Time-Frequency Analysis and the Dark Side of Representation Theory

Gerald B. Folland

February 21, 2014

・ロト ・ 日 ・ モー・ モー・ うへぐ

We consider time-frequency translations on $L^2(\mathbb{R})$:

$$T_x f(t) = f(t+x), \qquad M_y f(t) = e^{2\pi i y t} f(t)$$

We have $T_x M_y = e^{2\pi i x y} M_y T_x$, so the collection of operators

$$\left\{e^{2\pi i z} M_y T_x : x, y, z \in \mathbb{R}\right\}$$

forms a group, essentially the (real) Heisenberg group. More precisely, the *real Heisenberg group* $H_{\mathbb{R}}$ is \mathbb{R}^3 equipped with the group law

$$(x,y,z)(x',y',z') = (x+x',\,y+y',\,z+z'+xy').$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Given $\tau, \omega > 0$, consider the subgroup generated by the $T_{j\tau}$ and $M_{k\omega}$ with $j, k \in \mathbb{Z}$, namely,

$$\left\{e^{2\pi i\tau\omega l}M_{k\omega}T_{j\tau}: j,k,l\in\mathbb{Z}\right\}.$$

There is a large literature on the use of families $\{M_{k\omega}T_{j\tau}\phi\}$ as building blocks to synthesize more general functions.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Given $\tau, \omega > 0$, consider the subgroup generated by the $T_{j\tau}$ and $M_{k\omega}$ with $j, k \in \mathbb{Z}$, namely,

$$\left\{e^{2\pi i\tau\omega l}M_{k\omega}T_{j\tau}:j,k,l\in\mathbb{Z}\right\}.$$

There is a large literature on the use of families $\{M_{k\omega}T_{j\tau}\phi\}$ as building blocks to synthesize more general functions.

By rescaling, we can and shall take $\tau = 1$. This is a unitary representation of the *discrete Heisenberg group* H, whose underlying set is \mathbb{Z}^3 and whose group law is

$$(j,k,l)(j',k',l') = (j+j',k+k',l+l'+jk').$$

That is, the representation in question is defined by

$$\rho_{\omega}(j,k,l)f(t) = e^{2\pi i\omega l} e^{2\pi i\omega kt} f(t+j) \qquad (f \in L^2(\mathbb{R})).$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Given $\tau, \omega > 0$, consider the subgroup generated by the $T_{j\tau}$ and $M_{k\omega}$ with $j, k \in \mathbb{Z}$, namely,

$$\left\{e^{2\pi i\tau\omega l}M_{k\omega}T_{j\tau}:j,k,l\in\mathbb{Z}\right\}.$$

There is a large literature on the use of families $\{M_{k\omega}T_{j\tau}\phi\}$ as building blocks to synthesize more general functions.

By rescaling, we can and shall take $\tau = 1$. This is a unitary representation of the *discrete Heisenberg group* H, whose underlying set is \mathbb{Z}^3 and whose group law is

$$(j,k,l)(j',k',l') = (j+j',k+k',l+l'+jk').$$

That is, the representation in question is defined by

$$\rho_{\omega}(j,k,l)f(t) = e^{2\pi i\omega l} e^{2\pi i\omega kt} f(t+j) \qquad (f \in L^2(\mathbb{R})).$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

How does this representation decompose into irreducible representations?

Some Background

- A (unitary) representation of a locally compact group G is a continuous homomorphism $\rho: G \to U(\mathcal{H})$ where \mathcal{H} is a Hilbert space.
- ρ is *irreducible* if there are no nontrivial closed subspaces of \mathcal{H} that are invariant under the operators $\rho(g), g \in G$.
- ▶ $\rho: G \to U(\mathcal{H})$ and $\rho': G \to U(\mathcal{H}')$ are *(unitarily)* equivalent if there is a unitary map $V: \mathcal{H} \to \mathcal{H}'$ such that $V\rho(g) = \rho'(g)V$ for all $g \in G$.
- ▶ The set of equivalence classes of irreducible unitary representations of G is denoted by \widehat{G} .

If G is compact, every unitary representation of G is a direct sum of irreducible representations. The equivalence classes (elements of \widehat{G}) occurring in it and the multiplicities with which they occur are uniquely determined.

If G is noncompact, there are "continuous families" of irreducible representations, and in general one must employ direct integrals instead.

