies the
constraints dx = 1

2 (dx1 + dx2) = R
2 cos θ(dφ1 + dφ2) and

dy = 1
2 (dy1 + dy2) = R

2 sin θ(dφ1 + dφ2). The angle constraint
Ldθ = −Rd(φ2 − φ1). Given A,B ∈M, there exists at least one
piecewise smooth trajectory joining them3.

3
D.C. Chang and S.T. Yau: Schrödinger equation with quartic potential and nonlinear

filtering problem, 48th IEEE Conference on Decision and Control, Shanghai, China, 8089-8094,
(2009). 6 / 42



Example 0.2

Let M = R2 × 1
2S

1, (x, y) ∈ R2, θ ∈ S1. The distribution

D := span
{
X =

∂

∂p
, Y =

∂

∂y
+ p

∂

∂x

}
, p = tan θ, [X,Y ] =

∂

∂x

satisfies Chow’s condition which can be applied to our daily life.

Figure 3. Parallel Parking.
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Consider the sum of square vector fields L =
∑m
j=1X

2
j . The

operator L is not necessary elliptic.
Let BL (x, ρ) =

{
y ∈Mn : dcc(x, y) < ρ

}
be a “ball” consists of

all y ∈Mn that can be joined to x by a horizontal curve γ with
dcc(x, y) < ρ. Let BE(x, ρ) be an ordinary Euclidean ball of
radius ρ about x. C. Fefferman-D.H. Phong4 showed that if X
satisfies bracket generating property of step Q ⇔ ∃ cQ > 0 s.t.

BE(x, ρ) ⊆ BL

(
x, cQρ

1
Q
)
∀ x ∈Mn, 0 < ρ < 1. (0.2)

In fact, using Fefferman-Phong’s method, we can show
that (0.2) ⇔ L satisfies the sub-elliptic estimate∥∥|∇| 2Qu∥∥

L2 ≤ ĉQ

{
‖L u‖L2 + c̃Q‖u‖L2

}
, ∀ u ∈ C∞(Mn) (0.3)

where ĉQ > 0 and c̃Q ≥ 0. Here |∇|
2
Q is a ψDO with symbol

|ξ|
2
Q . Hence, (0.3) ⇒ a famous result of Hörmander5 .

4
C. Fefferman and D.H. Phong: The uncertainty principle and sharp Garding inequality,

Comm. Pure & Applied Math., 34, 285-331 (1981)
5

L. Hörmander: Hypo-elliptic second order differential equations, Acta Math. 119,
147-171 (1967).
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2. Laguerre calculus on nilpotent Lie groups of step 2
In this talk, we concentrate on the case when M is a nilpotent
Lie group of step 2. Let B : R2n ×R2n → Rr be a
non-degenerate skew-symmetric mapping given by

B(x, y) = (B1(x, y), . . . , Br(x, y)) , Bβ(x, y) =

2n∑
j,k=1

Bβjkxjyk, (0.4)

where x, y ∈ R2n. The multiplication given by the following
formula defines a nilpotent Lie group N of step two on R2n×Rr:

(x, u) · (y, s) = (x+ y, u+ s+ 2B(x, y)) . (0.5)

The unit element is (0, 0). The skew-symmetry of B implies
that the inverse of (y, s) is (−y,−s), and the associativity follows
from the bilinearity of B.
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Vector fields

Yj := ∂yj + 2

r∑
β=1

2n∑
k=1

Bβkjyk∂sβ , j = 1, . . . , 2n (0.6)

are left invariant vector fields on N . For any λ ∈ Rr \ {0},
denote

Bλ(y, y′) :=

2n∑
j=1

λjBj(y, y
′).

Let ∂v for v ∈ R2n be the derivative of a function on R2n along
the direction v, i.e., ∂v =

∑2n
j=1 vj∂yj . Then,

Yv :=

r∑
j=1

vjYj = ∂v + 2B(y, v) · ∂s, (0.7)

is left invariant vector field on N , where

B(y, v) · ∂s := B1(y, v)∂s1 + · · ·+Br(y, v)∂sr .

