Unclouding Pollution Maps

Ioannis Konstantinidis

February 21, 2014

通 と く ヨ と く ヨ と

A philosopher, a mathematician, and an atmospheric scientist walk into a bar ...

・ 同 ト ・ ヨ ト ・ ヨ ト

= na0

A philosopher, a mathematician, and an atmospheric scientist walk into a bar ... where they meet a computer scientist and an environmental justice

advocate to talk about ozone pollution.

(本語) (本語) (本語) (二語)

A philosopher, a mathematician, and an atmospheric scientist walk into a bar ...

where they meet a computer scientist and an environmental justice advocate to talk about ozone pollution.

Jessica Crowley, Barry Lefer, Mark Huang, Ashik Khatri, Peggy Lindner, John Naruk, Ioannis Pavlidis, Dan Price, Matt Tejada, Ilyas Uyanik

・ 同 ト ・ ヨ ト ・ ヨ ト

A philosopher, a mathematician, and an atmospheric scientist walk into a bar ...

where they meet a computer scientist and an environmental justice advocate to talk about ozone pollution.

Jessica Crowley, Barry Lefer, Mark Huang, Ashik Khatri, Peggy Lindner, John Naruk, Ioannis Pavlidis, Dan Price, Matt Tejada, Ilyas Uyanik

Special thanks to our major sponsors:

The Houston Endowment, the American Lung Association, and the University of Houston.

イロト 不得 とくほと くほとう ほ

The issue with ground-level ozone (O_3)

 Ground-level ozone is not emitted directly into the air, but forms through a reaction of nitrogen oxides (NO_x) and volatile organic compounds (VOC) in the presence of sunlight.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The issue with ground-level ozone (O_3)

- Ground-level ozone is not emitted directly into the air, but forms through a reaction of nitrogen oxides (NO_x) and volatile organic compounds (VOC) in the presence of sunlight.
- Major man-made sources of NO_x and VOC:
 - emissions from industrial facilities and electric utilities
 - motor vehicle exhaust
 - gasoline vapors
 - chemical solvents

- Ground-level ozone is not emitted directly into the air, but forms through a reaction of nitrogen oxides (NO_x) and volatile organic compounds (VOC) in the presence of sunlight.
- Major man-made sources of NO_x and VOC:
 - emissions from industrial facilities and electric utilities
 - motor vehicle exhaust
 - gasoline vapors
 - chemical solvents
- O_3 is a highly reactive gas, and the main component of smog. When inhaled, it damages the lung membrane, decreases lung capacity, and causes inflammation.

イロト 不得 とくほと くほとう ほ

- Ground-level ozone is not emitted directly into the air, but forms through a reaction of nitrogen oxides (NO_x) and volatile organic compounds (VOC) in the presence of sunlight.
- Major man-made sources of NO_x and VOC:
 - · emissions from industrial facilities and electric utilities
 - motor vehicle exhaust
 - gasoline vapors
 - chemical solvents
- O_3 is a highly reactive gas, and the main component of smog. When inhaled, it damages the lung membrane, decreases lung capacity, and causes inflammation.

イロト 不得 とくほと くほとう ほ

• It is regulated by the EPA, which sets standards for acceptable exposure.

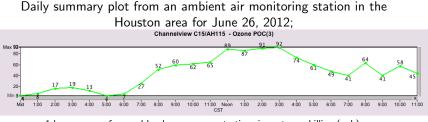
• To compute the AQI, the measured concentrations of ozone (in parts per billion, or ppb), are averaged over an eight hour period.

- ∢ ≣ ▶

- To compute the AQI, the measured concentrations of ozone (in parts per billion, or ppb), are averaged over an eight hour period.
- Each 8-hr period is then classified as good, moderate, unhealthy for sensitive groups, unhealthy, very unhealthy, or hazardous, according to a series of threshold AQI values.

() <) <)
 () <)
 () <)
</p>

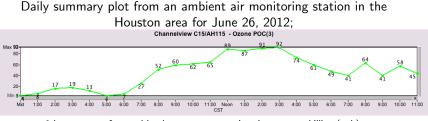
- To compute the AQI, the measured concentrations of ozone (in parts per billion, or ppb), are averaged over an eight hour period.
- Each 8-hr period is then classified as good, moderate, unhealthy for sensitive groups, unhealthy, very unhealthy, or hazardous, according to a series of threshold AQI values.
- Following the current rule, the threshold for moderate to unhealthy for sensitive groups is 75ppb.