Direct Integrals

Suppose we have a family $\{\pi_{\alpha} : \alpha \in A\}$ of representations of G parametrized by a measure space (A, μ) , where π_{α} acts on \mathcal{H}_{α} . The *direct integral* of the Hilbert spaces \mathcal{H}_{α} is the Hilbert space

$$\begin{aligned} \mathcal{H} &= \int^{\oplus} \mathcal{H}_{\alpha} \, d\mu(\alpha) \\ &= \left\{ f : A \to \bigcup \mathcal{H}_{\alpha} : f(\alpha) \in \mathcal{H}_{\alpha} \, \forall \alpha, \, \int \|f(\alpha)\|_{\mathcal{H}_{\alpha}}^{2} \, d\mu(\alpha) < \infty \right\} \end{aligned}$$

(Some issues of measurability are being swept under the rug, but note that if the \mathcal{H}_{α} are all the same, say $\mathcal{H}_{\alpha} = \mathcal{K}$ for all α , then \mathcal{H} is just $L^{2}(A, \mathcal{K})$.) The *direct integral* of the representations π_{α} is the representation

$$\pi = \int^{\oplus} \pi_{\alpha} d\mu(\alpha)$$
 on \mathfrak{H} defined by $[\pi(g)f](\alpha) = \pi_{\alpha}(g)[f(\alpha)].$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Example

If $G = \mathbb{R}$, the irreducible representations are all one-dimensional and are parametrized by $\xi \in \mathbb{R}$:

$$\pi_{\xi}(x) = e^{2\pi i \xi x}.$$

The direct integral $\pi = \int_{\mathbb{R}}^{\oplus} \pi_{\xi} d\xi$ acts on $L^2(\mathbb{R})$ by

$$\pi(x)f(\xi) = e^{2\pi i\xi x}f(\xi).$$

Conjugation by the Fourier transform

$$\mathcal{F}f(\xi) = \int e^{-2\pi i t\xi} f(t) \, dt$$

turns this into the regular representation of \mathbb{R} on $L^2(\mathbb{R})$:

$$\mathcal{F}^{-1}\pi(x)\mathcal{F}f(t) = f(t+x), \quad \text{i.e.}, \quad \mathcal{F}^{-1}\pi(x)\mathcal{F} = T_x.$$

What Should Happen:

- \widehat{G} is a geometrically "reasonable" object, equipped with a natural σ -algebra of measurable sets, and we can choose a representative π_{α} from each equivalence class α in \widehat{G} in a "reasonable" way.
- Given a representation ρ , there is a measure μ on \widehat{G} and disjoint measurable sets $E_1, E_2, \ldots, E_{\infty}$ (some of which may be empty) such that

$$\rho \sim \int_{E_1}^{\oplus} \pi_{\alpha} \, d\mu(\alpha) \oplus 2 \int_{E_2}^{\oplus} \pi_{\alpha} \, d\mu(\alpha) \oplus \cdots \oplus \infty \int_{E_{\infty}}^{\oplus} \pi_{\alpha} \, d\mu(\alpha).$$

(The coefficients in front of the integrals denote multiplicities.) μ is determined up to equivalence (mutual absolute continuity), and the E_j are determined up to sets of μ -measure zero.

What Actually Happens:

There is a sharp dichotomy in the class of locally compact groups:

▶ For "good" (type I) groups, this all works as advertised.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What Actually Happens:

There is a sharp dichotomy in the class of locally compact groups:

- ▶ For "good" (type I) groups, this all works as advertised.
- ▶ For "bad" groups, it all fails.
 - \widehat{G} is horrible.
 - Representations can be decomposed into direct integrals of irreducibles, but usually not with \hat{G} as the parameter space.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

▶ There is usually no uniqueness in such decompositions!

What Actually Happens:

There is a sharp dichotomy in the class of locally compact groups:

- ▶ For "good" (type I) groups, this all works as advertised.
- ▶ For "bad" groups, it all fails.
 - \widehat{G} is horrible.
 - Representations can be decomposed into direct integrals of irreducibles, but usually not with \hat{G} as the parameter space.
 - ▶ There is usually no uniqueness in such decompositions!
- Some type I groups: Abelian groups; compact groups; connected Lie groups that are nilpotent, semisimple, or algebraic; discrete groups with an Abelian normal subgroup of finite index.
- Some non-type I groups: some solvable Lie groups, all other discrete groups.

