The Cumulative Distribution Transform For Data Analysis And Machine Learning

Akram Aldroubi Vanderbilt University

Jubilee of Fourier Analysis and Applications In Celebration of John Benedetto 80th Birthday

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Supported by NIH Grant (Gustavo Rohde PI)

Gustavo Rohde

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Transports Transform

Transforms: Fourier Transform, Wavelet transform, Zak Transform, Shearlets, Scattering "transform,"...

– Typeset by $\mbox{Foil}{\rm T}_{\!E}\!{\rm X}$ –

Transports Transform

Transforms: Fourier Transform, Wavelet transform, Zak Transform, Shearlets, Scattering "transform,"...

Transport Transforms: Non-linear transforms based on transport theory: Monge and Katorovich Transport theory

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

The Monge Problem (1781)

The Monge Problem Let μ be a pile of sand on $X \subset \mathbb{R}^n$, find the "most efficient way" to transport it to the hole in the ground ν on $X \subset \mathbb{R}^n$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

The Monge Problem (1781)

The Monge Problem Let μ be a pile of sand on $X \subset \mathbb{R}^n$, find the "most efficient way" to transport it to the hole in the ground ν on $X \subset \mathbb{R}^n$.

Let μ, ν be probability measures on \mathbb{R}^n find a map $T^{\dagger}: \mathbb{R}^n \to \mathbb{R}^n$ such

$$T^{\dagger} = \arg \min_{\nu = T_{\#} \mu} \int_{\mathbb{R}^n} \|x - T(x)\|^2 d\mu(x),$$

where $\nu(B) = \mu(T^{-1}(B))$ for all measurable measurable sets B.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

The Monge Problem (1781)

The Monge Problem Let μ be a pile of sand on $X \subset \mathbb{R}^n$, find the "most efficient way" to transport it to the hole in the ground ν on $X \subset \mathbb{R}^n$.

Let μ, ν be probability measures on \mathbb{R}^n find a map $T^{\dagger}: \mathbb{R}^n \to \mathbb{R}^n$ such

$$T^{\dagger} = \arg \min_{\nu = T_{\#} \mu} \int_{\mathbb{R}^n} \|x - T(x)\|^2 d\mu(x),$$

where $\nu(B) = \mu(T^{-1}(B))$ for all measurable measurable sets B.

Weak version of the Monge problem: The Kantorovich problem (1939).

– Typeset by $\mbox{Foil}{\rm T}_{\!E\!}{\rm X}$ –

Brenier's Theorem (1991)

(Brenier's Theorem) Let μ, ν be two probability measures on \mathbb{R}^n (finite 2nd moments) that are absolutely continuous w.r.t Lebesgue measure. Then there exists a map $T^{\dagger} : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T^{\dagger} = \arg \min_{\nu = T_{\#} \mu} \int_{\mathbb{R}^n} \|x - T(x)\|^2 d\mu(x),$$

where $\nu(B) = \mu(T^{-1}(B))$ for all measurable measurable sets *B*. Moreover, T^{\dagger} is unique. (Generalization by Gangbo and McCann 1996, Villani 2006)

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Brenier's Theorem (1991)

(Brenier's Theorem) Let μ, ν be two probability measures on \mathbb{R}^n (finite 2nd moments) that are absolutely continuous w.r.t Lebesgue measure. Then there exists a map $T^{\dagger} : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T^{\dagger} = \arg \min_{\nu = T_{\#} \mu} \int_{\mathbb{R}^n} \|x - T(x)\|^2 d\mu(x),$$

where $\nu(B) = \mu(T^{-1}(B))$ for all measurable measurable sets *B*. Moreover, T^{\dagger} is unique. (Generalization by Gangbo and McCann 1996, Villani 2006)

The transport transform: Let $d\mu(x) = s(x)dx$ and $d\nu(x) = s_0(x)dx$, where r is a fixed reference signal, then the transform \tilde{s} of s is the unique solution to the Monge problem above, i.e., $\tilde{s} = T^{\dagger}$.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

The CDT transform

Let s a smooth probability density function on $[0,1] \subset \mathbb{R}$, and s_0 a reference probability density function on $[0,1] \subset \mathbb{R}$.

The Cumulative Distribution Transform

$$\int_{0}^{\tilde{s}(x)} s(\xi) d\xi = \int_{0}^{x} s_0(\xi) d\xi, \quad x \in [0, 1].$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

The CDT transform

Let s a smooth probability density function on $[0,1] \subset \mathbb{R}$, and s_0 a reference probability density function on $[0,1] \subset \mathbb{R}$.

