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Compressive Sensing

Suppose x € CN is K-sparse in a basis, or more generally, a frame
D, so that x = Dayp, with || ag |[o= K < N, where || ag ||o returns
the number of nonzero elements of aqg. In the case when x is

compressible in D, it can be well approximated by the best K-term
representation.

Consider an M x N measurement matrix ® with M < N and assume
that M linear measurements are made such that y = ®x = ®Dag =

Oag. Having observed y and knowing the matrix ©, the general
problem is to recover ag.




Compressive Sensmg

M

Unfortunately, (Po) is f‘rd and is c‘ationally difficult to

solve.




Compressive Sensing

Ny ' 4
In the cas!m&ﬁere are noisy ‘ations of the following form

y = Oag

with ||n||2 < e, Basis Pursuit De- Nmsm'DN ) can be used to
approximate the original i 33.




Compressive Sensing
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o oy will denote the best sparse approximation one could obtain if
one knew exactly the locations and ampli f the K-largest
entries of «ayp. ok

e ag|k will denote the vectora with all b- K-largest entries

set to zero.
- L]

/We can now state the following result assur.he © obeys the
restricted isometry property(RIP).
- -




Compressive Sensing

Theorem (Candés, 2008)

Assume that dox < v/2 — 1. Then the solution ag to (Py) obeys

-1/2

lag—aoll1 < Collao—an|kl1 & [[ag—aoll2 < CoK™/<[|ap—ao|k |1,

for a particular constant Cy. In particular, if ag is K-sparse, the
recovery is exact.

Furthermore, if 0,5 < 1, then (Pp) has a unique K-sparse solution,
and if 6,k < /2 — 1, the solution to (P;) is that of (Pp).
Theorem (Candés, 2008)

Assume that dx < v/2 — 1. Then the solution o to (P§) obeys

“2)|ap — aglk |1 + Cie,

lag — aol| < GoK

for some particularly small constants Cp and C;.
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Our physical system will Iim* to the ca

'n ® contains
random binary elements. -

-
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Compressive Sensing

The Rice Single Pixel Camera:

single photon
detector

image

reconstruction
or

processing
random
patternon _~
DMD array

e A row of ® consists of the vectorized N x N randomly generated
binary array determined by the digital micromirror device (DMD).
e A single “snapshot” consists of an N x N image multiplied by a
row of ®.

e M “snapshots” means there are M rows/samples recorded.

e M > 16 for high resolution images.



Camera Design Concept

We desire to capture high resolution images in 16 or fewer “snap-
shots” to decrease aquisition time. This can be done by distributing
the work to many photon detectors. In particular, we can leverage
low cost charge-couple devices (CCD'’s) to create a cost-effective
high resolution camera.

Coded Aperture

e High resolution DMD maps
4 X 4 or greater pixel elements
into one CCD element.

e Coded aperture patterns
should avoid delta function
elements due to energy
sensitivity issues.




Camera Design Concept

Experimental Setup

Lens 2

Object

IPlane

I
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e Thermoelectrically cooled CCD operating at —20°C.

e Two achromatic doublet imaging lenses.

e HD format digital micromirror device (DMD) with computer
interface.



Camera Design Concept

Experimental Setup

Andor
R EMCCD and control
Detector board

|

lightsource

Collection laptop




Camera Design Concept

Calibration Issues

Projection of
jcalibration
mask through
system

1 of 100 calibration masks

Mode! of white
imperfect due to
motien




Camera Design Concept

Unexpected Issues

e Grid pattern may be due to
tiny repetative motion captured
during data collection.

e Other sources of error include
modeling of ® and noise.




Reconstruction Algorithms

General Estimation Techniques
) L1 Minimization

& Matching Pursuit

S lterative Thresholding

& Total-Variation Minimization
argminy; TV(ag) ~ [|[Vagl1 subject to y = ©ag



Reconstruction Algorithms

Effective Methods for Camera Design

An lterative thresholding routine based on image separations (to be
explained next).

'An estimate found by using both TV and Besov regularizers by solv-
ing

arg min || Vag |1 + || Wag |1 subject to |ly — ©agll2 < e,
20

where W is an orthogonal wavelet transform (Haar). This is done
by using the Split Bregman Algorithm.



