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(Integer) Shifts of a Fixed Function

Given a function ψ ∈ L2(Rd), one of the most basic operations we
can consider is translation: Tkψ := ψ(· − k), k ∈ Zd .

Translation is a fundamental operator in harmonic analysis since it
is ”simple” and behaves well under the Fourier transform:

F(Tkψ) = e−2πik·ψ̂, where F(f )(ξ) :=

∫
R
f (x)e−2πix ·ξ dx .
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Shift Invariant Spaces

A finitely generated shift-invariant (FSI) subspaces of L2(Rd) is a
subspace S ⊂ L2(Rd) for which there exists a finite family Ψ of
L2(Rd)-functions such that

S = S(Ψ) := span{ψ(· − k) : ψ ∈ Ψ, k ∈ Zd}.

Remark

To keep the notation simple, we only consider the most basic case:
d = 1 and #Ψ = 1 [PSI space].

Applications

FSI/PSI subspaces are used in several applications.

Wavelets and other multi-scale methods are based on PSI
subspaces
FSI/PSI subspaces play an important role in multivariate
approximation theory such as spline approximation and
approximation with radial basis functions.
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Generating Sets

Stable generating set

Given the structure of S , it is natural to consider a generating sets
of integer translates. That is, a system with the following structure,

{ϕ(· − k) : k ∈ Z},

Often we take ϕ = ψ, but ϕ may be different from ψ. However,
we always require that S(ϕ) = S(ψ).
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Basic Fourier Analysis of S(ψ)

It can easily be deduced from the identity,

f =
∑
k

ckψ(· − k)⇒ f̂ =
∑
k

cke
−2πik·ψ̂

⇒ ‖f̂ ‖22 =

∫
T

∣∣∣∣∑
k

cke
−2πikξ

∣∣∣∣2∑
j

|ψ̂(ξ + j)|2 dξ

that
Jψm := (m · ψ̂)∨

is an isometry from L2(T; pψ) onto S(ψ), where pψ is the

periodization of |ψ̂|2, given by

pψ(ξ) :=
∑
k∈Z
|ψ̂(ξ + k)|2, ξ ∈ R.

Observation

The system {e2πikξ}k in L2(T; pψ) is mapped by Jψ to {ψ(· − k)}k .
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Some well-known classical results

Orthonormal and Riesz bases

Let ψ ∈ L2(R) and consider

B := {ψ(· − k) : k ∈ Z}.

We let
pψ(ξ) :=

∑
k∈Z
|ψ̂(ξ + k)|2, ξ ∈ R.

Then

B forms an orthonormal basis for S(ψ) provided pψ ≡ 1.
B forms a Riesz basis for S(ψ) provided that pψ � 1.

Extension to FSI spaces

The above result can be extended to FSI spaces using the
Grammian for the generating set.

Question

Is stability of B possible even if pψ 6� 1?

M. Nielsen Shift Invariant Spaces and BMO



Weaker notion of stability: Schauder bases

Definition

A family B = {xn : n ∈ N} of vectors in a Hilbert space H is a
Schauder basis for H if there exists a unique dual sequence
{yn : n ∈ N} ⊂ H such that for every x ∈ H,

lim
N→∞

N∑
n=1

〈x , yn〉xn = x (norm convergence).

Ordering of the system

The Schauder basis convergence may not be unconditional so the
ordering of the system becomes important.
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Schauder bases of translates and Muckenhoupt weights

The Muckenhoupt A2-class

A measurable, 1-periodic function w : R→ (0,∞) is an
A2(T)-weight provided that

[w ]A2 := sup
I∈I

(
1

|I |

∫
I
w(ξ) dξ

)(
1

|I |

∫
I
w(ξ)−1 dξ

)
<∞,

where I is the collection of intervals (arcs) on T.

Proposition [Sikic and N., ACHA (2008)]

Let ψ ∈ L2(R)\{0}. The system B := {ψ(· − k) : k ∈ Z} forms a
Schauder basis for S(ψ), with Z ordered the natural way as
0, 1,−1, 2,−2, . . ., if and only if the periodization function pψ
satisfies the A2(T) condition.

Remark

The result is based on the well-known
Hunt-Muckenhoupt-Wheeden Theorem.
Similar results for Gabor systems were obtained by Heil and
Powell [J. Math. Phys. (2006)].
The PSI result can be generalized to multivariate FSI spaces
using a theory of product A2-matrix weights [N., JFAA
(2010)].
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Conditional Schauder bases of integer translates

Examples

Define ψ ∈ L2(R) by

ψ̂(ξ) =
√

ln
(

ln(2 + |ξ|−1)
)
· χ[0,1)(ξ).

It follows that pψ(ξ) = ln
(

ln(2 + |ξ|−1)
)
, ξ ∈ [−1/2, 1/2). A

direct calculation shows that pψ ∈ A2(T), so
B := {ψ(· − k) : k ∈ Z} forms a Schauder basis for S(ψ).
However, pψ is not bounded and consequently B fails to be an
unconditional Riesz basis for S(ψ).

Another example is provided by ψ ∈ L2(R) defined by

ψ̂(ξ) = |ξ|α · χ[0,1)(ξ),

with α ∈ (−1/2, 1/2)
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Integer translates, A2, and BMO

The A2 class is closely related to the functions of bounded mean
oscillation.

Definition

Let f ∈ L1,loc(R) be 1-periodic, and let I be the collection of
intervals (arcs) on T. We say that f ∈ BMO(T) provided that

‖f ‖BMO(T) := sup
I∈I

1

|I |

∫
I
|f (x)− fI | dx <∞,

where fI := 1
|I |
∫
I f (x) dx .

One can verify that log(A2(T)) ⊂ BMO(T).

Conversely, for f ∈ BMO(T) there is some α > 0 such that
eαf ∈ A2(T) [by the John-Nirenberg inequality].

It is also easy to check that L∞(T) ↪→ BMO(T).
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Integer translates and the role played by L∞ ⊂ BMO

All of this is related to stability of integer translates by the fact that

{ψ(· − k) : k ∈ Z} forms a Riesz basis ⇐⇒ log(pψ) ∈ L∞

Question

Can we use the distance to L∞ of log(pψ) ∈ BMO(T) to quantify
the “quality” of a conditional Schauder basis?

Distance to L∞

For f ∈ BMO(T) we let

dist(f , L∞(T)) := inf
g∈L∞(T)

‖f − g‖BMO(T).
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The distance to L∞ in BMO

One additional observation

It is known that L∞ is not a closed subset of BMO. In fact,

{f ∈ BMO(T) : dist(f , L∞) = 0} =
{
f ∈ BMO : emf ∈ A2,m ∈ Z

}
.

This follows from the celebrated result by Garnett and Jones that
asserts that dist(f , L∞) and

ε(f ) := inf{λ > 0 : [ef /λ]A2(T) <∞}

are in fact equivalent independent of f ∈ BMO(T).

Theorem (Garnett and Jones)

There exist positive constants C1 and C2 such that for
f ∈ BMO(T),

C1ε(f ) ≤ dist(f , L∞(T)) ≤ C2ε(f ).
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The BMO subset dist(f , L∞(T)) = 0

Example

An example of an unbounded BMO function in
{f : dist(f , L∞) = 0} is given by

f (x) = ln
(

ln(2 + |x |−1)
)
, x ∈ T.

This is a consequence of the fact that lnN(2 + |x |−1) ∈ A2(T) for
any N ∈ N, which follows by direct calculation.
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Improved stability: The coefficient space

Let B = {xn}n∈N be a Schauder basis for H with dual system
{yn}n∈N. The coefficient space associated with B is the sequence
space given by

C(B) :=
{
{〈x , yn〉}n∈N : x ∈ H

}
.

Controlling C(B)

For a Riesz basis B, we have

C(B) = `2.

For a normalized conditional Schauder basis B in H one can find
2 ≤ p <∞ (possibly very large) such that

C(B) ↪→ `p.

[Gurarĭı and Gurarĭı, 1971]
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Improved conditioning based on dist(ln(pψ), L∞(T))

Theorem [Šikić and N. JFA (2014)]

Let ψ ∈ L2(R) and suppose that pψ ∈ A2(T). We let C(E) denote
the coefficient space for the Schauder basis E = {ψ(· − k)}k for

S(ψ). Define ε = ε(ln pψ) := inf{λ > 0 : [p
1/λ
ψ ]

A2
<∞}. Then the

following inclusion holds

C(E) ⊂
⋂

p0<p<∞
`p(Z), p0 :=

2

1− ε
.

In particular, if dist(ln(pψ), L∞(T)) = 0 then

C(E) ⊂
⋂

2<p<∞
`p(Z).
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Sketch of proof

i. The A2 condition implies that L2(T, pψ) ↪→ L1(T)

ii. Take f = limN→∞
∑
|k|≤N〈f , ψ̃(· − k)〉ψ(· − k) ∈ S(ψ) and

let mf = J−1ψ (f ) ∈ L2(T, pψ).

iii. Using i., verify that mf =
∑

k∈Z〈mf , ek〉L2(T)e2πikx .

iv. Now use the Reverse Hölder Inequality for pψ and the Hölder
inequality to estimate

‖mf ‖Lr
for r ≈ 2.

v. Conclude using the Hausdorff-Young inequality.
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An example

Example

Recall the previous example with ψ ∈ L2(R) defined by

ψ̂(ξ) =
√

ln
(

ln(2 + |ξ|−1)
)
· χ[0,1)(ξ),

and pψ(ξ) = ln
(

ln(2 + |ξ|−1)
)
, ξ ∈ [−1/2, 1/2).

A direct calculation shows that pNψ ∈ A2(T) for any N ∈ N, so
E = {ψ(· − k)}k forms a conditional Schauder basis for S(ψ) with
coefficient space for E controlled by

C(E) ⊂
⋂

2<p<∞
`p(Z).
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Another point of view: Improved conditioning of Schauder
bases

For a Schauder basis B = {xn : n ∈ N} in H with dual sequence
{yn : n ∈ N} ⊂ H, we consider the partial sum operators
SN(x) =

∑N
n=1〈x , yn〉xn. The basis constant for B is given by

κ(B) := sup
N∈N
‖SN‖.

Theorem [Šikić and N. JFA (2014)]

Let ψ ∈ L2(R) with periodization function pψ ∈ A2(T). Suppose
pψ satisfies dist(ln pψ, L∞) = 0. Let E = {ψ(· − k)}k . Then

i. If ln pψ ∈ L∞(T) then E forms a Riesz basis for S(ψ).
ii. If ln pψ 6∈ L∞(T) then for every η > 0 there exists b ∈ L∞(T)

such that Ẽ = {ϕ(· − k)}k , with ϕ̂ := ψ̂
eb

, forms a Schauder
basis for S(ψ) with Schauder basis constant at most
3 +O(η). The Schauder bases E and Ẽ are equivalent.
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