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We consider time-frequency translations on L2(R):

Txf(t) = f(t+ x), Myf(t) = e2πiytf(t)

We have TxMy = e2πixyMyTx, so the collection of operators{
e2πizMyTx : x, y, z ∈ R

}
forms a group, essentially the (real) Heisenberg group. More
precisely, the real Heisenberg group HR is R3 equipped with the
group law

(x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).



Given τ, ω > 0, consider the subgroup generated by the Tjτ and
Mkω with j, k ∈ Z, namely,{

e2πiτωlMkωTjτ : j, k, l ∈ Z
}
.

There is a large literature on the use of families {MkωTjτφ} as
building blocks to synthesize more general functions.

By rescaling, we can and shall take τ = 1. This is a unitary
representation of the discrete Heisenberg group H, whose
underlying set is Z3 and whose group law is

(j, k, l)(j′, k′, l′) = (j + j′, k + k′, l + l′ + jk′).

That is, the representation in question is defined by

ρω(j, k, l)f(t) = e2πiωle2πiωktf(t+ j) (f ∈ L2(R)).

How does this representation decompose into irreducible
representations?
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Some Background

I A (unitary) representation of a locally compact group G is
a continuous homomorphism ρ : G→ U(H) where H is a
Hilbert space.

I ρ is irreducible if there are no nontrivial closed subspaces of
H that are invariant under the operators ρ(g), g ∈ G.

I ρ : G→ U(H) and ρ′ : G→ U(H′) are (unitarily)
equivalent if there is a unitary map V : H→ H′ such that
V ρ(g) = ρ′(g)V for all g ∈ G.

I The set of equivalence classes of irreducible unitary
representations of G is denoted by Ĝ.

If G is compact, every unitary representation of G is a direct
sum of irreducible representations. The equivalence classes
(elements of Ĝ) occurring in it and the multiplicities with which
they occur are uniquely determined.
If G is noncompact, there are “continuous families” of
irreducible representations, and in general one must employ
direct integrals instead.



Direct Integrals

Suppose we have a family
{
πα : α ∈ A

}
of representations of G

parametrized by a measure space (A,µ), where πα acts on Hα.
The direct integral of the Hilbert spaces Hα is the Hilbert space

H =

∫ ⊕
Hα dµ(α)

=

{
f : A→

⋃
Hα : f(α) ∈ Hα ∀α,

∫
‖f(α)‖2Hα

dµ(α) <∞
}
.

(Some issues of measurability are being swept under the rug,
but note that if the Hα are all the same, say Hα = K for all α,
then H is just L2(A,K).) The direct integral of the
representations πα is the representation

π =

∫ ⊕
πα dµ(α) on H defined by [π(g)f ](α) = πα(g)[f(α)].



Example

If G = R, the irreducible representations are all one-dimensional
and are parametrized by ξ ∈ R:

πξ(x) = e2πiξx.

The direct integral π =

∫ ⊕
R
πξ dξ acts on L2(R) by

π(x)f(ξ) = e2πiξxf(ξ).

Conjugation by the Fourier transform

Ff(ξ) =

∫
e−2πitξf(t) dt

turns this into the regular representation of R on L2(R):

F−1π(x)Ff(t) = f(t+ x), i.e., F−1π(x)F = Tx.



What Should Happen:

I Ĝ is a geometrically “reasonable” object, equipped with a
natural σ-algebra of measurable sets, and we can choose a
representative πα from each equivalence class α in Ĝ in a
“reasonable” way.

I Given a representation ρ, there is a measure µ on Ĝ and
disjoint measurable sets E1, E2, . . . , E∞ (some of which
may be empty) such that

ρ ∼
∫ ⊕
E1

πα dµ(α)⊕ 2

∫ ⊕
E2

πα dµ(α)⊕ · · · ⊕∞
∫ ⊕
E∞

πα dµ(α).

(The coefficients in front of the integrals denote
multiplicities.) µ is determined up to equivalence (mutual
absolute continuity), and the Ej are determined up to sets
of µ-measure zero.



What Actually Happens:

There is a sharp dichotomy in the class of locally compact
groups:

I For “good” (type I) groups, this all works as advertised.

I For “bad” groups, it all fails.
I Ĝ is horrible.
I Representations can be decomposed into direct integrals of

irreducibles, but usually not with Ĝ as the parameter space.
I There is usually no uniqueness in such decompositions!

I Some type I groups: Abelian groups; compact groups;
connected Lie groups that are nilpotent, semisimple, or
algebraic; discrete groups with an Abelian normal
subgroup of finite index.