Reconstruction Algorlthms

i '
Given Mp, % & the dlctlona’p RNV**Mp 3nd
D; € RV XM: gre n such that t?wide sparse
t

representations of ise smooth

ure contents,
respectively.
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Atoms from a shearlet dictionary. Atoms from the DCT dictionary.



Reconstruction Algorithms

We propose to recover the image x by estimating the components
xp and x; as Dpcip and D:d; given that

G e = arg min A+ Al
Pyttt
1
+ EHY = Apap — Atat”%a

where A, = ®D, and A, = ®D;. By setting A = [Ap, A¢], we can
divise an iterative reconstruction method as follows.



Reconstruction Algorithms

The objective function can then be re-written as
1 z
w(a) = Mol + 3y = Aall2 (1)
where a contains both the piecewise smooth and texture parts. Let
£ 2 1 2
(e, 20) = 5l = aoll3 — 5 1Aa — Aag|3, )

where aq is an arbitrary vector of length N and the parameter c is
chosen such that d is strictly convex.



Reconstruction Algorithms
This constraint is satisfied by choosing
c> [|ATAll2 = Amax(AT A),

where Amax(AT A) is the maximal eigenvalue of the matrix AT A.
Adding (2) to (1) gives the following surrogate function

~ 1 c 1
() = Mo + 5 ly = Aal3 + 5 lla = ao[3 — S l}Aa — Aal}
This surrogate function W(a) can be re-expressed as
~ A 1
#(0) = 20+ 2llalls + 5l — 3, ©)

where
1.7
X0 = EA (y — Aao) + a

and ag is some constant.



Reconstruction Algorithms

Let at denote the function max(a,0). Given that

8r(x) = = (Ixl = )+

x|

is the element-wise soft-thresholding operator with threshold X, the
global minimizer of the surrogate function (3) is given by

Usol = S)\/c (XO)

1
— S)\/C (EAT(_)/ — AOéo) i Oéo) .



Reconstruction Algorithms

It can then be shown that the iterations
1
okt = Sx/c (CAT(y — Ak + ak>

converge to the minimizer of the function w in (1).

By breaking the above iteration into the two representation parts,
we get:



Reconstruction Algorithms

Reconstruction Algorithm

Initialization: Initialize k = 1 and set

a9 =000 =0and r® =y — Ayad — A
Repeat:

1. Update the estimate of a, and a; as

1 _ _
Oé[l;:S)\/C <CA;—(rk 1)+O[;§ 1)

1 _ _
Oélt( = 'S)\/c (CAZ—(rk 1) +Oé{»( 1> .

2. Update the residual as
rk=y— Apag = Ata/t‘.

Until: stopping criterion is satisfied.




Reconstruction Algorithms

Lin. Bregman Algorithm

Initialization: |Initialize k = 1 and set o = 0, 8° = 0, and
= — Aag.

Repeat:

1. Update the estimate of g by the following iterations

6 61( 1 AT(rk 1)7

35, (3).

2. Update the residual as
rk =y — Aaf.

Until: stopping criterion is satisfied.




Reconstruction Algorithms

Gen. Split Bregman

While [|af — ag || > tol,
forn=1to N
ag ™ = min, H(u) + 3[|d* — F(u) — b¥|3

441 = ming |dily + §l1d — F(u) — b3
end
bk+1 bk (F(uk+1) _ dk+1)
end




Experimental Results

——sigma =0.5

sigma = 1.1
——sigma=1.7
—e—sigma = 3.5

The PSNR as a function of snapshots for experiments with the
Boats image for differing amounts of noise.
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2 Snapshots
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4 Snapshots

CRw
SEm '!3

Raw CCD Capture CS Reconstruction



Experimental Results

8 Snapshots
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16 Snapshots
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2 Snapshots

Raw CCD Capture CS Reconstruction
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4 Snapshots

Raw CCD Capture CS Reconstruction
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8 Snapshots

Raw CCD Capture CS Reconstruction
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16 Snapshots

Raw CCD Capture CS Reconstruction
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