Their brackets are

[Yv, Yv′ ] = 4B(v, v′) · ∂s. (0.8)
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Since Bλ is non-degenerate skew-symmetric, it can be written in
a normal form with respect to an orthonormal basis
{vλ1 , . . . , vλ2n} of R2n such that

Bλ
(
vλ2j−1, v

λ
2j

)
= −Bλ

(
vλ2j , v

λ
2j−1

)
= µj(λ), (0.9)

j = 1, 2, . . . n and Bλ(vλj , v
λ
k ) = 0 for all other choices of

subscripts. We can assume µ1(λ) ≥ µ2(λ) ≥ · · · ≥ µn(λ) > 0. The
associated matrix of Bλ with respect to the basis {vλj } is

Bλ =


0 µ1(λ) 0 0 · · ·

−µ1(λ) 0 0 µ2(λ) · · ·
0 0 −µ2(λ) 0 · · ·
...

...
...

...
. . .


2n×2n

. (0.10)

This is true locally as Katsumi6 did for symmetric matrices.
See Chang, Markina and Wang7.

6
N. Katsumi: Characteristic roots and vectors of a differentiable family of symmetric

matrices, Linear and Multilinear Algebra, 1, 159-162, (1973).
7
D.C. Chang, I. Markina and W. Wang: The Laguerre calculus on the nilpotent Lie group

of step two, J. Math. Anal. Appl., (2019).
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We can write y ∈ R2n in terms of the basis {vλk} as
y =

∑n
j=1

(
yλ2j−1v

λ
2j−1 + yλ2jv

λ
2j

)
∈ R2n for some yλ1 , . . . , y

λ
2n ∈ R.

We call (yλ1 , . . . , y
λ
2n) the λ-coordinates of y ∈ R2n.

The most important left-invariant differential operator on
nilpotent Lie groups of step two N is the Kohn Laplacian:

Dα = ∆b + iα · ∂s, (0.11)

where ∂s = (∂s1 , . . . , ∂sr ), s = (s1, . . . , sr), α = (α1, . . . , αr) ∈ Rr.
In particular, if α = 0, one has the sub-Laplacian defined on N :

4b := −1

4

2n∑
k=1

YkYk. (0.12)

Here

Yk := ∂yk + 2

r∑
β=1

2n∑
j=1

Bβjkyj∂tβ . (0.13)
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We are interested in finding the heat kernel for the operator
∂
∂t −Dα on N . It is reasonable to expect the kernel has the form

ht(y, s) := exp{−tDα}δ0 =
c

t
ν
2
e−g(y,s), for suitable ν (0.14)

in the sense of distribution. Here modified complex action

function g(y, s) plays the role of d2cc(y,s)
2t and satisfies the

Hamilton-Jacobi equation

∂g

∂s
+H

(
y, Y1g, . . . , Y2ng

)
= 0.

The simplest example of nilpotent Lie group of step two N is
the Heisenberg group Hn. See Müller and Ricci8 for many
interesting results. Inspired by the work of Berenstein, Chang
and Tie 9, we are going to obtain the heat kernel of ht(y, s) on
N via the Laguerre calculus.

8
D. Müller and F. Ricci: Analysis of second order differential operators on Heisenberg

groups I,II, Invent. Math., 101, 545-585, (1990) and JFA, 108, 296-346, (1992).
9
Berenstein-Chang-Tie: Laguerre calculus and its applications on the Heisenberg group,

AMS/IP Studies in Advanced Mathematics 22, (2001).
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Before we go further, let us recall a beautiful idea of Mikhlin10

contained in his 1936 study of convolution operators on R2. Let
F denote a principal value convolution operator on R2:

F(φ)(x) = lim
ε→0

∫
|y|>ε

F (y)φ(x− y)dy,

where φ ∈ C∞0 (R2) and F ∈ C∞(R2 \ {(0, 0)}) is homogeneous of
degree −2 with the vanishing mean value, i.e., F (λz) = λ−2F (z)
for λ > 0 and

∫
|z|=1

F (z)dz = 0. It follows that

F (z) =
f(θ)

r2
, z = y1 + iy2 = reiθ,

where f(θ) =
∑
k∈Z,k 6=0 fke

ikθ. Suppose that g is another smooth
function on [0, 2π] with g(θ) =

∑
m∈Z,m 6=0 gme

imθ. Then g induces
a principal value convolution operator G on R2 with kernel
G = g(θ)

r2 .