The Cumulative Distribution Transform

$$\int_{0}^{\tilde{s}(x)} s(\xi) d\xi = \int_{0}^{x} s_0(\xi) d\xi, \quad x \in [0,1].$$

Typically $s_0 = \chi[0, 1]$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

The CDT transform

Let s a smooth probability density function on $[0,1] \subset \mathbb{R}$, and s_0 a reference probability density function on $[0,1] \subset \mathbb{R}$.

The Cumulative Distribution Transform

$$\int\limits_0^{\widetilde{s}(x)} s(\xi)d\xi = \int\limits_0^x s_0(\xi)d\xi, \quad x\in [0,1].$$

Typically $s_0 = \chi[0, 1]$.

Inverse Transform:

$$\tilde{s}'(x)s(\tilde{s}(x)) = s_0(x).$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

CDT and its inverse

[Park, Kolouri, Kundu, Rohde, ACHA 2018]

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Radon-CDT

[Kolouri, Park, Rohde, IEEE TIP 2016]

projection

CDT

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Convexification properties

 $T_s: \mathbb{R} \to L^2(\mathbb{R}): T_s(\mu)(x) = s_\mu(x) = s(x-\mu).$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Convexification properties

– Typeset by $\operatorname{\mathsf{FoilT}}_{\!E\!X}$ –

Convexification properties

Nonlinear signal transform

smooth PDFs

diffeomorphisms

convex, linearly separable

- [Wang, et al, UCV, 2014]
- Basu et al, PNAS 2014]
- [Kolouri et al IEEE TIP 16]
- [Kolouri et al, Pat. Rec, 17]
- [Park et al, ACHA 18]
- [Kolouri et al. IEEE SPM 17]
- Imagedatascience.com/transport

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Wasserstein distance between two measures

Let $\Pi(\mu,\nu)$ be the set of all probability measures on $\mathbb{R}^n \times \mathbb{R}^n$ with marginals μ and ν .

2-Wasserstein distance between μ and ν :

$$W_2^2(\mu,\nu) = \min_{\pi \in \Pi} \int_{\mathbb{R}^n} \|x - y\|^2 d\pi(x,y).$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Wasserstein distance between two measures

Let $\Pi(\mu,\nu)$ be the set of all probability measures on $\mathbb{R}^n \times \mathbb{R}^n$ with marginals μ and ν .

2-Wasserstein distance between μ and ν :

$$W_2^2(\mu,\nu) = \min_{\pi \in \Pi} \int_{\mathbb{R}^n} \|x - y\|^2 d\pi(x,y).$$

Existence of a minimizer is due to Kantorovich.

– Typeset by $\mbox{Foil}{\rm T}_{\!E\!}{\rm X}$ –

Wasserstein distance between two measures

Let $\Pi(\mu,\nu)$ be the set of all probability measures on $\mathbb{R}^n \times \mathbb{R}^n$ with marginals μ and ν .

2-Wasserstein distance between μ and ν :

$$W_2^2(\mu,\nu) = \min_{\pi \in \Pi} \int_{\mathbb{R}^n} \|x - y\|^2 d\pi(x,y).$$

Existence of a minimizer is due to Kantorovich.

The solution T^{\dagger} of the transport map of the Monge problem give rise to the minimizer to the Kantorovich problem: $d(\mu(x)\delta(y = T^{\dagger}(x)) \in \Pi$ and minimizes $W_2(\mu, \nu)$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Wasserstein distance between two measures

Theorem (Kolouri, Rohde) Let s_1 and s_2 be two signals (PDFs) and \tilde{s}_1, \tilde{s}_2 be their CDT transform with respect to fixed reference s_0 . Then

$$\|\tilde{s}_2 - \tilde{s}_1\|_{L^2(\mathbb{R}^n)}^2 = W_2(\mu, \nu) = \min_{\pi \in \Pi} \int_{\mathbb{R}^n} \|x - y\|^2 d\pi(x, y)$$

where $d\mu(x) = s_1(x)dx$ and $d\nu = s_2(x)dx$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

– Typeset by $\ensuremath{\mathsf{FoilT}}_{E\!X}$ –

Applications

Example: classifying facial expressions

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Applications

(TBM): modeling discriminant information

Actual classifier inverse

CANCER MODELING

- Liver: Basu et al, PNAS 2014
- * Thyroid: Ozolek et al, Medical Image Analysis, 2014
- * Skin melanoma: Liu et al, J. Pathology Informatics, 2016
- * Lung mesothelioma: Tosun et al, Cytometry A, 2015.
- * Breast carcinoma: unpublished

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Applications

Application: single image super-resolution

Kolouri, Rohde, Comp. Vision & Pattern Rec., 2015.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Akram Aldroubi

1

– Typeset by $\mbox{FoilT}_{\!E\!X}$ –

– Typeset by $\ensuremath{\mathsf{FoilT}}_{E\!X}$ –

Happy Birthday Caro

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –