Multi-D wavelet construction using Quillen-Suslin theorem for Laurent polynomials

Youngmi Hur

Johns Hopkins University

joint work with H. Park (POSTECH, South Korea), F. Zheng (JHU)

Fourier Talks February 21, 2014

Youngmi Hur Multi-D wavelet construction using Quillen-Suslin for Laurent poly

Outline

2 Our new approaches for non-redundant wavelet construction

Outline

Our new approaches for non-redundant wavelet construction

Quillen-Suslin theorem for Laurent polynomials

A column *q*-vector D(z) with Laurent polynomial entries is unimodular if it has a left inverse, i.e. if there exists a row *q*-vector F(z) s.t. F(z)D(z) = 1.

We assume $z \in \mathbb{C}^n$, |z| = 1.

Example: $D(z) = [\frac{1}{2}, \frac{1}{4}z_1^{-1} + \frac{1}{4}, \frac{1}{4}z_2^{-1} + \frac{1}{4}, \frac{1}{4}z_1^{-1}z_2^{-1} + \frac{1}{4}]^T$ is unimodular since [2, 0, 0, 0] is a left inverse of D(z). Another left inverse of D(z) is $[-\frac{1}{8}z_1^{-1} - \frac{1}{8}z_2^{-1} - \frac{1}{8}z_1^{-1}z_2^{-1} + \frac{5}{4} - \frac{1}{8}z_1 - \frac{1}{8}z_2 - \frac{1}{8}z_1z_2, \frac{1}{4} + \frac{1}{4}z_1, \frac{1}{4} + \frac{1}{4}z_2, \frac{1}{4} + \frac{1}{4}z_1z_2]$ The first one is simpler but the second one has better accuracy.

Theorem (Quillen-Suslin Thm for Laurent poly by Swan, 1978)

Let D(z) be a unimodular column *q*-vector. Then there exists an invertible $q \times q$ matrix T(z) s.t. $T(z)D(z) = [1, 0, ..., 0]^T$.

Quillen-Suslin theorem for Laurent polynomials

A column *q*-vector D(z) with Laurent polynomial entries is unimodular if it has a left inverse, i.e. if there exists a row *q*-vector F(z) s.t. F(z)D(z) = 1.

We assume $z \in \mathbb{C}^n$, |z| = 1.

Example: $D(z) = \begin{bmatrix} \frac{1}{2}, \frac{1}{4}z_1^{-1} + \frac{1}{4}, \frac{1}{4}z_2^{-1} + \frac{1}{4}, \frac{1}{4}z_1^{-1}z_2^{-1} + \frac{1}{4} \end{bmatrix}^T$ is unimodular since [2, 0, 0, 0] is a left inverse of D(z). Another left inverse of D(z) is $\begin{bmatrix} -\frac{1}{8}z_1^{-1} - \frac{1}{8}z_2^{-1} - \frac{1}{8}z_1^{-1}z_2^{-1} + \frac{5}{4} - \frac{1}{8}z_1 - \frac{1}{8}z_2 - \frac{1}{8}z_1z_2, \frac{1}{4} + \frac{1}{4}z_1, \frac{1}{4} + \frac{1}{4}z_2, \frac{1}{4} + \frac{1}{4}z_1z_2 \end{bmatrix}$ The first one is simpler but the second one has better accuracy.

Theorem (Quillen-Suslin Thm for Laurent poly by Swan, 1978)

Let D(z) be a unimodular column *q*-vector. Then there exists an invertible $q \times q$ matrix T(z) s.t. $T(z)D(z) = [1, 0, ..., 0]^T$.

Quillen-Suslin theorem for Laurent polynomials

A column *q*-vector D(z) with Laurent polynomial entries is unimodular if it has a left inverse, i.e. if there exists a row *q*-vector F(z) s.t. F(z)D(z) = 1.

We assume $z \in \mathbb{C}^n$, |z| = 1.