10
Mikhlin: Multidimensional singular integrals and integral equation, International Series of

Monographs in Pure and Applied Mathematics, 83, (1936).
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Mikhlin found the following identity:

|k|i−|k|

2π

eikθ

r2
∗ |m|i

−|m|

2π

eimθ

r2
=
|k +m|i−|k+m|

2π

ei(k+m)θ

r2
. (0.15)

Here ∗ stands for the Euclidean convolution. Denote the
“symbol” σ(F) of F as

σ(F) =
∑

k∈Z,k 6=0

(
|k|i−|k|

2π

)−1

fke
ikθ.

With this notation, one may rewrite (0.15) as follows:

σ(F ∗G) = σ(F) · σ(G).
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It is natural to seek a similar calculus in noncommutative
setting. The simplest and most natural noncommutative
analogue of the algebra of principal value convolution operators
in Rn is the left-invariant principal value convolution operators
on the n-dimensional Heisenberg group Hn. Mikhlin’s symbol is
replaced by a matrix, or tensor, and commutative symbol
multiplication becomes noncommutative matrix or tensor
multiplication. This is the so-called Laguerre calculus. Laguerre
calculus is the symbolic tensor calculus originally induced by
the Laguerre functions on the Heisenberg group Hn. It was first
introduced on H1 by Greiner and later extended to Hn and
Hn ×Rm by Beals, Gaveau, Greiner and Vauthier11.

11
R. Beals, B. Gaveau, P. Greiner and J. Vauthier: The Laguerre calculus on the

Heisenberg group II, Bull. Sci. Math., 110 (3), 225-288, (1986).
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For a fixed point (y, s) ∈ N , the left multiplication by (x, u) is
an affine transformation of R2n+r:

y 7→ y + x, s 7→ s+ u+ 2B(x, y),

which preserves the Lebesgue measure dyds of R2n+r. dyds is
also right invariant, and so it is an invariant measure on the
group N .

ϕ ∗ ψ(y, s) =

∫
N
ψ
(
(x, u)−1(y, s)

)
ϕ(x, u)dxdu (0.16)

for f, g ∈ L1(N ).
The partial Fourier transformation of a function ϕ on N is
defined as

ϕ̃λ(y) =

∫
Rr

e−iλ·sϕ(y, s)ds, τ ∈ Rr \ {0}.
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The twisted convolution of two function f and g on R2n is

f ∗λ g(y) =

∫
R2n

e−i2B
λ(y,x)f(y − x)g(x)dx

=

∫
R2n

e−i2|λ|B
λ̇(y,x)f(y − x)g(x)dx

where

λ̇ =
λ

|λ|
∈ Sr−1.

Straightforward calculation shows that

(ϕ̃ ∗ ψ)λ(y) =

∫
Rr

e−iλ·sds

∫
Rr

∫
R2n

ϕ(y − x, s− u− 2B(y, x))ψ(x, u)dxdu

=

∫
R2n

dx

∫
Rr

∫
Rr

e−iλ·[s̃+u+2B(y,x)]ϕ(y − x, s̃)ψ(x, u)ds̃ds

=

∫
R2n

e−i2|λ|B
λ̇(y,x)ϕ̃λ(y − x)ψ̃λ(x)dx = ϕ̃λ ∗λ ψ̃λ.

Therefore,

the convolution algebra L1(N )
homo.−→ the algebra L1(R2n)

under twisted convolution ∗λ.
18 / 42



The generalized Laguerre polynomials L(p)
k are defined by the

generating function formula12:

∞∑
k=1

L
(p)
k (λ)zk =

1

(1− z)p+1
e−

λz
1−z , λ ∈ R, (0.17)

For λ ∈ [0,∞), k, p ∈ Z+,

l
(p)
k (λ) :=

[
Γ(k + 1)

Γ(k + p+ 1)

] 1
2

L
(p)
k (λ)λ

p
2 e−

λ
2 . (0.18)

By a result of Szegö13, we know that {l(p)k (λ), k ∈ Z+} forms an
orthonormal basis of L2([0,∞), dλ) for fixed p. We define the

functions W(p)
k on R2 ×Rr via their partial Fourier transform

W̃(p)
k (z, λ) =

2|λ|
π

(sgn p)pl
(|p|)
k (2|λ||z|2)eipθ, λ ∈ Rr, (0.19)

where z = y1 + iy2 = |z|eiθ ∈ C1.
12

A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi: Higher Transcendental
Functions I and II, McGraw-Hill, (1953).