Now back to the discrete Heisenberg group H with group law

$$(j,k,l)(j',k',l') = (j+j',k+k',l+l'+jk'),$$

and our representation ρ_{ω} of H,

$$\rho_{\omega}(j,k,l)f(t) = e^{2\pi i \omega l} e^{2\pi i \omega k t} f(t+j) \qquad (f \in L^2(\mathbb{R})).$$

Note that the center of H (also its commutator subgroup) is

$$Z = \big\{ (0,0,l) : l \in \mathbb{Z} \big\},\$$

and it acts by scalars:

$$\rho_{\omega}(0,0,l) = e^{2\pi i\omega l} I.$$

The representation $l \mapsto e^{2\pi i \omega l}$ of Z is called the *central* character of ρ_{ω} . Only those irreducible representations having the same central character will occur in ρ_{ω} . Case 1: ω is rational, say $\omega = p/q$ $(p, q \in \mathbb{Z}_+, \operatorname{gcd}(p, q) = 1)$. Here the central character is trivial on multiples of (0, 0, q), so ρ_{ω} factors through the group

$$H_q = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_q \qquad (\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}),$$

うして ふゆう ふほう ふほう ふしつ

— same group law, with arithmetic mod q in the last factor.

Case 1: ω is rational, say $\omega = p/q$ $(p, q \in \mathbb{Z}_+, \operatorname{gcd}(p, q) = 1)$. Here the central character is trivial on multiples of (0, 0, q), so ρ_{ω} factors through the group

$$H_q = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_q \qquad (\mathbb{Z}_q = \mathbb{Z}/q\mathbb{Z}),$$

— same group law, with arithmetic mod q in the last factor.

Subcase 1a: $\omega \in \mathbb{Z}$, i.e., q = 1. Here $H_1 = \mathbb{Z}^2$ with the standard Abelian group structure. Its irreducible representations are one-dimensional; they are the characters

$$\chi_{u,v}(j,k) = e^{2\pi i (ju+kv)}, \qquad u,v \in \mathbb{R}/\mathbb{Z}.$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Claim:

If
$$\omega = p \in \mathbb{Z}$$
, then $\rho_{\omega} \sim p \int_{(\mathbb{R}/\mathbb{Z})^2}^{\oplus} \chi_{u,v} \, du \, dv$.

The intertwining operator that gives this equivalence is the Zak transform. This is a map from (reasonable) functions on \mathbb{R} to functions on \mathbb{R}^2 defined by

$$\mathcal{Z}f(u,v) = \sum_{n \in \mathbb{Z}} e^{2\pi i n u} f(v+n).$$

・ロト ・ 日 ・ モー・ モー・ うへぐ

The intertwining operator that gives this equivalence is the Zak transform. This is a map from (reasonable) functions on \mathbb{R} to functions on \mathbb{R}^2 defined by

$$\mathcal{Z}f(u,v) = \sum_{n \in \mathbb{Z}} e^{2\pi i n u} f(v+n).$$

Note that

$$\mathcal{Z}f(u+m,v)=\mathcal{Z}f(u,v),\qquad \mathcal{Z}f(u,v+m)=e^{-2\pi imu}\mathcal{Z}f(u,v),$$

so $\mathbb{Z}f$ is determined by its values on $[0,1) \times [0,1)$. Moreover, by the Parseval identity,

$$\int_0^1 \int_0^1 |\mathcal{Z}f(u,v)|^2 \, du \, dv = \sum_n \int_0^1 |f(v+n)|^2 \, dv = \int_{\mathbb{R}} |f(t)|^2 \, dt,$$

so \mathbb{Z} is an isometry from $L^2(\mathbb{R})$ to $L^2([0,1)^2)$ which is easily seen to be surjective, hence unitary.

Moreover, since $\rho_p(j,k,l)f(t) = e^{2\pi i p k t} f(t+j)$, we have

$$\begin{split} \mathcal{Z}\rho_p(j,k,l)f(u,v) &= \sum_n e^{2\pi i n u} e^{2\pi i p k(v+j)} f(v+j+n) \\ &= \sum_n e^{2\pi i (n-j) u} e^{2\pi i p k v} f(v+n) \\ &= e^{-2\pi i j u} e^{2\pi i p k v} \mathcal{Z}f(u,v) \\ &= \chi_{-u,pv}(j,k) \mathcal{Z}f(u,v). \end{split}$$

Thus \mathcal{Z} intertwines ρ_p with

$$\int_{[0,1)^2}^{\oplus} \chi_{-u,pv} \, du \, dv \sim p \int_{(\mathbb{R}/\mathbb{Z})^2} \chi_{u,v} \, du \, dv.$$

Subcase 1b: q > 1. This is similar but a little more complicated. H_q is the semi-direct product of the Abelian subgroup $\{(j, 0, 0)\}$ with the normal Abelian subgroup $\{(0, k, l)\}$ which is "regular" in a certain sense, so a standard technique (the "Mackey machine") produces a complete list of inequivalent irreducible representations $\pi_{\alpha,\beta}$ of H_q with central character $l \mapsto e^{2\pi i (p/q)l}$, parametrized by $\alpha, \beta \in (\mathbb{R}/(1/q)\mathbb{Z})$. $\pi_{\alpha,\beta}$ acts on

$$\mathcal{H}_{\alpha} = \left\{ f : \mathbb{Z} \to \mathbb{C} : f(m + kq) = e^{2\pi i \alpha kq} f(m) \right\} \quad \left(\cong \mathbb{C}^q \right)$$

by

$$\pi_{\alpha,\beta}(j,k,l)f(m) = e^{2\pi i\omega l} e^{2\pi i k(\beta + \omega m)} f(m+x).$$

A little Fourier analysis plus a rescaling of the Zak transform shows that

$$\rho_{p/q} \sim \int_{[0,p/q)\times[0,1/q)}^{\oplus} \pi_{\alpha,\beta} \, d\alpha \, d\beta \sim p \int_{[0,1/q)^2}^{\oplus} \pi_{\alpha,\beta} \, d\alpha \, d\beta.$$

Case 2: ω is irrational.

What are the irreducible representations of H with central character $l \mapsto e^{2\pi i \omega l}$ in this case? To construct some of them, we need some terminology.

Case 2: ω is irrational.

What are the irreducible representations of H with central character $l \mapsto e^{2\pi i \omega l}$ in this case? To construct some of them, we need some terminology.

- Define $S : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ by $S(t) = t + \omega$.
- Given a Borel measure μ on \mathbb{R}/\mathbb{Z} , let $\mu_j(E) = \mu(S^j(E))$. μ is quasi-invariant (under S) if μ and μ_j are equivalent (mutually absolutely continuous) for all j.
- A Borel measure μ is *ergodic* (under S) if for any S-invariant set E, either E or its complement has μ-measure zero.

Given a σ -finite quasi-invariant ergodic measure μ on \mathbb{R}/\mathbb{Z} , define a representation ϕ_{μ} of H on $L^{2}(\mu)$ by

$$\phi_{\mu}(j,k,l)f(t) = e^{2\pi i\omega l} e^{2\pi ikt} \sqrt{(d\mu_j/d\mu)(t)} f(t+\omega j).$$

Then ϕ_{μ} is irreducible, and $\phi_{\mu} \sim \phi_{\nu}$ if and only if $\mu \sim \nu$.

What are the quasi-invariant, ergodic measures μ ?

- Counting measure on any orbit of S.
- ▶ Lebesgue measure.
- There are many other uncountable families of such μ's, all mutually singular. It is probably impossible to classify them all in any concrete way.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What are the quasi-invariant, ergodic measures μ ?

- Counting measure on any orbit of S.
- ▶ Lebesgue measure.
- There are many other uncountable families of such μ's, all mutually singular. It is probably impossible to classify them all in any concrete way.

Moreover, for each such μ there are *many other* inequivalent irreducible representations of H on $L^2(\mu)$ with the same central character, coming from nontrivial "cocycles." Again, it seems hopeless to classify them all.

In short, $\{[\pi] \in \widehat{G} : \pi(0, 0, l) = e^{2\pi i \omega l}I\}$ is enormous and cannot be parametrized in a geometrically nice way.

Let us examine the representations ϕ_{μ} described above when μ is counting measure on an orbit. Suppose $\beta \in \mathbb{R}/\mathbb{Z}$. If we identify the orbit of β , $\{\beta + m\omega : m \in \mathbb{Z}\}$, with \mathbb{Z} , by

$$\beta + m\omega \longleftrightarrow m,$$

 ϕ_{μ} becomes a representation of H on $l^2 = L^2(\mathbb{Z})$ that we call π_{β} :

$$\pi_{\beta}(j,k,l)f(m) = e^{2\pi i\omega l} e^{2\pi ik(\beta+m\omega)} f(m+j).$$

The direct integral

$$\pi = \int_{[0,\omega)}^{\oplus} \pi_\beta \, d\beta$$

acts on $L^2([0,\omega)\times\mathbb{Z})$ by

$$\pi(j,k,l)f(\beta,m) = e^{2\pi i \omega l} e^{2\pi i k(\beta+m\omega)} f(\beta,m+j) + \frac{1}{2} e^{2\pi i k(\beta+m\omega)} f(\beta,m+j) + \frac{1}{2$$

Define a unitary map $V: L^2(\mathbb{R}) \to L^2([0,\omega) \times \mathbb{Z})$ by

$$Vf(\beta,m) = \frac{1}{\sqrt{\omega}}f\left(\frac{\beta}{\omega} + m\right).$$

Then a simple calculation shows that V intertwines π with $\rho_{\omega_{\pm}}$

In short, we have a direct integral decomposition of our ρ_{ω} :

$$\rho_{\omega} \sim \int_{[0,\omega)}^{\oplus} \pi_{\beta} \, d\beta.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In short, we have a direct integral decomposition of our ρ_{ω} :

$$\rho_{\omega} \sim \int_{[0,\omega)}^{\oplus} \pi_{\beta} \, d\beta.$$

But:

• Up to equivalence, π_{β} depends only on the S-orbit of β .

► There is no measurable cross-section for the S-orbits! Thus we *cannot* separate out the equivalence classes in a measurable way and turn this into an integral over (a subset of) \hat{H} with multiplicities.

うして ふゆう ふほう ふほう ふしつ

In short, we have a direct integral decomposition of our ρ_{ω} :

$$\rho_{\omega} \sim \int_{[0,\omega)}^{\oplus} \pi_{\beta} \, d\beta.$$

But:

• Up to equivalence, π_{β} depends only on the S-orbit of β .

► There is no measurable cross-section for the S-orbits! Thus we *cannot* separate out the equivalence classes in a measurable way and turn this into an integral over (a subset of) \hat{H} with multiplicities.

And finally,

• This irreducible decomposition of ρ_{ω} is far from unique.

うして ふゆう ふほう ふほう ふしつ

Nonuniqueness

Every
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R}) = Sp(1, \mathbb{R})$$
 acts as an automorphism of the real Heisenberg group $H_{\mathbb{R}}$:

$$\Phi_A(x, y, z) = \left(ax + by, \, cx + dy, \, z + \frac{1}{2}(acx^2 + 2bcxy + bdy^2)\right).$$

If $A \in SL(2,\mathbb{Z})$, the restriction of Φ_A to the discrete group H is an automorphism of H if ac and bd are even, and an isomorphism from H to a slightly different discrete subgroup otherwise. Our irreducible representations

$$\pi_{\beta}(j,k,l)f(m) = e^{2\pi i\omega l} e^{2\pi i k(\beta + m\omega)} f(m+j)$$

of H define irreducible representations of these modified groups too, so $\pi_{\beta} \circ \Phi_A$ is an irreducible representation of H for any $A \in SL(2,\mathbb{Z})$.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Our representation ρ_{ω} is the restriction to H of an *irreducible* representation of $H_{\mathbb{R}}$,

$$\rho_{\omega}(x, y, z)f(t) = e^{2\pi i\omega z} e^{2\pi i\beta y} f(t+x),$$

and $\rho_{\omega} \circ \Phi_A$ is another such representation with the same central character. By the Stone-von Neumann theorem, $\rho_{\omega} \sim \rho_{\omega} \circ \Phi_A$. (The intertwining operator comes from the metaplectic representation of $Sp(1,\mathbb{R})$.) Hence, for any $A \in SL(2,\mathbb{Z})$,

$$\rho_{\omega} \sim \rho_{\omega} \circ \Phi_A \sim \int_{[0,\omega)}^{\oplus} \pi_{\beta} \circ \Phi_A \, d\beta.$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

But now let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$.