I Some non-type I groups: some solvable Lie groups, all
other discrete groups.
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Now back to the discrete Heisenberg group H with group law

(j, k, l)(j′, k′, l′) = (j + j′, k + k′, l + l′ + jk′),

and our representation ρω of H,

ρω(j, k, l)f(t) = e2πiωle2πiωktf(t+ j) (f ∈ L2(R)).

Note that the center of H (also its commutator subgroup) is

Z =
{

(0, 0, l) : l ∈ Z
}
,

and it acts by scalars:

ρω(0, 0, l) = e2πiωlI.

The representation l 7→ e2πiωl of Z is called the central
character of ρω. Only those irreducible representations having
the same central character will occur in ρω.



Case 1: ω is rational, say ω = p/q (p, q ∈ Z+, gcd(p, q) = 1).
Here the central character is trivial on multiples of (0, 0, q), so
ρω factors through the group

Hq = Z× Z× Zq (Zq = Z/qZ),

— same group law, with arithmetic mod q in the last factor.

Subcase 1a: ω ∈ Z, i.e., q = 1. Here H1 = Z2 with the standard
Abelian group structure. Its irreducible representations are
one-dimensional; they are the characters

χu,v(j, k) = e2πi(ju+kv), u, v ∈ R/Z.

Claim:

If ω = p ∈ Z, then ρω ∼ p
∫ ⊕
(R/Z)2

χu,v du dv.
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The intertwining operator that gives this equivalence is the Zak
transform. This is a map from (reasonable) functions on R to
functions on R2 defined by

Zf(u, v) =
∑
n∈Z

e2πinuf(v + n).

Note that

Zf(u+m, v) = Zf(u, v), Zf(u, v +m) = e−2πimuZf(u, v),

so Zf is determined by its values on [0, 1)× [0, 1). Moreover, by
the Parseval identity,∫ 1

0

∫ 1

0
|Zf(u, v)|2 du dv =

∑
n

∫ 1

0
|f(v + n)|2 dv =

∫
R
|f(t)|2 dt,

so Z is an isometry from L2(R) to L2([0, 1)2) which is easily
seen to be surjective, hence unitary.
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Moreover, since ρp(j, k, l)f(t) = e2πipktf(t+ j), we have

Zρp(j, k, l)f(u, v) =
∑
n

e2πinue2πipk(v+j)f(v + j + n)

=
∑
n

e2πi(n−j)ue2πipkvf(v + n)

= e−2πijue2πipkvZf(u, v)

= χ−u,pv(j, k)Zf(u, v).

Thus Z intertwines ρp with∫ ⊕
[0,1)2

χ−u,pv du dv ∼ p
∫
(R/Z)2

χu,v du dv.



Subcase 1b: q > 1. This is similar but a little more complicated.
Hq is the semi-direct product of the Abelian subgroup {(j, 0, 0)}
with the normal Abelian subgroup {(0, k, l)} which is “regular”
in a certain sense, so a standard technique (the “Mackey
machine”) produces a complete list of inequivalent irreducible
representations πα,β of Hq with central character l 7→ e2πi(p/q)l,
parametrized by α, β ∈ (R/(1/q)Z). πα,β acts on

Hα =
{
f : Z→ C : f(m+ kq) = e2πiαkqf(m)

} (∼= Cq
)

by
πα,β(j, k, l)f(m) = e2πiωle2πik(β+ωm)f(m+ x).

A little Fourier analysis plus a rescaling of the Zak transform
shows that

ρp/q ∼
∫ ⊕
[0,p/q)×[0,1/q)

πα,β dα dβ ∼ p
∫ ⊕
[0,1/q)2

πα,β dα dβ.



Case 2: ω is irrational.
What are the irreducible representations of H with central
character l 7→ e2πiωl in this case? To construct some of them,
we need some terminology.

I Define S : R/Z→ R/Z by S(t) = t+ ω.

I Given a Borel measure µ on R/Z, let µj(E) = µ(Sj(E)).
µ is quasi-invariant (under S) if µ and µj are equivalent
(mutually absolutely continuous) for all j.

I A Borel measure µ is ergodic (under S) if for any
S-invariant set E, either E or its complement has
µ-measure zero.

Given a σ-finite quasi-invariant ergodic measure µ on R/Z,
define a representation φµ of H on L2(µ) by

φµ(j, k, l)f(t) = e2πiωle2πikt
√

(dµj/dµ)(t)f(t+ ωj).

Then φµ is irreducible, and φµ ∼ φν if and only if µ ∼ ν.
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What are the quasi-invariant, ergodic measures µ?

I Counting measure on any orbit of S.

I Lebesgue measure.

I There are many other uncountable families of such µ’s, all
mutually singular. It is probably impossible to classify
them all in any concrete way.