13
G. Szegö: Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publ., 23, (1939).
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One may define the exponential Laguerre distribution W(p)
k (z, s)

on Cn ×Rr via their partial Fourier transformations

W̃(p)
k (z, λ) :=

n∏
j=1

µj(λ̇)W̃(pj)
kj

(√
µj(λ̇)zλj , λ

)
, (0.20)

where z ∈ Cn, λ ∈ Rr, p = (p1, . . . pn) ∈ Zn, k = (k1, . . . kn) ∈ Zn+,
and λ̇ = λ

|λ| ∈ Sr−1, µj(λ) = |λ|µj(λ̇) and zλj = yλ2j−1 + iyλ2j ∈ C1,

j = 1, . . . , n. Note that W̃(p)
k (y, λ) is only defined for λ ∈ Rr such

that Bλ is non-degenerate. It can be calculated that∥∥∥W̃(p)
k (·, λ)

∥∥∥2

L2(R2n)
=

2n(det
∣∣Bλ∣∣) 1

2

πn
=

2n

πn

n∏
j=1

µj(λ),

∥∥∥W̃(p)
k (·, λ)

∥∥∥
L1(R2n)

=

n∏
j=1

∥∥∥l(pj)kj

∥∥∥
L1(R1)

,

(0.21)

where |Bλ| := [(Bλ)TBλ]
1
2 .

Moreover, for f ∈ L2(N ), we have

lim
r→1−

lim
m→∞

∑
|k|≤m

rkW(0)
k ∗ f = f in L2. (0.22)
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Inspired by a method developed by Ogden and Vági14, for any
fixed λ ∈ Rr \ {0} with Bλ non-degenerate, W̃(p)

k (·, λ) for fixed
k,p is a Schwarz function over R2n, and {W̃(p)

k (·, λ)}p∈Zn,k∈Zn+
forms an orthogonal basis of L2(R2n) that satisfies

Proposition 0.1

For k,p,q,m ∈ Zn+, we have

W̃(p−k)
(k∧p)−1 ∗λ W̃

(q−m)
(q∧m)−1 = δ

(q)
k W̃

(p−m)
(p∧m)−1,

where p ∧m− 1 := (min(k1, p1)− 1, . . . ,min(kn, pn)− 1) and δ
(q)
k

is the Kronecker delta function.

Assume that F ∈ L1(N ) ∩ L2(N ). Then for almost all λ,
F̃λ(y) ∈ L2(R2n) has the Laguerre expansion

F̃λ(y) =
∑

p,k∈Zn+

Fp
k (λ)W̃(p−k)

p∧k−1(y, λ) with

∞∑
p,k∈Zn+

|Fp
k (λ)|2 <∞.

14
R. Ogden and S. Vági: Harmonic analysis on a nilpotent group and function theory on

Siegel domains of type 2, Adv. Math., 33, 31-92, (1979).
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The Laguerre tensor of F is defined as

Mλ(F ) := (Fp
k (λ))

p,k∈Zn+
.

The following theorem is the core of the Laguerre calculus on
nilpotent Lie groups N of step two15.

Theorem 0.2

Suppose that Bλ is non-degenerate for almost all λ ∈ Rr. For
F,G ∈ L1(N ) ∩ L2(N ), we have

Mλ(F ∗G) =Mλ(F ) · Mλ(G)

for almost all λ ∈ Rr.

The convolution algebra L1(N )
homo.−→ the algebra L1(R2n) under

twisted convolution ∗λ
homo.−→ the algebra of ∞×∞-matrices.

15
Theorem 1.1 in D.C. Chang, I. Markina and W. Wang, JMAA, (2019).
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For a differential operator D on the group N , we denote by D̃
the partial symbol of D with respect to λ ∈ Rr, i.e., ∂sβ is
replaced by iλβ. Then we have

∂̃s = (∂̃s1 , . . . , ∂̃sr ) = i(λ1, . . . , λr) = iλ. (0.23)

Let {vλ1 , . . . , vλ2n} be an orthonormal basis of R2n given by (0.9),
which smoothly depends on λ in an open set U . Then

Ỹvλj =
∂

∂vλj
+ 2iBλ

(
y, vλj

)
=

∂

∂yλj
+ 2iBλ

(
y, vλj

)
for j = 1, . . . , 2n. Using complex λ-coordinates, one has
zλj := yλ2j−1 + iyλ2j and complex horizontal vector fields

Zλj :=
1

2

(
Yvλ2j−1

− iYvλ2j
)
, Z̄λj :=

1

2

(
Yvλ2j−1

+ iYvλ2j

)
.