If $(a',b') \neq \pm (a,b)$, then $\pi_{\beta} \circ \Phi_A$ is not equivalent to $\pi_{\beta'} \circ \Phi_{A'}$ for any β, β' .

But now let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$.

If $(a', b') \neq \pm (a, b)$, then $\pi_{\beta} \circ \Phi_A$ is not equivalent to $\pi_{\beta'} \circ \Phi_{A'}$ for any β, β' . *Proof:* $\pi_{\beta} \circ \Phi_A$ acts on $l^2 = L^2(\mathbb{Z})$ by

$$\pi_{\beta} \circ \Phi_A(j,k,l)f(m)$$

= $e^{2\pi i\omega l}e^{\pi i(acj^2+2bcjk+bdk^2)}e^{2\pi ik(\beta+\omega m)}f(m+aj+bk).$

► If aj + bk = 0, $\pi_\beta \circ \Phi_A(j,k,l)$ has discrete spectrum: the canonical basis for l^2 is an eigenbasis.

But now let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$.

If $(a', b') \neq \pm (a, b)$, then $\pi_{\beta} \circ \Phi_A$ is not equivalent to $\pi_{\beta'} \circ \Phi_{A'}$ for any β, β' . *Proof:* $\pi_{\beta} \circ \Phi_A$ acts on $l^2 = L^2(\mathbb{Z})$ by

$$\pi_{\beta} \circ \Phi_A(j,k,l)f(m)$$

= $e^{2\pi i\omega l}e^{\pi i(acj^2+2bcjk+bdk^2)}e^{2\pi ik(\beta+\omega m)}f(m+aj+bk).$

- ► If aj + bk = 0, $\pi_\beta \circ \Phi_A(j,k,l)$ has discrete spectrum: the canonical basis for l^2 is an eigenbasis.
- If $aj + bk \neq 0$, $\pi_{\beta} \circ \Phi_A(j, k, l)$ is a weighted shift operator with weights of modulus 1, so it has *no* discrete spectrum.

But now let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$.

If $(a', b') \neq \pm (a, b)$, then $\pi_{\beta} \circ \Phi_A$ is not equivalent to $\pi_{\beta'} \circ \Phi_{A'}$ for any β, β' . *Proof:* $\pi_{\beta} \circ \Phi_A$ acts on $l^2 = L^2(\mathbb{Z})$ by

$$\pi_{\beta} \circ \Phi_A(j,k,l) f(m)$$

= $e^{2\pi i \omega l} e^{\pi i (acj^2 + 2bcjk + bdk^2)} e^{2\pi i k (\beta + \omega m)} f(m + aj + bk).$

- If aj + bk = 0, $\pi_{\beta} \circ \Phi_A(j, k, l)$ has discrete spectrum: the canonical basis for l^2 is an eigenbasis.
- If $aj + bk \neq 0$, $\pi_{\beta} \circ \Phi_A(j, k, l)$ is a weighted shift operator with weights of modulus 1, so it has *no* discrete spectrum.
- ▶ Since $A, A' \in SL(2, \mathbb{Z})$, we have gcd(a, b) = gcd(a', b') = 1. Hence, if $(a', b') \neq \pm (a, b)$, the equations aj + bk = 0 and a'j + b'k = 0 define *different* sets of (j, k)'s.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

On the other hand, if $(a', b') = \pm (a, b)$, then $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \pm \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for some $r \in \mathbb{Z}$, in which case the unitary map on l^2

$$f(m) \mapsto e^{\pi i \omega m^2} e^{\pm 2\pi i \beta r m} f(\pm m)$$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

intertwines $\pi_{\beta} \circ \Phi'_A$ and $\pi_{\pm\beta} \circ \Phi_A$.

On the other hand, if $(a', b') = \pm (a, b)$, then $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \pm \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for some $r \in \mathbb{Z}$, in which case the unitary map on l^2

$$f(m) \mapsto e^{\pi i \omega m^2} e^{\pm 2\pi i \beta r m} f(\pm m)$$

intertwines $\pi_{\beta} \circ \Phi'_A$ and $\pi_{\pm\beta} \circ \Phi_A$.

Finally, given any integers a, b with gcd(a, b) = 1, there exist integers c, d such that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$. Hence we have an infinite family of completely inequivalent irreducible decompositions of ρ_{ω} , parametrized by $(a, b) \in \mathbb{Z}^2$. This includes families described by Kawakami (1982).

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