- To compute the AQI, the measured concentrations of ozone (in parts per billion, or ppb), are averaged over an eight hour period.
- Each 8-hr period is then classified as good, moderate, unhealthy for sensitive groups, unhealthy, very unhealthy, or hazardous, according to a series of threshold AQI values.
- Following the current rule, the threshold for moderate to unhealthy for sensitive groups is 75ppb.
- Attaining compliance to the EPA standard requires that this threshold is exceeded no more than 4 days a year.

(日)

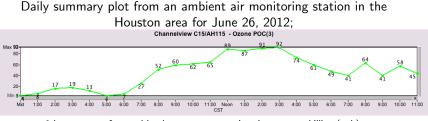
- To compute the AQI, the measured concentrations of ozone (in parts per billion, or ppb), are averaged over an eight hour period.
- Each 8-hr period is then classified as good, moderate, unhealthy for sensitive groups, unhealthy, very unhealthy, or hazardous, according to a series of threshold AQI values.
- Following the current rule, the threshold for moderate to unhealthy for sensitive groups is 75ppb.
- Attaining compliance to the EPA standard requires that this threshold is exceeded no more than 4 days a year.
- There is a separate standard based on 1-hr averages that applies to areas which fail to comply with the 8-hr standard.

イロト 不得 とくほと くほとう ほ


Houston, we have a problem

1-hr averages of ground-level ozone concentrations in parts per billion (ppb).

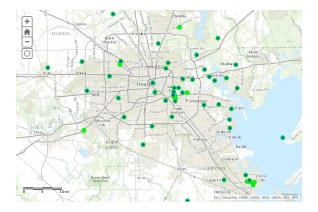
• The 8-hr averages exceeded 75 ppb for three time periods (those starting at 9am, 10am, and 11am).


Houston, we have a problem

1-hr averages of ground-level ozone concentrations in parts per billion (ppb).

- The 8-hr averages exceeded 75 ppb for three time periods (those starting at 9am, 10am, and 11am).
- This is *not* atypical. In fact, the Houston area is not projected to meet the standard for years to come.

Houston, we have a problem



1-hr averages of ground-level ozone concentrations in parts per billion (ppb).

- The 8-hr averages exceeded 75 ppb for three time periods (those starting at 9am, 10am, and 11am).
- This is *not* atypical. In fact, the Houston area is not projected to meet the standard for years to come.
- Until the standard is met, how can Houstonians stay informed about *current* ozone conditions in their daily lives?

Houston, we have a problem ... and it is not lack of data

On the monitoring side, the Texas Commission on Environmental Quality (TCEQ) maintains a network of 45 stations in the greater Houston area, collecting measurements every five minutes.

The problem is what we do with the data: clouding it

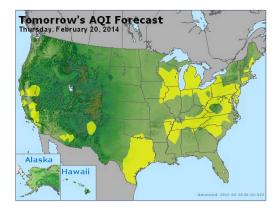
The TCEQ *retroactively* makes the data they collect available on the internet, reporting only the 1-hr average for the previous hour.