As usual, ∂
∂zλj

:= 1
2

(
∂

∂yλ2j−1

− i ∂
∂yλ2j

)
.
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Hence,

Z̃λj =
∂

∂zλj
+ iBλ

(
y, vλ2j−1

)
+Bλ

(
y, vλ2j

)
=

∂

∂zλj
+ iµj(λ)yλ2j − µj(λ)yλ2j−1 =

∂

∂zλj
− µj(λ)z̄λj ,

and

˜̄Zλj =
∂

∂z̄λj
+µj(λ)zλj , where

∂

∂z̄λj
:=

1

2

(
∂

∂yλ2j−1

+ i
∂

∂yλ2j

)
. (0.24)

Proposition 0.2

For any given λ ∈ Rr \ {0} with Bλ non-degenerate, let
{vλ1 , . . . , vλ2n} be the local orthonormal basis of R2n as before.
Then, we have

4b = −1

2

n∑
j=1

(Zλj Z̄
λ
j + Z̄λj Z

λ
j ) = −1

4

2n∑
j=1

Yvλj Yvλj := −1

4

2n∑
j=1

YjYj .
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It follows from Proposition 0.2 that for any fixed λ ∈ Rr \ {0},
we have its partial symbol is

4̃b := −1

4

2n∑
j=1

Ỹj Ỹj = −1

2

n∑
j=1

(
Z̃λj
˜̄Zλj + ˜̄Zλj Z̃λj ) .

Lemma 0.1

˜̄Zλj W̃(−p)
k (y, λ) =

{
−
√

2µj(λ)(kj + pj)W̃
(−p+ej)
k (y, λ), pj ∈ N

−
√

2µj(λ)kjW̃
(−p+ej)
k−ej (y, λ), pj = 0,

Z̃λj W̃
(p)
k (y, λ) =

{ √
2µj(λ)(kj + 1)W̃(p−ej)

k+ej
(y, λ), pj ∈ N√

2µj(λ)(kj + 1)W̃(p−ej)
k (y, λ), pj = 0,

where ej = (0, . . . , 1, . . . , 0) with 1 appearing in j-th entry and 0

otherwise.

The above lemma shows that partial symbols of complex vectors
Zλj , j = 1, . . . , n, act on Laguerre basis simply as shift operators.
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Example 0.3

Let us consider the Heisenberg group H1.

In this case, we may assume that a1 = 1. Then we have

M+(Z1) =
√

2|λ|


0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
· · · · · · · · · · · ·


and M−(Z1) = [M+(Z1)]T . Now we may set

M+(K) =
1√
2|λ|


0 0 0 0 · · ·
1√
1

0 0 0 · · ·
0 1√

2
0 0 · · ·

0 0 1√
3

0 · · ·
· · · · · · · · · · · ·


and M−(K) = [M+(K)]T . Thus

K̃(z, λ) =
1√
2|λ|

∞∑
k=0

1√
k + 1

W̃(1)
±,k(z, λ).
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Using the definition of W̃(1)
±,k(z, λ), we sum the series

K̃(z, λ) =
2|λ|ze−|λ||z|2

π

∫ 1

0

∞∑
k=0

rkL
(1)
k (2|λ||z|2)dr,

Using the generating formula (0.17):
∑∞
k=0 r

kL
(1)
k (x) =

ex

(1−r)2 e
− x

1−r , one has

K̃(z, λ) = 1
π
e−|λ||z|

2

z̄
and

K(z, s) = 1
2π2z̄

∫
R
e−isλ−|λ||z|

2

dλ = z
π2(|z|4+s2)

This is exactly a theorem of Greiner, Kohn and Stein16 on H1:

Z1K = I−W(0)
−,0 = I− S−, KZ1 = I−W(0)

+,0 = I− S+,

where S± are the “Cauchy-Szegö operators” with kernel

S±(z, s) =
2n−1n!

πn+1

∏n
j=1 aj

[
∑n
j=1 aj |zj |2 ∓ is]n+1

.