Moreover, for each such µ there are many other inequivalent
irreducible representations of H on L2(µ) with the same central
character, coming from nontrivial “cocycles.” Again, it seems
hopeless to classify them all.
In short, {[π] ∈ Ĝ : π(0, 0, l) = e2πiωlI} is enormous and cannot
be parametrized in a geometrically nice way.
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Let us examine the representations φµ described above when µ
is counting measure on an orbit. Suppose β ∈ R/Z. If we
identify the orbit of β, {β +mω : m ∈ Z}, with Z, by

β +mω ←→ m,

φµ becomes a representation of H on l2 = L2(Z) that we call πβ:

πβ(j, k, l)f(m) = e2πiωle2πik(β+mω)f(m+ j).

The direct integral

π =

∫ ⊕
[0,ω)

πβ dβ

acts on L2([0, ω)× Z) by

π(j, k, l)f(β,m) = e2πiωle2πik(β+mω)f(β,m+ j).

Define a unitary map V : L2(R)→ L2([0, ω)× Z) by

V f(β,m) =
1√
ω
f

(
β

ω
+m

)
.

Then a simple calculation shows that V intertwines π with ρω.



In short, we have a direct integral decomposition of our ρω:

ρω ∼
∫ ⊕
[0,ω)

πβ dβ.

But:

I Up to equivalence, πβ depends only on the S-orbit of β.

I There is no measurable cross-section for the S-orbits!

Thus we cannot separate out the equivalence classes in a
measurable way and turn this into an integral over (a subset of)
Ĥ with multiplicities.

And finally,

I This irreducible decomposition of ρω is far from unique.
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Ĥ with multiplicities.

And finally,

I This irreducible decomposition of ρω is far from unique.



Nonuniqueness

Every A =

(
a b
c d

)
∈ SL(2,R) = Sp(1,R) acts as an

automorphism of the real Heisenberg group HR:

ΦA(x, y, z) =
(
ax+ by, cx+ dy, z + 1

2(acx2 + 2bcxy + bdy2)
)
.

If A ∈ SL(2,Z), the restriction of ΦA to the discrete group H is
an automorphism of H if ac and bd are even, and an
isomorphism from H to a slightly different discrete subgroup
otherwise. Our irreducible representations

πβ(j, k, l)f(m) = e2πiωle2πik(β+mω)f(m+ j)

of H define irreducible representations of these modified groups
too, so πβ ◦ ΦA is an irreducible representation of H for any
A ∈ SL(2,Z).



Our representation ρω is the restriction to H of an irreducible
representation of HR,

ρω(x, y, z)f(t) = e2πiωze2πiβyf(t+ x),

and ρω ◦ ΦA is another such representation with the same
central character. By the Stone-von Neumann theorem,
ρω ∼ ρω ◦ ΦA. (The intertwining operator comes from the
metaplectic representation of Sp(1,R). )
Hence, for any A ∈ SL(2,Z),

ρω ∼ ρω ◦ ΦA ∼
∫ ⊕
[0,ω)

πβ ◦ ΦA dβ.



But now let A =

(
a b
c d

)
and A′ =

(
a′ b′

c′ d′

)
.

If (a′, b′) 6= ±(a, b), then πβ ◦ ΦA is not equivalent to πβ′ ◦ ΦA′

for any β, β′.

Proof: πβ ◦ ΦA acts on l2 = L2(Z) by

πβ ◦ ΦA(j, k, l)f(m)

= e2πiωleπi(acj
2+2bcjk+bdk2)e2πik(β+ωm)f(m+ aj + bk).

I If aj + bk = 0, πβ ◦ ΦA(j, k, l) has discrete spectrum: the
canonical basis for l2 is an eigenbasis.

I If aj + bk 6= 0, πβ ◦ ΦA(j, k, l) is a weighted shift operator
with weights of modulus 1, so it has no discrete spectrum.

I Since A,A′ ∈ SL(2,Z), we have gcd(a, b) = gcd(a′, b′) = 1.
Hence, if (a′, b′) 6= ±(a, b), the equations aj + bk = 0 and
a′j + b′k = 0 define different sets of (j, k)’s.
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On the other hand, if (a′, b′) = ±(a, b), then(
a′ b′

c′ d′

)
= ±

(
1 0
r 1

)(
a b
c d

)
for some r ∈ Z, in which case the

unitary map on l2

f(m) 7→ eπiωm
2
e±2πiβrmf(±m)

intertwines πβ ◦ Φ′A and π±β ◦ ΦA.

Finally, given any integers a, b with gcd(a,b) = 1, there exist

integers c, d such that

(
a b
c d

)
∈ SL(2,Z).

Hence we have an infinite family of completely inequivalent
irreducible decompositions of ρω, parametrized by (a, b) ∈ Z2.
This includes families described by Kawakami (1982).
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