	provid	les the	e most	curre	nt hou	urly av	erage	d dat	a avai	lable.	Our co	nventi	on for	time-t	aggin	g data	is the	begin	nning	of eac	h hou	r. For	
example, value	es show	wn for	the n	oon h	our an	e base	ed on	measi	ureme	nts ta	ken fro	m noc	on to 1	L:00 p.	m. Th	e noo	n avei	age w	ill not	be ca	lculate	ed unt	til
after 1:00 p.m	. The	noon a	veraç	e will	then t	be ava	ilable	on ou	r exte	ernal s	erver t	rom 1	:15 p.	m. to :	1:30 p	.m. T	his res	ults in	i an aj	pparei	nt one	-hour	
time lag in the	data.	We al	so pre	sent o	our da	ta in L	ocal S	tanda	rd Tin	ne for	each i	neasu	ring si	te. For	most	of Te	xas th	is is C	entral	Stand	lard Ti	ime.	
During Dayligh	t Savir	ngs, th	is intr	oduce	s anot	her a	oparer	nt one	-hour	time l	ag in t	he dat	a.										
Use the contro	ls belo	w to s	elect	a diffe	rent d	late o	r time	forma	at and	to co	ntrol c	ell high	liahtin	o base	d on i	neasu	ired n	itroge	n dioxi	ide or	PM-2.	5 leve	eł
Click on the Ge	nerate	Repo	ort but	ton or	nce vo	u havi	e mad	e vou	r seled	tions.	Click o	in the	Plot D	ata bu	tton o	nce th	e tab	alar re	port h	has be	en aei	nerate	
to open a sepa								- ,00													90		
to open a sepe	nate w		conte	ig	aara h																		
	annelview								•	Selec	t a diff	erent	site										
	: Yea																						
June 26																							
Nitrogen Diox	ide H	ighlig	hts: (Mode					ensitiv	ves 💌	Unhea	ithy (Very	Unhea	lthy	e Haz	ardous	\$					
Nitrogen Diox	ide Hi	ighlig valida	hts: e nted d	Mode ata	rate	Unh	ealthy	for S											5/4H1	15 for	Tues	dav.	
Nitrogen Diox Green under The table belo	ide Hi ine for w cont	ighlig valida ains h	hts: e ated d ourly i	Mode ata averaç	rate ges for	Unh	ealthy	for S											5/AH1	15 for	Tues	day,	
Nitrogen Diox	ide Hi ine for w cont	ighlig valida ains h	hts: e ated d ourly i	Mode ata averaç	rate ges for	Unh	ealthy	for S											5/AH1	15 for	Tues	day,	
Nitrogen Diox Green underl The table belo June 26, 2012	ide Hi ine for w cont	ighlig valida ains h	hts: e ated d ourly i	Mode ata averaç	rate ges for	⊌Unh all th	ealthy e poll	for S										ew C1			Tues	day,	
Nitrogen Diox Green underl The table belor June 26, 2012	tide Hi ine for w cont 2. All ti	ighligi valida ains h imes s	hts: e ated d ourly a hown	Mode ata averag are in	rate ges for CST.	er all th	ealthy e polle	for S	and r	neteo	rologic	al conc	litions	meas	ured a	t Char	nelvie	After	noon				
Nitrogen Diox Green underl The table belo June 26, 201: Parameter Measured	tide Hi ine for w cont 2. All ti Mid	ighligi valida ains h imes s 1:00	hts: e ated d ourly i hown	Mode ata averag are in 3:00	cST.	eUnh all th Mor 5:00	ealthy e polle ning 6:00	for S utants	and r	neteo	rologic	al conc	litions	meas	ured a	t Char 3:00	nelvie	After 5:00	noon 6:00	7:00	8:00	9:00	
Nitrogen Dios Green underl The table belor June 26, 201: Parameter Measured Nitric Oxide	tide Hi ine for w cont 2. All ti Mid 1.9	ighligi valida ains h imes s	hts: e ated d ourly i hown	Mode ata averag are in 3:00	cST.	er all th	ealthy e polle ning 6:00	for S utants	and r	neteo	rologic	al conc	litions	meas	ured a	t Char 3:00	nelvie	After 5:00	noon 6:00	7:00			
Nitrogen Dios ©Green underl The table belor June 26, 2012 Parameter Measured Nitric Oxide Nitrogen Dioxide	Mid 1.9 20.4	ighligi valida ains h imes s 1:00	hts: e ated d ourly a hown 2:00 1.3	Mode ata averag are in 3:00 1.3	rate ges for CST. 4:00 1.0	eUnh all th Mor 5:00	ealthy e polle ning 6:00 11.1	for S utants 7:00 3.7	and r 8:00 0.4	9:00	rologic	al conc	litions	measi 1:00 0.8	ured a	3:00	4:00	After 5:00 1.5	6:00 2.0	7:00	8:00 1.0	9:00 0.8	
Nitrogen Dios Green underl The table belor June 26, 201: Parameter Measured Nitric Oxide Nitrogen	Mide Hi ine for w cont 2. All ti 1.9 20.4	ighlig valida ains h imes s 1:00 1.2	hts: e ated d ourly a hown 1.3 13.1	Mode ata averag are in 1.3 9.1	rate ges for CST. 1.0 11.9	Mor 5:00 20.7 25.8	ealthy e polle 6:00 11.1 25.5	7:00 3.7 19.5	and r 8:00 0.4 11.0	9:00 0.6 6.0	rologic 10:00 0.6	al conc 11:00 0.4	Noon 0.8 11.0	measi 1:00 0.8	2:00 1.0 13.3	3:00 1.2 14.3	4:00 1.6 22.5	After 5:00 1.5 26.8	6:00 2.0 33.5	7:00 1.8 32.6	8:00 1.0 12.9	9:00 0.8 19.1	
Nitrogen Dios @Green under1 The table below June 26, 201: Parameter Measured Nitric Oxide Nitrogen Dioxide Oxides of	Mide Hi ine for w cont 2. All ti 1.9 20.4 22.8	ighlig valida ains h imes s 1:00 1.2 19.9	hts: e ated d ourly a hown 1.3 13.1	Mode ata averag are in 1.3 9.1	rate ges for CST. 1.0 11.9	Mor 5:00 20.7 25.8	ealthy e polle 6:00 11.1 25.5	7:00 3.7 19.5	and r 8:00 0.4 11.0	9:00 0.6 6.0	10:00 0.6 5.7	11:00 0.4 5.9	Noon 0.8 11.0	measi 0.8 10.6	2:00 1.0 13.3	3:00 1.2 14.3	4:00 1.6 22.5	After 5:00 1.5 26.8	6:00 2.0 33.5	7:00 1.8 32.6	8:00 1.0 12.9	9:00 0.8 19.1	