16
P. Greiner, J. Kohn and E.M. Stein: Necessary and sufficient conditions for solvability of

the Lewy equation, PNAS USA, 72, 3287-3289, (1975).
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3. The heat kernel of the sub-Laplace operator
By Lemma 0.1, we know that the action of partial Fourier
transformation of the operator Dα is diagonal. Computation
shows that

− 1

2

(
Z̃λj
˜̄Zλj + ˜̄Zλj Z̃λj ) W̃(0)

k (y, λ) = µj(λ)(2kj + 1)W̃(0)
k (y, λ). (0.25)

Hence, by (0.18), (0.19), (0.20) and (0.22), one has

Ĩ =
∞∑
|k|=0

W̃(0)
k (y, λ) =

∞∑
|k|=0

n∏
j=1

µj(λ̇)W̃(0)
kj

(

√
µj(λ̇)yλj , λ)

=
1

πn

∞∑
|k|=0

n∏
j=1

2|λ|µj(λ̇)L
(0)
kj

(σj)e
−
σj
2 ,

(0.26)

where
σj := 2µj(λ̇)|λ||yλj |2 = 2µj(λ)|yλj |2.
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Then we know that

h̃t(y, λ) = e−tD̃α Ĩ =

∞∑
|k|=0

e−tD̃αW̃(0)
k (y, λ)

=

∞∑
|k|=0

e−t
(∑n

j=1(2kj+1)µj(λ)−α·λ
)
W̃(0)

k (y, λ).

Therefore,

h̃t(y, λ) =
eα·λt

πn

∞∑
|k|=0

n∏
j=1

e−2kjµj(λ)te−µj(λ)t2|λ|µj(λ̇)L
(0)
kj

(σj)e
−
σj
2

=
eα·λt

πn

n∏
j=1

2µj(λ)e−µj(λ)te−
σj
2

∞∑
kj=0

(
e−2µj(λ)t

)kj
L

(0)
kj

(σj)

=
eα·λt

πn

n∏
j=1

2µj(λ)e−µj(λ)t

1− e−2µj(λ)t
· e
−
σj
2

(
1+ 2e

−µj(λ)t

1−e−2µj(λ)t

)

=
eα·λt

πn

n∏
j=1

µj(λ)

sinh(µj(λ)t)
· e−

σj
2 coth(µj(λ)t)

(0.27)
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Taking inverse Fourier transform with respect to the λ-variable
and we get

ht(y, s) =
1

(2π)rπntn+r

∫
Rr

[ n∏
j=1

µj(λ)

sinhµj(λ)

]
· eα·λ−

f(y,s,λ)
t dλ,

(0.28)
Here

f(y, s, λ) :=− is · λ+ |λ|
n∑
j=1

µj(λ̇)|yλj |2 coth(µj(λ̇)|λ|)

=− is · λ+
n∑
j=1

µj(λ)|yλj |2 cothµj(λ)

(0.29)

is the action function. Let |Bλ| := [(Bλ)TBλ]
1
2 . Then

det

(
|Bλ|

sinh |Bλ|

) 1
2

=

n∏
j=1

µj(λ)

sinhµj(λ)
(0.30)

is the volume element.
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Theorem 0.3

Suppose that Bλ is non-degenerate for any 0 6= τ ∈ Rr. For the
sub-Laplace operator Dα defined by (0.11) on nilpotent Lie
groups N of step two, the heat kernel of Dα has the following
expression:

ht(y, s) =
1

2r(πt)n+r

∫
Rr

det

[
|Bλ|

sinh |Bλ|

] 1
2

· eα·λ−
f(y,s,λ)

t dλ, (0.31)

where

f(y, s, λ) = −i
r∑

β=1

λβsβ +
〈
|Bλ| coth(|Bλ|)y, y

〉
. (0.32)

Here |Bλ| := [(Bλ)TBλ]
1
2 is a 2n× 2n symmetric matrix and

〈x, y〉 =
∑2n
j=1 xjyj for any vectors x, y ∈ R2n and (Bλ)T is the

transpose of Bλ.
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Example 0.4

Let Hn be a Heisenberg group which is a vector space R2n+1 with
a group multiplication

