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Raman Spectroscopy

I Illuminate chemical sample with laser (single frequency).

I Photon absorbed by molecular bonds. Molecule gives off
photon.

I Very rarely, molecule gives off a photon of a different
frequency (⇒ Nobel prize for Raman).

I Photons given off from that sample have a characteristic
distribution of energies, the spectrum.

I A spectrum can be interpreted as a probability distribution.

I The photons with different energies can be separated
physically, like a prism separates colors in the rainbow.
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Experimental Setup

3 / 22



Mathematical Model—Poisson Process

Quantum mechanics =⇒ photon emission is modeled extremely
accurately by a Poisson process, which is a counting process
N(t), where N(t) is the number of discrete events that happen in
the interval [0, t], with N(0) = 0.

N(t) satisfies the following:

I Distribution of N(t + h)− N(t), h > 0, is independent of t.

I The random variables N(t ′j )− N(tj) are mutually
independent if

⋂
j [tj , t

′
j ] = ∅.

I P[N(t + h)− N(t) > 1] = P[N(h) > 1] = o(h) as h→ 0.

I Some technical assumptions.
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Mathematical Model—Poisson Distribution

Properties of Poisson process =⇒
I There is a λ ≥ 0, known as the rate constant such that the

distribution of N(t + s)− N(s) has a Poisson distribution
with parameter λt:

E [N(s + t)− N(s)] = Var[N(s + t)− N(s)] = λt.
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Experimental Setup (again)
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The Game

I We have a list (< 30) S1, S2, . . . ,Sn, of n known possible
chemicals.

I The energies of the photons in the spectrum of each of
these chemicals can be divided into N bins.

I We want to estimate the rate Λj at which photons are
emitted from each chemical Sj in the sample.

I Estimating the rates Λj can help us estimate the
concentrations.
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Measurements

Three kinds of measurements:

I Put CCD array under spread of photons, count how many hit
each subarray (like digital camera).

I Put micro-mirror array under spread of photons, direct some
energies to a photon counter, other energies to a photon
sink.

I Put spatial light modulator (SLM) under spread of
photons, direct a fraction of photons with each energy to a
photon counter, other photons are absorbed.

CCD array has many small detectors, acting in parallel.
Micro-mirror array and SLM send photons to a single detectpr.
The pattern of which photon energies are sent to detector can be
considered a filter.
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Other Properties of Poisson Processes

I If you randomly assign colors to electrons according to a
fixed probability distribution, then each stream of colored
photons is a Poisson process.

I If, from a Poisson process with rate λ, you randomly remove
counts with fixed probability p, the result is a new Poisson
process with rate λ(1− p).

I If you add two independent Poisson processes with rates
λ1 and λ2, then the result is a new Poisson process with
rate λ1 + λ2.
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Noise Characteristics

CCD array:

I Many small detectors, read noise with standard deviation
about 8 photon counts for each energy bin.

Micro-mirror array/SLM and photon counter:

I One high quality detector, no read noise.

In low signal environment micro-mirror array wins.

In particular, for short time measurements, micro-mirror array
wins.
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Mathematical Model

Matrix:

P =




P11

...
Pi1

...
PN1

 . . .


P1n

...
Pin

...
PNn



 =

Column j is the normalized spectrum of chemical Sj .

Pij is the probability that the energy of a photon emitted by
chemical Sj will land in energy bin i .

P is known from long-term measurements.
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Measurement Model

I Λ = (Λ1, . . . ,Λn)T is the vector of rates of photon emission
by the chemicals S1, . . . ,Sn in the sample.

I Rate that photons hit the ith energy bin is (PΛ)i .

I We’ll take M measurements.

I We take measurement k for time Tkk .
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What is a Filter?

A filter basically programs or determines which photons to
choose in a measurement.

I In measurement k, we pick a filter Fk = (F1k ,F2k , . . . ,FNk)T

such that the probability that a photon with energy i is
sent to the photon counter in measurement k is Fik .

I For spatial light modulators, 0 ≤ Fik ≤ 1.

I For micro-mirror arrays, Fik = 0 or 1.
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Full Experimental Model

I Let the columns of the matrix F be the vectors Fk .

I Normalize:
∑

k Tkk = 1.

I Our vector of measurements x̂ is independent Poisson with
means and variances

T (FTP)Λ,

where T = diag(Tkk).

I Let
Λ̂ = BT−1x̂

be the Best Linear Unbiased Estimator of Λ given a vector
of measurements x̂ .

I “Unbiased” means E (Λ̂) = Λ so B(FTP) = I .

I “Best” has a particular statistical meaning that I won’t
explain.
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Big Questions

How to design filters to best estimate Λ?

What does “best” mean?
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Experimental Design Objectives

Choose:
I M, the number of measurements,
I the matrix F = (Fik) of transmittance filters,
I the (Gauss–Markov) matrix B, and
I the matrix T = diag(Tkk) of measurement times,

to minimize ∑
j

E (Λ̂j − Λj)
2.

Called A-optimality in Optimal Design of Experiments.
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Computational Considerations

I Non-convex optimization problem on a convex domain D:
Given a design Λ̄ and P, find M, F , and B to minimize

M∑
i=1

‖Bei‖
√

(FTPΛ̄)i

subject to B(FTP) = I , 0 ≤ Fik ≤ 1. Calculate T from F , P,
and B. Optimal for this Λ̄, good for other Λs.

I The variance of each measurement depends on the
filter—the more photons you expect to collect in a
measurement, the larger the variance. The standard analysis
assumes that the variances of the measurements don’t depend
on the design.

I Still don’t know how to solve problem efficiently in all cases.

I Matlab does pretty well.
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Partial Theoretical Results

Modified formulation:

I Can transform to convex optimization problem on a
non-convex domain D̃.

I The optimum solution on the convex hull of D̃ is the same
as the solution to the original problem.

I Still don’t know how to solve it efficiently.

Standard:

I The optimal M satisfies n ≤ M ≤ n(n + 1)/2.

I If you have the optimal M, then the optimal Fik satisfy
Fik = 0 or 1; i.e., micro-mirror arrays are optimal.

New:

I If you don’t have the optimal M, then the optimal Fk for
that M can be chosen with at most n − 1 components not
equal 0 or 1 (so micro-mirror arrays are near optimal).
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Example: Distinguish Benzene from Acetone in 30µs

I Left: Spectra. Right: Estimated Λ for pure solutions.

I Grey bars: Where mirrors are on, i.e., Fik = 1.

I Mean Photons emitted: < 50. Experiments: 2,000.

I Measurement times: 15.867µs, 12.585µs, and 1.548µs.
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Example: True Chemical Imaging
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I Cyan: Glucose. Yellow: Fructose.

I Left: “White light” image.

I Middle: 1ms/pixel, 90s/image.

I Right: 0.1ms/pixel, 9s/image; ∼30 photons measured/pixel.
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Moral

Applied mathematicians and chemists need more statistics.
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