* E > * E >

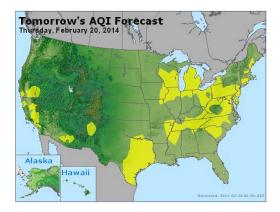
The problem is what we do with the data: clouding it

The TCEQ *retroactively* makes the data they collect available on the internet, reporting only the 1-hr average for the previous hour.


This web page example, value	es show	wn for	the n	oon h	our an	e base	ed on	measu	ureme	nts ta	ken fro	m noc	on to 1	L:00 p.	m. Th	e noo	n aver	age w	vill not	be ca	lculate	ed un	
after 1:00 p.m	. The	noon a	overag	e will	then t	oe ava	ilable	on ou	r exte	rnal s	erver f	rom 1	:15 p.	m. to	1:30 p	.m. T	his res	ults in	n an ai	pparei	nt one	-hour	
time lag in the	data.	We al	so pre	sent o	our da	ta in L	.ocal S	tanda	rd Tin	ne for	each r	neasu	ring si	te. For	most	of Te	xas th	is is C	entral	Stand	lard Ti	me.	
During Dayligh	t Savir	igs, th	is intr	oduce	s anot	her ap	oparer	t one	-hour	time l	ag in ti	he dat	a.										
Use the contro	ls belo	w to s	elect a	a diffe	rent d	late or	r time	forma	at and	to co	ntrol ce	ell high	lightin	g base	ed on i	measu	ired n	itrogei	n diox	ide or	PM-2.	5 levi	•
Click on the Ge	nerate	Repo	ort but	ton or	nce vo	u have	a mad	e your	r seled	tions.	Click c	n the	Plot D	ata bu	tton o	nce th	e tabi	alar re	port h	nas be	en gei	nerate	•
to open a sepa	rate w	indow	conta	ining	data n	olots.		÷.,															
to open a sepe			come		uutu p																		
	annelview								•	Selec	t a diff	erent	site										
	: Yea																						
							Plot I																
Nitrogen Diox	ide H	ighligl	hts: 👩	Mode					ensitiv	res 🖻	Unhea	ithy (Very	Unhea	althy	eHaz	ardous						
Nitrogen Diox	ide Hi	i ghligi valida	hts: s	Mode ata	rate	Unh	ealthy	for S											5/AH1	15 for	Tues	day,	
Nitrogen Diox	ide Hi ine for w cont	ighligi valida ains h	hts: ated d ourly a	Mode ata averaç	rate ges for	Unh	ealthy	for S											5/AH1	15 for	Tues	day,	
Nitrogen Diox Green under The table belo	ide Hi ine for w cont	ighligi valida ains h	hts: ated d ourly a	Mode ata averaç	rate ges for	Unh	ealthy	for S											5/AH1	15 for	Tues	day,	
Nitrogen Diox Green underl The table belo June 26, 2012	ide Hi ine for w cont	ighligi valida ains h	hts: ated d ourly a	Mode ata averaç	rate ges for	⊌Unh all th	ealthy e poll	for S										ew C1			Tues	day,	
Nitrogen Diox Green under The table belo	ide Hi ine for w cont	ighligi valida ains hi mes s	hts: ated di ourly a hown	Mode ata averag are in	rate ges for CST.	edUnh r all th Mor	ealthy e polle	for Sutants	and r	neteo		al conc	litions	meas	ured a	t Char	nelvie	After	rnoon				
Nitrogen Diox Green underl The table belo June 26, 201: Parameter Measured	tide Hi ine for w cont 2. All ti Mid	ighligi valida ains hi mes s 1:00	hts: ated d ourly a hown	Mode ata averag are in 3:00	cST.	eUnh all th Mor 5:00	ealthy e polle ning 6:00	for Sutants	and r	neteo	rologic	al conc	litions	meas	ured a	t Char 3:00	nelvie	After 5:00	rnoon 6:00	7:00	8:00	9:00	,