(x, u)(y, s) = (x+ y, u+ s− 2

n∑
j=1

aj(xjyj+n − yjxn+j)),

where a1, . . . , an are positive real numbers, x, y ∈ R2n, u, s ∈ R.
The Kohn Laplacian is

Dα = −1

2

n∑
j=1

(ZjZ̄j + Z̄jZj) + iα
∂

∂s
,

where α ∈ R and

Zj :=
∂

∂zj
+ iaj z̄j

∂

∂s
and Z̄j :=

∂

∂z̄j
− iajzj

∂

∂s
.
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To simplify notations, let us assume that n = 2. Then
skew-symmetric matrix Bλ is

Bλ =


0 0 −a1λ 0
0 0 0 −a2λ
a1λ 0 0 0
0 a2λ 0 0

 ∈M4×4.

and so

|Bλ| = [(Bλ)TBλ]
1
2 =


a1λ 0 0 0
0 a2λ 0 0
0 0 a1λ 0
0 0 0 a2λ

 .

In this case, we get det sinh |Bλ| =
∏n
j=1 sinh2(ajλ). Then we

have

det

(
|Bλ|

sinh |Bλ|

) 1
2

=

n∏
j=1

ajλ

sinh(ajλ)
.
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Similarly, we get

coth |Bλ| = cosh |Bλ|
sinh |Bλ|

=


coth(a1λ) 0 0 0

0 coth(a2λ) 0 0
0 0 coth(a1λ) 0
0 0 0 coth(a2λ)

 .

Then |Bλ| coth |Bλ| equals the following matrix
a1λ coth(a1λ) 0 0 0

0 a2λ coth(a2λ) 0 0
0 0 a1λ coth(a1λ) 0
0 0 0 a2λ coth(a2λ)

 ,

and

〈
|Bλ| coth(|Bλ|)y, y

〉
= λ

2∑
k=1

ak coth(akλ)(y2
k + y2

2+k).
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Hence, the heat kernel of the sub-Laplacian Dα on the
Heisenberg group Hn is

ht(y, s) =
1

2πn+1t
2n
2 +1

∫
R

n∏
j=1

ajλ

sinh(ajλ)
· eαλ−

f(y,s,λ)
t dλ, (0.33)

where

f(y, s, λ) = −iλs+ λ

n∑
k=1

ak coth(akλ)(y2
k + y2

n+k).

This recovers the results obtained by Calin, Chang and
Greiner17 and Calin, Chang, Furutani and Iwasaki18

17
O. Calin, D.C. Chang and P. Greiner: Geometric Analysis on the Heisenberg Group and

Its Generalizations, AMS/IP series in Advanced Mathematics, 40, (2007).
18

O. Calin, D.C. Chang, K. Furutani and C. Iwasaki: Heat Kernels for Elliptic and
Sub-elliptic Operators: Methods and Techniques, Birkhäuser-Verlag, (2010).
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The 1-dim quaternionic Heisenberg group Q1 is a vector space

Q×R3 = {[w, t] : w ∈ Q, t = (t1, t2, t3) ∈ R3}

with the multiplication law

q1 ◦ q2 = [w, t1, t2, t3] · [ω, s1, s2, s3]

= [w + ω, t1 + s1 − 2Im1(ω̄w), t2 + s2 − 2Im2(ω̄w),

t3 + s3 − 2Im3(ω̄w)].

(0.34)

The law (0.34) makes Q×R3 into Lie group with the identity
[0, 0] and the inverse [w, t]−1 given by

q−1 = [w, t1, t2, t3]−1 = [−w,−t1,−t2,−t3].

This group acts on the boundary ∂U of the “upper half space”
U = {(q1, q2) ∈ Q2 : Re(q2) > |q1|2} in Q2 transitively.
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Example 0.5

In this case, we know r = 3 and the skew-symmetric matrix Bλ

has the following form:

Bλ = λ1B1 + λ2B2 + λ3B3 =


0 λ1 −λ3 −λ2

−λ1 0 −λ2 λ3

λ3 λ2 0 λ1

λ2 −λ3 −λ1 0

 ∈M4×4.

Then we have

|Bλ| = [(Bλ)TBλ]
1
2 = |λ|I4, sinh |Bλ| = sinh(|λ|)I4,

coth |Bλ| = coth(|λ|)I4, |Bλ| coth |Bλ| = |λ| coth(|λ|)I4.

Here I4 is the 4× 4 identity matrix. Hence,

det

(
|Bλ|

sinh |Bλ|

) 1
2

=
|λ|2

sinh2 |λ|
,

and
〈
|Bλ| coth(|Bλ|)y, y

〉
=
〈
|λ| coth(|λ|)I4 y, y

〉
= |λ| coth(|λ|)|y|2.
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Hence, the heat kernel of the sub-Laplacian Dα on quaternionic
Heisenberg group Q1 is

ht(ω, s1, s2, s3) =
1

8π5t
4
2
+3

∫
R3

|λ|2

sinh2 |λ|
· eα·λ−

f(ω,s1,s2,s3,λ)
t dλ,

where

f(ω, s1, s2, s3, λ) = −i
3∑

β=1

λβsβ + |λ| coth(|λ|)|ω|2.

This recovers the results obtained by Calin, Chang and
Markina19.

19
O. Calin, D.C. Chang and I. Markina: Generalized Hamilton-Jacobi equation and heat

kernel on step two nilpotent Lie groups, Analysis and Mathematical Physics, Trends in
Mathematics. Birkhüser Basel, (2009).
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4. Heat kernel asymptotic expansions
It is well known that much geometric information about
Riemannian manifold can be decoded from the small-time
asymptotic expansions of the heat kernel of the Laplace-
Beltrami operator. See e.g., Varadhan20.
Here we just consider 1-dimensional Heisenberg group H1. In
this case, we just have two horizontal vector fields.
Fix q0 = (0, 0, 0) and let the other point q(x1, x2, y) vary. The
heat kernel ht(x1, x2, y) is given as a Laplace integral

ht(x1, x2, y) =
1

2π2t2

∫ ∞
−∞

e−
f(x1,x2,y,λ)

t V (λ) dλ, (0.35)

where the phase function is

f(x1, x2, y, λ) = −iλy + λ(x2
1 + x2

2) cothλ

and V (λ) = λ
sinhλ is the “volume element”.

20
SRS Varadhan: On the behavior of the fundamental soltion of the heat equation with variable

coefficients, Pure Appl. Math. 20, 431-455 (1967).
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We have the following theorem.

Theorem 0.4

The heat kernel ht(x1, x2, y) of the Heisenberg group in (0.33)
has the following asymptotic expansion as t→ 0+:
(1). when (x1, x2, y) = (0, 0, 0), ht(0, 0, 0) = 1

4t2 ;
(2). when (x1, x2, y) = (0, 0, y) with y 6= 0,

ht(0, 0, y) ∼ 1
2t2

∑∞
k=1 e

− kπ|y|t (−1)k+1k;

(3). when (x1, x2) 6= (0, 0) with y = 0,

ht(x1, x2, 0) ∼ 1

π2t
3
2
e−

(x21+x22)

t

∑∞
k=0 Γ

(
k+1

2

)
Ckt

k
2 ,

(4). when (x1, x2) 6= (0, 0),

ht(x1, x2, y) ∼ 1

π2t
3
2

e−
d2cc(x1,x2,y)

t

∞∑
k=0

Γ
(
k +

1

2

)
Dkt

k,

where dcc(x1, x2, y) is the sub-Riemannian distance between the
origin and the point (x1, x2, y), and the coefficients Dk can be
calculated explicitly by Debye’s method of steepest decent.
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We have the following form of asymptotics for the heat kernel
Chang-Li21:

Remark 0.1

ht(x1, x2, y) ∼ C

t
ν
2
e−

d2cc
2t ,

where C and ν are constants and dcc is the Carnot-
Carathéodory distance between (x1, x2, y) and the origin. We
note that the power ν of t varies. Namely,

ν =


4 > n, when x = 0, y = 0, diagonal;

4 = n+ 1, when x = 0, y 6= 0, off-diagonal, cut-conjugate;

3 = n, when x 6= 0, off-diagonal, not cut-conjugate.

Here, n = 3 is the topological dimension and ν is the Hausdorff
dimension.

21
D.C. Chang and Y. Li: Heat kernel asymptotic expansions for the Heisenberg sub-Laplacian

and the Grushin operator, Proceedings of the Royal Society A, 471, 20140943 (2016).
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Happy Birthday, Professor Benedetto!

Thank you for being a great scholar, a kind person
and a good friend.
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