Example: $D(z) = [\frac{1}{2}, \frac{1}{4}z_1^{-1} + \frac{1}{4}, \frac{1}{4}z_2^{-1} + \frac{1}{4}, \frac{1}{4}z_1^{-1}z_2^{-1} + \frac{1}{4}]^T$ is unimodular since [2, 0, 0, 0] is a left inverse of D(z). Another left inverse of D(z) is $[-\frac{1}{8}z_1^{-1} - \frac{1}{8}z_2^{-1} - \frac{1}{8}z_1^{-1}z_2^{-1} + \frac{5}{4} - \frac{1}{8}z_1 - \frac{1}{8}z_2 - \frac{1}{8}z_1z_2, \frac{1}{4} + \frac{1}{4}z_1, \frac{1}{4} + \frac{1}{4}z_2, \frac{1}{4} + \frac{1}{4}z_1z_2]$ The first one is simpler but the second one has better accuracy.

Theorem (Quillen-Suslin Thm for Laurent poly by Swan, 1978)

Let D(z) be a unimodular column *q*-vector. Then there exists an invertible $q \times q$ matrix T(z) s.t. $T(z)D(z) = [1, 0, ..., 0]^T$.

Designing filter bank (FB) using Laurent polynomials Via polyphase representation (Vaidyanathan, 1993)

FB design problem: Find

•
$$H(z)$$
, $J_i(z)$, $i = 1, ..., p - 1$: row q-vectors

• D(z), $K_i(z)$, i = 1, ..., p - 1: column *q*-vectors s.t.

$$S(z)A(z) := \begin{bmatrix} D(z) & K_1(z) & \cdots & K_{p-1}(z) \end{bmatrix} \begin{bmatrix} H(z) \\ J_1(z) \\ \vdots \\ J_{p-1}(z) \end{bmatrix} = I_q$$

A(z): analysis bank; S(z): synthesis bank. The above identity is called the perfect reconstruction property. For the perfect reconstruction property to hold, we need $p \ge q$.

-- ()

Designing filter bank (FB) using Laurent polynomials Via polyphase representation (Vaidyanathan, 1993)

FB design problem: Find

•
$$H(z)$$
, $J_i(z)$, $i = 1, ..., p - 1$: row q-vectors

• D(z), $K_i(z)$, i = 1, ..., p - 1: column *q*-vectors s.t.

$$S(z)A(z) := \begin{bmatrix} D(z) & K_1(z) & \cdots & K_{p-1}(z) \end{bmatrix} \begin{bmatrix} \Pi(z) \\ J_1(z) \\ \vdots \\ J_{p-1}(z) \end{bmatrix} = I_q$$

A(z): analysis bank; S(z): synthesis bank. The above identity is called the perfect reconstruction property. For the perfect reconstruction property to hold, we need $p \ge q$.

TT(-)

The FB is called

- a non-redundant (or biorthogonal) FB if p = q.
 In this case, A(z) and S(z) are square matrices.
- a wavelet FB if
 - H(z): lowpass row q-vector
 - $J_i(z), i = 1, \dots, p-1$: highpass row *q*-vectors
 - D(z): lowpass column q-vector
 - $K_i(z)$, i = 1, ..., p 1: highpass column *q*-vectors
 - \Rightarrow wavelet FB design: a key step in wavelet construction
- a wavelet FB with *m* vanishing moments (VM) (for $m \ge 1$) if
 - H(z): lowpass row q-vector
 - $J_i(z)$, i = 1, ..., p 1: row q-vectors with m VM
 - D(z): lowpass column q-vector
 - $K_i(z)$, i = 1, ..., p 1: column *q*-vectors with *m* VM
 - \Rightarrow leads to wavelets with *m* VM (high performance)

Very brief introduction to wavelets

- Wavelets are a collection of functions obtained by scaling and translating a fixed set of functions (mother wavelets).
- Wavelet is a subfield of Harmonic analysis and highly interdisciplinary. Wavelets are used in many applications (e.g. image/signal processing, compressive sensing).

Examples (1-D): Haar (1909), VM=1; Daubechies (1987), VM=2

Constructing multi-D wavelets is challenging and important.

Youngmi Hur Multi-D wavelet construction using Quillen-Suslin for Laurent poly

Very brief introduction to wavelets

- Wavelets are a collection of functions obtained by scaling and translating a fixed set of functions (mother wavelets).
- Wavelet is a subfield of Harmonic analysis and highly interdisciplinary. Wavelets are used in many applications (e.g. image/signal processing, compressive sensing).

Examples (1-D): Haar (1909), VM=1; Daubechies (1987), VM=2

Constructing multi-D wavelets is challenging and important.

Youngmi Hur Multi-D wavelet construction using Quillen-Suslin for Laurent poly

Current approach for designing non-redundant wavelet FBs

Theorem (by Chen-Han-Riemenschneider, 2000)

Suppose H(z), D(z) are lowpass vectors and

 $\begin{array}{c} H(z), D(z) \text{ are lowpass ...} \\ \left[D(z) \quad K_{1}(z) \quad \cdots \quad K_{q-1}(z) \end{array} \right] \left[\begin{array}{c} H(z) \\ J_{1}(z) \\ \vdots \\ J_{q-1}(z) \end{array} \right] = I_{q}$

Then the following are equivalent.

If H(z), D(z) have m accuracy (AC, or approximation order).

2 $J_i(z)$, $K_i(z)$, i = 1, ..., q - 1, have *m* VM.

Current approach for designing non-redundant wavelet FBs

Theorem (by Chen-Han-Riemenschneider, 2000)

Suppose H(z), D(z) are lowpass vectors and

 $\begin{bmatrix} D(z) & K_1(z) & \cdots & K_{q-1}(z) \end{bmatrix} \begin{bmatrix} H(z) \\ J_1(z) \\ \vdots \\ J_{q-1}(z) \end{bmatrix} = I_q$

Then the following are equivalent.

• H(z), D(z) have *m* accuracy (AC, or approximation order).

2
$$J_i(z)$$
, $K_i(z)$, $i = 1, ..., q - 1$, have *m* VM.

Corollary (obtained by C-H-R and Q-S for Laurent polynomials)

Let H(z), D(z) be lowpass vectors with m AC and H(z)D(z) = 1. Then there exist $J_i(z)$, $K_i(z)$, i = 1, ..., q - 1, with m VM such that the perfect reconstruction property holds.

Vanishing moments (VM) and accuracy (AC)

Assume the dilation is dyadic, and $q = 2^n$. Then, $\Gamma := \{0, 1\}^n =: \{\nu_0 = 0, \nu_1, .., \nu_{q-1}\}$ can be chosen. Notice that $\mathbb{Z}^n = \bigcup_{\nu \in \Gamma} (2\mathbb{Z}^n + \nu)$.

Definition (for dyadic dilation case)

For $H(z) = [H_0(z), H_1(z), \dots, H_{q-1}(z)]$, let $H(z) = \sum_{j=0}^{q-1} z^{\nu_j} H_j(z^2)$. Let *m* be a nonnegative integer. Then H(z) has

•
$$m \text{ VM if } \frac{\partial^k}{\partial \omega^k} H(e^{i\omega})|_{\omega=0} = 0, \forall |k| \le m-1, \text{ and }$$

• *m* AC if
$$\frac{\partial^k}{\partial \omega^k} H(e^{i\omega})|_{\omega=\gamma} = 0, \forall |k| \le m-1, \forall \gamma \in \{0, \pi\}^n \setminus 0.$$

VM and AC for column vector $D(z) = [D_0(z), D_1(z), \dots, D_{q-1}(z)]^T$ is defined similarly by forming $D(z) = \sum_{j=0}^{q-1} z^{-\nu_j} D_j(z^2)$.

H(z) or D(z) is the highpass vector iff it has VM \geq 1.

Current approach is not satisfactory

Finding H(z), D(z) satisfying assumptions of Corollary is not easy, especially if the AC or the spatial dimension *n* is large.

Example: Let n = 2, and let $H(z) = [\frac{1}{2}, \frac{1}{4}z_1^{-1} + \frac{1}{4}, \frac{1}{4}z_2^{-1} + \frac{1}{4}, \frac{1}{4}z_1^{-1}z_2^{-1} + \frac{1}{4}]$: lowpass with 2 AC. Then $[2, 0, 0, 0]^T$: lowpass, a right inverse of H(z), but with 0 AC. Using Maple implementation of Algebraic Geometry theory (Cox-Little-O'Shea, 2006), we see any right inverse of H(z) is

$$\begin{bmatrix} 2\\0\\0\\0\\0 \end{bmatrix} - \frac{1}{2}u_1(z) \begin{bmatrix} z_1^{-1} + 1\\-2\\0\\0 \end{bmatrix} - \frac{1}{2}u_2(z) \begin{bmatrix} z_2^{-1} + 1\\0\\-2\\0 \end{bmatrix} - \frac{1}{2}u_3(z) \begin{bmatrix} z_1^{-1}z_2^{-1} + 1\\0\\-2\\0 \end{bmatrix}$$

for some Laurent polynomials $u_1(z)$, $u_2(z)$, $u_3(z)$. To find a right inverse of H(z) with 2 AC, one can use this parameterization. Usually done by fixing the total degree of Laurent poly u_1 , u_2 , u_3 , and then increasing the total degree if needed (Riemenschneider-Shen, 1997; Han-Jia, 1999; Park, 2002).

Current approach is not satisfactory

Finding H(z), D(z) satisfying assumptions of Corollary is not easy, especially if the AC or the spatial dimension *n* is large.

Example: Let n = 2, and let $H(z) = [\frac{1}{2}, \frac{1}{4}z_1^{-1} + \frac{1}{4}, \frac{1}{4}z_2^{-1} + \frac{1}{4}, \frac{1}{4}z_1^{-1}z_2^{-1} + \frac{1}{4}]$: lowpass with 2 AC. Then $[2, 0, 0, 0]^T$: lowpass, a right inverse of H(z), but with 0 AC. Using Maple implementation of Algebraic Geometry theory (Cox-Little-O'Shea, 2006), we see any right inverse of H(z) is

$$\begin{bmatrix} 2\\0\\0\\0 \end{bmatrix} - \frac{1}{2}u_1(z) \begin{bmatrix} z_1^{-1} + 1\\-2\\0\\0 \end{bmatrix} - \frac{1}{2}u_2(z) \begin{bmatrix} z_2^{-1} + 1\\0\\-2\\0 \end{bmatrix} - \frac{1}{2}u_3(z) \begin{bmatrix} z_1^{-1}z_2^{-1} + 1\\0\\0\\-2 \end{bmatrix}$$

for some Laurent polynomials $u_1(z), u_2(z), u_3(z)$. To find a right inverse of $\mathbb{H}(z)$ with 2 AC, one can use this parameterization. Usually done by fixing the total degree of Laurent poly u_1, u_2, u_3 , and then increasing the total degree if needed (Riemenschneider-Shen, 1997; Han-Jia, 1999; Park, 2002).

Outline

2 Our new approaches for non-redundant wavelet construction

Our approach (theory & algorithm) for designing non-redunant wavelet FBs

Inputs:

- H(z) : row, lowpass, *q*-vector w/ unimodularity, positive AC.
- G(z) : column, lowpass, *q*-vector w/ positive AC.
- F(z) : column, lowpass, *q*-vector, a right inverse of H(z).

Algorithm: Set

- D(z) := G(z) + F(z)(1 H(z)G(z)): column, q-vector
- T(z): $q \times q$ invertible matrix s.t. $T(z)H(z)^T = [1, 0, ..., 0]^T$.
- $K_1(z), ..., K_{q-1}(z)$: 2nd to last columns of $T(z)^T$.
- $J_1(z), ..., J_{q-1}(z)$: 2nd to last rows of $T(z)^{-T}[I_q F(z)H(z)][I_q G(z)H(z)].$

Output:

Wavelet FB: $(D(z), K_1(z), ..., K_{q-1}(z)), (H(z), J_1(z), ..., J_{q-1}(z))$ where D(z) is a right inverse of H(z) with positive AC.

Example: Designing a 2-D wavelet FB

Let
$$n = 2$$
.
Let $H(z) = G(z)^* = [\frac{1}{2}, \frac{1}{4}z_1^{-1} + \frac{1}{4}, \frac{1}{4}z_2^{-1} + \frac{1}{4}, \frac{1}{4}z_1^{-1}z_2^{-1} + \frac{1}{4}]$: lowpass with 2 AC.
Let $F(z) = [2, 0, 0, 0]^T$: lowpass with $H(z)F(z) = 1$, but with 0 AC.
Set $D(z) = G(z) + F(z)(1 - H(z)G(z)) = H(z)^* + (1 - H(z)H(z)^*)F(z)$

$$= \begin{bmatrix} \frac{1}{4} + \frac{1}{4}z_1\\ \frac{1}{4} + \frac{1}{4}z_2\\ \frac{1}{4} + \frac{1}{4}z_1z_2 \end{bmatrix} + (-\frac{1}{16}z_1^{-1} - \frac{1}{16}z_2^{-1} - \frac{1}{16}z_1^{-1}z_2^{-1} + \frac{3}{8} - \frac{1}{16}z_1 - \frac{1}{16}z_2 - \frac{1}{16}z_1z_2) \begin{bmatrix} 2\\0\\0\\0\\0 \end{bmatrix}$$

$$= [-\frac{1}{8}z_1^{-1} - \frac{1}{8}z_2^{-1} - \frac{1}{8}z_1^{-1}z_2^{-1} + \frac{5}{4} - \frac{1}{8}z_1 - \frac{1}{8}z_2 - \frac{1}{8}z_1z_2, \frac{1}{4} + \frac{1}{4}z_1, \frac{1}{4} + \frac{1}{4}z_2, \frac{1}{4} + \frac{1}{4}z_1z_2]^T$$
We see that $D(z)$ has 2 AC.
From the implementation of Quillen-Suslin Theorem by Maple, we see that
 $T(z) := \begin{bmatrix} 2 & 0 & 0 & 0\\ -\frac{1}{2}z_1^{-1} - \frac{1}{2} & 1 & 0 & 0\\ -\frac{1}{2}z_1^{-1} - \frac{1}{2} & 0 & 1 & 0\\ -\frac{1}{2}z_1^{-1} - \frac{1}{2} & 0 & 0 & 1 \end{bmatrix}$
satisfies $T(z)H(z)^T = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$.
Hence, we can get $K_1(z), K_2(z), K_3(z)$ from 2nd to 4th columns of $T(z)^T$ and
 $J_1(z), J_2(z), J_3(z)$ from 2nd to 4th rows of $T(z)^{-T}[I_4 - F(z)H(z)][I_4 - G(z)H(z)]$.

Example: Designing a 2-D wavelet FB

More precisely, the analysis bank A(z) and the synthesis bank S(z) are given as

$$A(z) = \begin{bmatrix} H(z) \\ J_1(z) \\ J_2(z) \\ J_3(z) \end{bmatrix}, \quad S(z) = \begin{bmatrix} D(z) & K_1(z) & K_2(z) & K_3(z) \end{bmatrix}$$

where

$$\begin{aligned} \mathbf{J}_{1}(z) &= \\ \begin{bmatrix} -\frac{1}{8} - \frac{1}{8}z_{1} & -\frac{1}{16}z_{1}^{-1} + \frac{7}{8} - \frac{1}{16}z_{1} & -\frac{1}{16}z_{2}^{-1} - \frac{1}{16}z_{2}^{-1}z_{1} - \frac{1}{16}z_{1}^{-1}z_{1}^{-1}z_{2}^{-1} - \frac{1}{16}z_{1}^{-1}z_{2}^{-1} - \frac{1}{16}z_{1}^{-1}$$

and

$$\mathsf{K}_{1}(z) = \begin{bmatrix} -\frac{1}{2}z_{1}^{-1} - \frac{1}{2} \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathsf{K}_{2}(z) = \begin{bmatrix} -\frac{1}{2}z_{2}^{-1} - \frac{1}{2} \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathsf{K}_{3}(z) = \begin{bmatrix} -\frac{1}{2}z_{1}^{-1}z_{2}^{-1} - \frac{1}{2} \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Our approach for high-performance wavelet FB design

Given a positive integer m, let

- H(z) : row, lowpass, *q*-vector w/ unimodularity, <u>*m* AC</u>.
- G(z) : column, lowpass, q-vector w/ <u>m AC</u>.
- F(z) : column, lowpass, *q*-vector, a right inverse of H(z).

Then one has an algorithm to construct a non-redundant wavelet FB with at least m VM so that

$$\begin{bmatrix} D(z) & * & \cdots & * \end{bmatrix} \begin{bmatrix} H(z) \\ * \\ \vdots \\ * \end{bmatrix} = I_q,$$

where D(z), still determined by H(z), G(z) and F(z), is a right inverse of H(z) with at least *m* AC.

Summary

Summary of the talk

- Our method can be used to design non-redundant wavelet FBs for any dimension (it is especially useful for multi-D).
- It provides an algorithm for constructing a wavelet FB w/ m VM, starting from a unimodular lowpass vector w/ m AC.
- It does not require the initial unimodular lowpass vector to satisfy any additional assumption other than AC condition.

Things that I did not cover in the talk

- Our approaches work for any dilation.
- Connection of our method to Laplacian pyramid algorithms.

Remaining challenges

- Our approaches so far have been mostly algebraic, hence questions that are analytic in nature need to be answered separately.
- Currently we are using only the implementation of the big theorem (Quillen-Suslin Theorem for Laurent polynomials).
 We'll try to fully exploit the powerfulness of the big theorem.
- Currently we are concerned with only the VM of wavelets. We'll try to incorporate other properties such as symmetry, interpolatory property, and fast algorithms.

References

- R. G. Swan, "Projective modules over Laurent polynomial rings," Trans. Amer. Math. Soc., 1978.
- P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Englewood Cliffs, NJ: Prentice-Hall, 1993.
- D.-R. Chen, B. Han, and S. D. Riemenschneider, "Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments," Adv. Comput. Math., 2000.
- O. Cox, J. Little, and D. O'Shea, "Ideals, Varieties, and Algorithms," 2006.
- S. D. Riemenschneider and Z. Shen, "Multidimensional interpolatory subdivision schemes," SIAM J. Numer. Anal., 1997.
- 6 B. Han and R.-Q. Jia, "Optimal interpolatory subdivision schemes in multidimensional spaces," SIAM J. Numer. Anal., 1999.
- H. Park, "Optimal design of synthesis filters in multidimensional perfect reconstruction FIR filter banks using Gröbner bases," IEEE Trans. Circuits Systems I Fund. Theory Appl., 2002.

Thank you for your attention

Appendix

Appendix

Unimodularity is ring-dependent

 $[z, z^2]$ is unimodular in Laurent polynomial ring since $[\frac{1}{2}z^{-1}, \frac{1}{2}z^{-2}]^T$ is a right inverse, but not in polynomial ring since there are no polynomials f(z), g(z) s.t. $f(z)z + g(z)z^2 = 1$.

Filter bank (FB)

 $h, d, j_i, k_i : \mathbb{Z}^n \to \mathbb{R}, i = 1, \dots, p - 1$, are filters (w/ finite supports) Downsampling & upsampling, with $n \times n$ sampling matrix Λ (w/ integers and all eigenvalues have magnitude larger than 1):

$$y_{\downarrow}(k) = y(\Lambda k), \quad k \in \mathbb{Z}^{n}.$$

$$y_{\uparrow}(k) = \begin{cases} y(\Lambda^{-1}k), & k \in \Lambda \mathbb{Z}^{n}, \\ 0, & \text{otherwise.} \end{cases}$$

i.e. for n = 1, $\Lambda = 2$, $y = (\dots, y(-1), y(0), y(1), \dots)$, we have $y_{\downarrow} = (\dots, y(-2), y(0), y(2), \dots)$ $y_{\uparrow} = (\dots, y(-1), 0, y(0), 0, y(1), \dots).$

Filter bank (FB) problem is to find $\{h, j_1, ..., j_{p-1}\}$, $\{d, k_1, ..., k_{p-1}\}$ s.t. $d * ((h * x)_{\downarrow})_{\uparrow} + \sum_{i=1}^{p-1} k_i * ((j_i * x)_{\downarrow})_{\uparrow} = x$, for any finitely supported signal x. Appendix

Laurent polynomial lowpass/highpass vectors

 Λ : $n \times n$ sampling matrix

 $q=|\det\Lambda|$

 Γ : a set of representatives of distinct cosets of $\mathbb{Z}^n/\Lambda\mathbb{Z}^n$ with 0. Then $\Gamma =: \{\nu_0 = 0, \nu_1, ..., \nu_{a-1}\}, \mathbb{Z}^n = \bigcup_{\nu \in \Gamma} (\Lambda\mathbb{Z}^n + \nu).$

Definition

Let $H(z) = [H_0(z), H_1(z), ..., H_{q-1}(z)]$ be a row *q*-vector.

• H(z) is the (polyphase) lowpass vector if $H(e^{i\omega})|_{\omega=0} = \sqrt{q}$

• H(z) is the (polyphase) highpass vector if $H(e^{i\omega})|_{\omega=0} = 0$ where

$$H(z) = \sum_{j=0}^{q-1} z^{\nu_j} H_j(z^{\Lambda})$$

The type of column *q*-vector $D(z) = [D_0(z), D_1(z), \dots, D_{q-1}(z)]^T$ is defined similarly by forming $D(z) = \sum_{j=0}^{q-1} z^{-\nu_j} D_j(z^{\Lambda})$.

Our theory: full version

Theorem (by Hur-Park-Zheng)

Let

- $\alpha_{\rm H}, \beta_{\rm H}, \alpha_{\rm G}, \beta_{\rm G} > 0$ and $\alpha_{\rm F} \ge 0$: integers.
- H(z) : unimodular lowpass row *q*-vector w/ α_H AC, β_H FL.
- G(z) : lowpass column *q*-vector w/ α_{G} AC and β_{G} FL.
- F(z) : lowpass column *q*-vector w/ α_F AC, H(z)F(z) = 1.

Then one can construct a non-redundant wavelet FB so that

 $\begin{bmatrix} D(z) & * & \cdots & * \end{bmatrix} \begin{bmatrix} \vdots \\ * \\ \vdots \\ * \end{bmatrix} = I_q, D(z) := G(z) + F(z)(1 - H(z)G(z))$

with lowpass D(z) w/ at least min{ $\alpha_G, \alpha_F + \beta_G, \alpha_F + \beta_H$ } > 0 AC.

FL: flatness

Our algorithm to get a wavelet FB: full version

Inputs:

- $\alpha_{\rm H}, \beta_{\rm H}, \alpha_{\rm G}, \beta_{\rm G} > 0$ and $\alpha_{\rm F} \ge 0$: integers.
- H(z) : unimodular lowpass row *q*-vector w/ $\alpha_{\rm H}$ AC, $\beta_{\rm H}$ FL.
- G(z) : lowpass column *q*-vector w/ $\alpha_{\rm G}$ AC and $\beta_{\rm G}$ FL.
- F(z) : lowpass column *q*-vector w/ α_F AC, H(z)F(z) = 1.

Output:

• wavelet FB whose lowpass row vector is H(z).

Procedure:

Step 1 Set D(z) := G(z) + F(z)(1 - H(z)G(z)).

Step 2 Find invertible K(z) s.t. $K(z)H(z)^T = [1, 0, .., 0]^T$.

Step 3 Let $K_1(z), ..., K_{q-1}(z)$ be the 2nd to last columns of $K(z)^T$.

Step 4 Let $J_1(z), ..., J_{q-1}(z)$ be the 2nd to last rows of $K(z)^{-T}[I_q - F(z)H(z)][I_q - G(z)H(z)]$

Appendix

Our algorithm to get a wavelet FB w/ at least $\alpha_{\rm H}$ VM: full version

Inputs:

- $\alpha_{\rm H}, \beta_{\rm H} > 0$ and $\alpha_{\rm F} \ge 0$: integers.
- H(z) : unimodular lowpass row q-vector w/ $\alpha_{\rm H}$ AC, $\beta_{\rm H}$ FL.
- F(z) : lowpass column *q*-vector w/ α_F AC, H(z)F(z) = 1.

Output:

• wavelet FB w/ lowpass row vector ${\tt H}(z)$ and at least $\alpha_{\tt H}$ VM.

Procedure:

 $\begin{array}{ll} \mbox{Step 1} & \mbox{Initialize Iter} := 1 \mbox{ and } \mathbb{D}(z) := \mathbb{H}(z)^* + \mathbb{F}(z)(1 - \mathbb{H}(z)\mathbb{H}(z)^*) \\ \mbox{Step 2} & \mbox{While } (\alpha_{\mathbb{F}} + (Iter)\beta_{\mathbb{H}} < \alpha_{\mathbb{H}}) \\ & \mbox{Iter} := Iter + 1; \quad \mathbb{D}(z) := \mathbb{H}(z)^* + \mathbb{D}(z)(1 - \mathbb{H}(z)\mathbb{H}(z)^*) \\ & \mbox{end} \\ \mbox{Step 3} & \mbox{Find invertible } \mathbb{K}(z) \mbox{ s.t. } \mathbb{K}(z)\mathbb{H}(z)^T = [1,0,..,0]^T. \\ \mbox{Step 4} & \mbox{Define } \mathbb{K}_1(z),..,\mathbb{K}_{q-1}(z) \mbox{ and } \mathbb{J}_1(z),..,\mathbb{J}_{q-1}(z) \mbox{ as previous.} \end{array}$

Appendix

Vanishing moments (VM), flatness (FL), accuracy (AC)

Definition

For $H(z) = [H_0(z), H_1(z), \dots, H_{q-1}(z)]$, let $H(z) = \sum_{j=0}^{q-1} z^{\nu_j} H_j(z^{\Lambda})$. Let *m* be a nonnegative integer.

• H(z) has m VM if $\frac{d^k}{d\omega^k}H(e^{i\omega})|_{\omega=0}=0, \forall |k|\leq m-1$

•
$$H(z)$$
 has $m \operatorname{\mathsf{FL}}$ if $\frac{d^k}{d\omega^k}(\sqrt{q} - H(e^{i\omega}))|_{\omega=0} = 0, \, \forall |k| \le m-1$

• H(z) has m AC if $\frac{d^k}{d\omega^k}H(e^{i\omega})|_{\omega=\gamma} = 0$, $\forall |k| \le m-1$, $\forall \gamma \in \Gamma^* \setminus 0$ Γ^* : set of rep. of distinct cosets of $2\pi(((\Lambda^T)^{-1}\mathbb{Z}^n)/\mathbb{Z}^n)$ w/ 0.

VM, FL, AC for column vector $D(z) = [D_0(z), D_1(z), \dots, D_{q-1}(z)]^T$ is defined similarly by forming $D(z) = \sum_{j=0}^{q-1} z^{-\nu_j} D_j(z^{\Lambda})$.

H(z) or D(z) is the highpass vector iff it has VM ≥ 1 H(z) or D(z) is the lowpass vector iff it has FL ≥ 1

Equivalent conditions for VM, FL, and AC

Theorem

For $H(z) = [H_0(z), H_1(z), ..., H_{q-1}(z)]$, let $H(z) = \sum_{j=0}^{q-1} z^{\nu_j} H_j(z^{\Lambda})$. Let *m* be a nonnegative integer.

- H(z) has m VM iff $H(e^{i\omega}) \approx O(|\omega|^m)$ (at $\omega = 0$)
- H(z) has m FL iff $\sqrt{q} H(e^{i\omega}) \approx O(|\omega|^m)$ (at $\omega = 0$)
- H(z) has m AC iff $H(e^{i(\omega+\gamma)}) \approx O(|\omega|^m)$ (at $\omega = 0$), $\forall \gamma \in \Gamma^* \setminus 0$ Γ^* : set of rep. of distinct cosets of $2\pi(((\Lambda^T)^{-1}\mathbb{Z}^n)/\mathbb{Z}^n)$ w/0.