Nitrogen Dios Green underl The table belor June 26, 201: Parameter Measured Nitric Oxide	Mide Hi ine for w cont 2. All ti Mid 1.9	ighligi valida ains hi mes s 1:00 1.2	hts: ated do ourly a hown 2:00 1.3	Mode ata averag are in 3:00 1.3	rate ges for CST. 4:00 1.0	✓Unh all th 5:00 20.7	ealthy e polle ning 6:00 11.1	for S utants 7:00 3.7	and r 8:00 0.4	9:00 0.6	rologic 10:00 0.6	al conc 11:00 0.4	Noon 0.8	meas 1:00 0.8	ured a	t Char 3:00 1.2	4:00	After 5:00 1.5	6:00	7:00 1.8	8:00 1.0	9:00 0.8	
Nitrogen Dios ©Green underl The table belor June 26, 2012 Parameter Measured Nitric Oxide Nitrogen Dioxide	Mid 1.9 20.4	ighligi valida ains hi mes s 1:00	hts: ated di ourly a hown 2:00 1.3	Mode ata averag are in 3:00 1.3	rate ges for CST. 4:00 1.0	✓Unh all th 5:00 20.7	ealthy e polle ning 6:00	for S utants 7:00 3.7	and r 8:00 0.4	9:00 0.6	rologic	al conc 11:00 0.4	Noon 0.8	meas	ured a	t Char 3:00 1.2	4:00	After 5:00 1.5	6:00	7:00 1.8	8:00 1.0	9:00 0.8	
Nitrogen Dios Green underl The table belor June 26, 201: Parameter Measured Nitric Oxide Nitrogen	Mide Hi ine for w cont 2. All ti 1.9 20.4	ighligi valida ains hi mes s 1:00 1.2 19.9	hts: 6 ated d ourly a hown 1.3 13.1	Mode ata averag are in 1.3 9.1	rate ges for CST. 1.0 11.9	✓Unh all th 5:00 20.2 25.8	ealthy e polle ning 6:00 11.1	for S utants 7:00 3.7 19.5	and r 8:00 0.4 11.0	9:00 0.6 6.0	rologic 10:00 0.6	11:00 0.4 5.9	Noon 0.8 11.0	meas 1:00 0.8	2:00 1.0 13.3	3:00 1.2 14.3	4:00 1.6 22.5	After 5:00 1.5 26.8	6:00 2.0 33.5	7:00 1.8 32.6	8:00 1.0 12.9	9:00 0.8 19.1	
Nitrogen Dios @Green under1 The table below June 26, 201: Parameter Measured Nitric Oxide Nitrogen Dioxide Oxides of	Mide Hi ine for w cont 2. All ti 1.9 20.4 22.8	ighligi valida ains hi mes s 1:00 1.2 19.9	hts: 6 ated d ourly a hown 1.3 13.1	Mode ata averag are in 1.3 9.1	rate ges for CST. 1.0 11.9	Mor 5:00 20.7 25.8	ealthy e polle 6:00 11.1 25.5	for S utants 7:00 3.7 19.5	and r 8:00 0.4 11.0	9:00 0.6 6.0	10:00 0.6 5.7	11:00 0.4 5.9	Noon 0.8 11.0	meas 1:00 0.8 10.6	2:00 1.0 13.3	3:00 1.2 14.3	4:00 1.6 22.5	After 5:00 1.5 26.8	6:00 2.0 33.5	7:00 1.8 32.6	8:00 1.0 12.9	9:00 0.8 19.1	

but they do not produce forecasts or location-specific estimates.

イロト 不得 とくほと くほとう ほ


The problem is what we do with the data: mapping it

The EPA produces daily forecast maps for the AQI:

The problem is what we do with the data: mapping it

The EPA produces daily forecast maps for the AQI:

but they do not capture the dynamics of ozone pollution, since they use coarse scales for time and location grids.

글 🖌 🔺 글 🕨

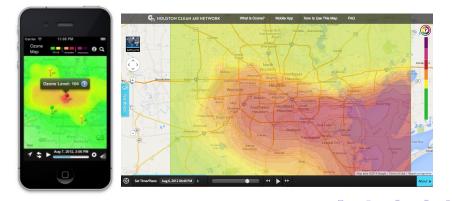
The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

伺 と く ヨ と く ヨ と …

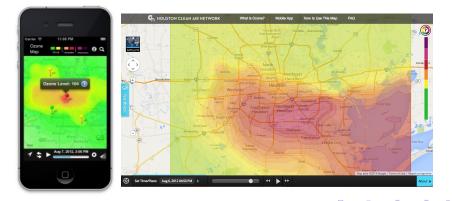
The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

Our task was to build mobile apps and a website that provide maps and individualized estimates of current ozone density, using the existing measurement framework.

The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.


The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.


The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

The EPA and TCEQ are bound by the regulatory context, which is based on retrospective analysis, and only report data accordingly.

Part II: the method

Assume an unknown

$$f: \mathbb{R}^D \to \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

・ロト ・回ト ・ヨト ・ヨト

Assume an unknown

$$f: \mathbb{R}^D \to \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

and a set of N observations

$$\begin{bmatrix} \mathbf{X} \\ Y \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_N \\ y_1 & y_2 & \dots & y_N \end{bmatrix}$$

such that

$$y_n = f(\mathbf{x}_n), \ n = 1, \ldots, N$$

< 注入 < 注入 -

< □ > < 同 >

Assume an unknown

$$f: \mathbb{R}^D \to \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

and a set of N observations

$$\begin{bmatrix} \mathbf{X} \\ Y \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_N \\ y_1 & y_2 & \dots & y_N \end{bmatrix}$$

such that

$$y_n = f(\mathbf{x}_n), \ n = 1, \ldots, N$$

Can we estimate f at a given $\mathbf{x}_{\star} \in \mathbb{R}^{D}$?

문어 세 문어 ...

Assume unknown

$$f: \mathbb{R}^D \to \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

AND

$$\phi: \mathbb{R}^D \to \mathbb{R}^P : \mathbf{x} \mapsto \phi(\mathbf{x})$$

・ロト ・回ト ・ヨト ・ヨト

Assume unknown

$$f: \mathbb{R}^D o \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

AND

$$\phi: \mathbb{R}^D \to \mathbb{R}^P : \mathbf{x} \mapsto \phi(\mathbf{x})$$

(ϕ stands for ϕ eature vector)

- 4 注 > - 4 注 > - -

Image: Image:

Assume unknown

$$f: \mathbb{R}^D o \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

AND

$$\phi: \mathbb{R}^D \to \mathbb{R}^P : \mathbf{x} \mapsto \phi(\mathbf{x})$$

(ϕ stands for ϕ eature vector) (\mathbb{R}^{P} stands for Pheature space)

프 () () () (

Assume unknown

$$f: \mathbb{R}^D \to \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

AND

$$\phi: \mathbb{R}^D \to \mathbb{R}^P : \mathbf{x} \mapsto \phi(\mathbf{x})$$

Key assumption: ϕ must be invertible and known.

・ロト ・回ト ・ヨト ・ヨト

Assume unknown

$$f: \mathbb{R}^D \to \mathbb{R}: \mathbf{x} \mapsto f(\mathbf{x})$$

AND

$$\phi: \mathbb{R}^D \to \mathbb{R}^P : \mathbf{x} \mapsto \phi(\mathbf{x})$$

Key assumption: ϕ must be invertible and known. Now replace **X** by $\mathbf{\Phi} = \phi(\mathbf{X})$ and consider the observations

$$\begin{bmatrix} \mathbf{\Phi} \\ \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_N \\ y_1 & y_2 & \dots & y_N \end{bmatrix}$$

such that

$$y_n=f\circ\phi^{-1}(\phi_n),\;n=1,\ldots,N$$
 Can we estimate $ilde{f}=f\circ\phi^{-1}$ at a given $\phi_\star\in\mathbb{R}^P?$

・ロト ・回ト ・ヨト ・ヨト

= na0

 Φ is a (finite) frame for its span in \mathbb{R}^{P} . Let $\mathcal{H} = \text{span}\Phi$ Obligatory definitions follow:

 Φ is a (finite) frame for its span in \mathbb{R}^{P} . Let $\mathcal{H} = \text{span}\Phi$ Obligatory definitions follow:

- Analysis/Bessel

$$L: \mathcal{H} \to \mathbb{R}^N : \boldsymbol{\phi} \mapsto \boldsymbol{\Phi}^T \boldsymbol{\phi} = \{ \langle \boldsymbol{\phi}, \boldsymbol{\phi}_n \rangle \}_{n=1}^N$$

・ロト ・回ト ・ヨト ・ヨト

 Φ is a (finite) frame for its span in \mathbb{R}^{P} . Let $\mathcal{H} = \text{span}\Phi$ Obligatory definitions follow:

- Analysis/Bessel

$$L: \mathcal{H} \to \mathbb{R}^N : \boldsymbol{\phi} \mapsto \boldsymbol{\Phi}^T \boldsymbol{\phi} = \{ \langle \phi, \phi_n \rangle \}_{n=1}^N$$

- Frame operator

$$S: \mathcal{H} \to \mathcal{H}: \boldsymbol{\phi} \mapsto \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\phi} = \sum_{n=1}^{N} \langle \phi, \phi_n \rangle \phi_n$$

э.

 Φ is a (finite) frame for its span in \mathbb{R}^{P} . Let $\mathcal{H} = \text{span}\Phi$ Obligatory definitions follow:

- Analysis/Bessel

$$L: \mathcal{H} \to \mathbb{R}^N : \phi \mapsto \mathbf{\Phi}^T \phi = \{ \langle \phi, \phi_n \rangle \}_{n=1}^N$$

- Frame operator

$$S: \mathcal{H} \to \mathcal{H}: \phi \mapsto \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} \phi = \sum_{n=1}^{\mathsf{N}} \langle \phi, \phi_n \rangle \phi_n$$

- Gram matrix

$$G = \mathbf{\Phi}^T \mathbf{\Phi}$$

- Gram operator

$$\mathbb{R}^{N} \to \mathbb{R}^{N} : Y \mapsto \mathbf{\Phi}^{T} \mathbf{\Phi} Y$$

(1日) (日) (日)

More frames

Lemma

If
$$\tilde{f}$$
 is a linear functional, i.e., $\tilde{f}(\phi_{\star}) = \phi_{\star}^{T} \alpha$, and $y_{n} = \tilde{f}(\phi_{n})$, then

$$\alpha = (\mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}})^{-1}\mathbf{\Phi}Y = \mathbf{\Phi}(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}Y$$

More frames

Lemma

If
$$\tilde{f}$$
 is a linear functional, i.e., $\tilde{f}(\phi_{\star}) = \phi_{\star}^{T} \alpha$, and $y_{n} = \tilde{f}(\phi_{n})$, then

$$\alpha = (\mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}})^{-1}\mathbf{\Phi}Y = \mathbf{\Phi}(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}Y$$

Proof.

Since $y_n = \tilde{f}(\phi_n)$, we have $Y = \Phi^T \alpha$, so $L^*(Y) = \Phi Y = \Phi \Phi^T \alpha = S(\alpha)$ Hence,

$$\alpha = S^{-1}L^{\star}(Y) = (\mathbf{\Phi}\mathbf{\Phi}^{T})^{-1}\mathbf{\Phi}Y$$

Note that,

$$L^*G = L^*(LL^*) = (L^*L)L^* = SL^*$$
$$S^{-1}(L^*G)G^{-1} = S^{-1}(SL^*)G^{-1}$$
$$S^{-1}L^* = L^*G^{-1}$$

ヘロン 人間と 人間と 人間と

Corollary

If \tilde{f} is a linear functional, i.e., $\tilde{f}(\phi_{\star}) = \phi_{\star}^{\mathsf{T}} \alpha$, and

$$\phi_{\star} \in \mathcal{H} = span \mathbf{\Phi} \subset \mathbb{R}^{P},$$

then

$$\widetilde{f}(\boldsymbol{\phi}_{\star}) = \boldsymbol{\phi}_{\star}^{T} \boldsymbol{\Phi}(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi})^{-1} Y$$

(1)

Corollary

If \tilde{f} is a linear functional, i.e., $\tilde{f}(\phi_{\star}) = \phi_{\star}^{T} \alpha$, and

$$\phi_{\star} \in \mathcal{H} = span \mathbf{\Phi} \subset \mathbb{R}^{P},$$

then

$$\widetilde{f}(\boldsymbol{\phi}_{\star}) = \boldsymbol{\phi}_{\star}^{\mathsf{T}} \mathbf{\Phi}(\mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi})^{-1} Y$$

(1)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

• What if $\phi_{\star} = \phi(x_{\star}) \notin \mathcal{H}$?

Corollary

If \tilde{f} is a linear functional, i.e., $\tilde{f}(\phi_{\star}) = \phi_{\star}^{T} \alpha$, and

$$\phi_{\star} \in \mathcal{H} = span \mathbf{\Phi} \subset \mathbb{R}^{P},$$

then

$$\tilde{f}(\phi_{\star}) = \phi_{\star}^{T} \mathbf{\Phi} (\mathbf{\Phi}^{T} \mathbf{\Phi})^{-1} Y$$
(1)

イロト 不得 とくほと くほとう ほ

- What if $\phi_{\star} = \phi(x_{\star}) \notin \mathcal{H}$?
- Replace Φ^TΦ by Φ^TΦ + σ²I in Eq (1) to find the expected value of the Bayesian estimation of *f̃*, given a zero-mean Gaussian prior for α ~ N(0, I) and assuming additive errors in measurement that follow N(0, σ²):

$$\tilde{f}(\boldsymbol{\phi}_{\star}) = \boldsymbol{\phi}_{\star}^{T} \boldsymbol{\Phi} (\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} + \sigma^{2} \mathbb{I})^{-1} \boldsymbol{Y}$$

Remark: If we can extend the mapping

$$G: \{\mathbf{x}_n\}_{n=1}^N \times \{\mathbf{x}_n\}_{n=1}^N \to \mathbb{C}$$
$$(\mathbf{x}_n, \mathbf{x}_m) \mapsto \langle \phi_n, \phi_m \rangle$$

to a kernel

$$G:\mathbb{R}^D\times\mathbb{R}^D\to\mathbb{C}$$

then we can drop our key assumption; we don't need an explicit formula for the feature map ϕ , since we only need to compute $\langle \phi(\mathbf{x}_{\star}), \phi(\mathbf{x}_{n}) \rangle$ for Eq (1).

Remark: If we can extend the mapping

$$G: \{\mathbf{x}_n\}_{n=1}^N \times \{\mathbf{x}_n\}_{n=1}^N \to \mathbb{C}$$
$$(\mathbf{x}_n, \mathbf{x}_m) \mapsto \langle \phi_n, \phi_m \rangle$$

to a kernel

$$G: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{C}$$

then we can drop our key assumption; we don't need an explicit formula for the feature map ϕ , since we only need to compute $\langle \phi(\mathbf{x}_{\star}), \phi(\mathbf{x}_n) \rangle$ for Eq (1).

A common assumption is homogeneity, i.e., that there exists h such that

$$G(\mathbf{x}_n,\mathbf{x}_m)=h(\|\mathbf{x}_n-\mathbf{x}_m\|)$$

Remark: If we can extend the mapping

$$G: \{\mathbf{x}_n\}_{n=1}^N \times \{\mathbf{x}_n\}_{n=1}^N \to \mathbb{C}$$
$$(\mathbf{x}_n, \mathbf{x}_m) \mapsto \langle \phi_n, \phi_m \rangle$$

to a kernel

$$G: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{C}$$

then we can drop our key assumption; we don't need an explicit formula for the feature map ϕ , since we only need to compute $\langle \phi(\mathbf{x}_{\star}), \phi(\mathbf{x}_n) \rangle$ for Eq (1).

A common assumption is homogeneity, i.e., that there exists h such that

$$G(\mathbf{x}_n,\mathbf{x}_m)=h(\|\mathbf{x}_n-\mathbf{x}_m\|)$$

A common choice for h is a Gaussian, leading to Gaussian Process Regression

Part III

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

The Golden Jubilee

	Ť	Math	nematics Geneal	ogy Project
	Home Search	John Joseph Benedetto MathSciNet Ph.D. University of Toronto 1964 Dissertation: The Laplace Transform of Generalized Functions Advisor: H. Chandler (Horace) Davis		
	Extrema About MGP			
	Links FAQs Posters			
	Click here Students: Submit Data Click here to see the students listed in chrono Mirrors Name School			ogical order. Year Descendants
	A service of the <u>NDSU</u> Department of	Enrico Au-Yeung	University of Maryland College Park	2011
Mathematics, in association with the American Mathematica		George Benke	University of Maryland College Park	1971
	Society.	Erica Bernstein	University of Maryland College Park	1992
	Please <u>email us</u> with feedback.	<u>Abdelkrim</u> Bourouihiya	University of Maryland College Park	2006
		Somantika Datta	University of Maryland College Park	2007
		Kevin Duke	University of Maryland College	2012