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Compressive Sensing �

Suppose x ∈ CN is K -sparse in a basis, or more generally, a frame
D, so that x = Dα0, with ‖ α0 ‖0= K� N, where ‖ α0 ‖0 returns
the number of nonzero elements of α0. In the case when x is
compressible in D, it can be well approximated by the best K-term
representation.

Consider an M×N measurement matrix Φ with M < N and assume
that M linear measurements are made such that y = Φx = ΦDα0 =
Θα0. Having observed y and knowing the matrix Θ, the general
problem is to recover α0.



Compressive Sensing �

Estimate

(P0) arg min
α′0

‖ α′0 ‖0 subject to y = Θα′0.

Unfortunately, (P0) is NP-hard and is computationally difficult to
solve.

Relaxed Estimate

(P1) arg min
α′0

‖ α′0 ‖1 subject to y = Θα′0,

where ‖α‖1 =
∑

i |αi |.



Compressive Sensing �

In the case when there are noisy observations of the following form

y = Θα0 + η

with ‖η‖2 ≤ ε, Basis Pursuit De-Noising (BPDN) can be used to
approximate the original image.

Relaxed Denoised Estimate
(Pε

1) arg min
α′0

λ ‖ α′0 ‖1 +
1

2
‖y −Θα′0‖22.



Compressive Sensing �

Definition (Restricted Isometry Property)
For each integer K = 1, 2, . . . ,, define the isometry constant δK of
a matrix Θ as the smallest number such that

(1− δK )‖α0‖22 ≤ ‖Θα0‖22 ≤ (1 + δK )‖α0‖22

holds for all K -sparse vectors.

• α∗0 will denote the best sparse approximation one could obtain if
one knew exactly the locations and amplitudes of the K -largest
entries of α0.
• α0|K will denote the vector α0 with all but the K -largest entries
set to zero.

We can now state the following result assuming the Θ obeys the
restricted isometry property(RIP).



Compressive Sensing �

Theorem (Candés, 2008)

Assume that δ2K <
√

2− 1. Then the solution α∗0 to (P1) obeys

‖α∗0−α0‖1 ≤ C0‖α0−α0|K‖1 & ‖α∗0−α0‖2 ≤ C0K−1/2‖α0−α0|K‖1,

for a particular constant C0. In particular, if α0 is K -sparse, the
recovery is exact.

Furthermore, if δ2K < 1, then (P0) has a unique K -sparse solution,
and if δ2K <

√
2− 1, the solution to (P1) is that of (P0).

Theorem (Candés, 2008)

Assume that δ2K <
√

2− 1. Then the solution α∗0 to (Pε
1) obeys

‖α∗0 − α0‖ ≤ C0K−1/2‖α0 − α0|K‖1 + C1ε,

for some particularly small constants C0 and C1.



Compressive Sensing �

Examples of Θ′s that obey the RIP when M = O(K log(N/K ))
occur when
• Φ contains random Gaussian elements
• Φ contains random binary elements
• Φ contains randomly selected Fourier samples

Our physical system will limit us to the case when Φ contains
random binary elements.



Compressive Sensing �

The Rice Single Pixel Camera:

• A row of Φ consists of the vectorized N × N randomly generated
binary array determined by the digital micromirror device (DMD).
• A single “snapshot” consists of an N × N image multiplied by a
row of Φ.
• M “snapshots” means there are M rows/samples recorded.
• M � 16 for high resolution images.



Camera Design Concept �

We desire to capture high resolution images in 16 or fewer “snap-
shots” to decrease aquisition time. This can be done by distributing
the work to many photon detectors. In particular, we can leverage
low cost charge-couple devices (CCD’s) to create a cost-effective
high resolution camera.

• High resolution DMD maps
4× 4 or greater pixel elements
into one CCD element.

• Coded aperture patterns
should avoid delta function
elements due to energy
sensitivity issues.



Camera Design Concept �

Experimental Setup

• Thermoelectrically cooled CCD operating at −20 ◦C.
• Two achromatic doublet imaging lenses.
• HD format digital micromirror device (DMD) with computer
interface.
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Experimental Setup



Camera Design Concept �

Calibration Issues



Camera Design Concept �

Unexpected Issues

• Grid pattern may be due to
tiny repetative motion captured
during data collection.

• Other sources of error include
modeling of Φ and noise.



Reconstruction Algorithms �

General Estimation Techniques
L1 Minimization

Matching Pursuit

Iterative Thresholding

Total-Variation Minimization
arg minα′

0
TV(α′

0) ≈ ‖∇α′
0‖1 subject to y = Θα′

0



Reconstruction Algorithms �

Effective Methods for Camera Design

An Iterative thresholding routine based on image separations (to be
explained next).

An estimate found by using both TV and Besov regularizers by solv-
ing

arg min
α′0

‖ ∇α′0 ‖1 + ‖Wα′0 ‖1 subject to ‖y −Θα′0‖2 < ε,

where W is an orthogonal wavelet transform (Haar). This is done
by using the Split Bregman Algorithm.



Reconstruction Algorithms �

Given Mp,Mt ≥ N2, the dictionary Dp ∈ RN2×Mp and

Dt ∈ RN2×Mt are chosen such that they provide sparse
representations of piecewise smooth and texture contents,
respectively.

Examples

Dp can be a wavelet or a shearlet frame dictionary.

Dt can be a DCT or a Gabor dictionary.



Reconstruction Algorithms �

Atoms from a shearlet dictionary. Atoms from the DCT dictionary.
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We propose to recover the image x by estimating the components
xp and xt as Dpα̂p and Dt α̂t given that

α̂p, α̂t = arg min
αp ,αt

λ‖αp‖1 + λ‖αt‖1

+
1

2
‖y − Apαp − Atαt‖22,

where Ap = ΦDp and At = ΦDt . By setting A = [Ap,At ], we can
divise an iterative reconstruction method as follows.



Reconstruction Algorithms �

The objective function can then be re-written as

w(α) = λ‖α‖1 +
1

2
‖y − Aα‖22 (1)

where α contains both the piecewise smooth and texture parts. Let

d(α, α0) =
c

2
‖α− α0‖22 −

1

2
‖Aα− Aα0‖22, (2)

where α0 is an arbitrary vector of length N2 and the parameter c is
chosen such that d is strictly convex.



Reconstruction Algorithms �

This constraint is satisfied by choosing

c > ‖ATA‖2 = λmax(ATA),

where λmax(ATA) is the maximal eigenvalue of the matrix ATA.
Adding (2) to (1) gives the following surrogate function

w̃(α) = λ‖α‖1 +
1

2
‖y − Aα‖22 +

c

2
‖α− α0‖22 −

1

2
‖Aα− Aα0‖22.

This surrogate function w̃(α) can be re-expressed as

w̃(α) = a0 +
λ

c
‖α‖1 +

1

2
‖α− x0‖22, (3)

where

x0 =
1

c
AT (y − Aα0) + α0

and a0 is some constant.



Reconstruction Algorithms �

Let a+ denote the function max(a, 0). Given that

Sλ(x) =
x

|x |
(|x | − λ)+

is the element-wise soft-thresholding operator with threshold λ, the
global minimizer of the surrogate function (3) is given by

αsol = Sλ/c (x0)

= Sλ/c
(

1

c
AT (y − Aα0) + α0

)
.



Reconstruction Algorithms �

It can then be shown that the iterations

αk+1 = Sλ/c
(

1

c
AT (y − Aαk) + αk

)
converge to the minimizer of the function w in (1).

By breaking the above iteration into the two representation parts,
we get:



Reconstruction Algorithms �

Reconstruction Algorithm

Initialization: Initialize k = 1 and set
α0
p = 0 , α0

t = 0 and r0 = y − Apα
0
p − Atα

0
t .

Repeat:
1. Update the estimate of αp and αt as

αk
p = Sλ/c

(
1

c
AT
p (rk−1) + αk−1

p

)
αk
t = Sλ/c

(
1

c
AT
t (rk−1) + αk−1

t

)
.

2. Update the residual as

rk = y − Apα
k
p − Atα

k
t .

Until: stopping criterion is satisfied.



Reconstruction Algorithms �

Lin. Bregman Algorithm

Initialization: Initialize k = 1 and set α0
0 = 0 , β0 = 0 , and

r0 = y − Aα0
0.

Repeat:
1. Update the estimate of α0 by the following iterations

βk = βk−1 + AT (rk−1),

αk
0 = λSµ

(
βk
)
.

2. Update the residual as

rk = y − Aαk
0 .

Until: stopping criterion is satisfied.
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Gen. Split Bregman

While ‖αk
0 − α

k−1
0 ‖ > tol ,

for n = 1 to N
αk+1
0 = minu H(u) + λ

2‖d
k − F (u)− bk‖22

dk+1 = mind ‖d‖1 + λ
2‖d − F (uk+1)− bk‖22

end
bk+1 = bk + (F (uk+1)− dk+1)

end
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Figure: The PSNR as a function of snapshots for experiments with the
Boats image for differing amounts of noise.
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2 Snapshots

Raw CCD Capture CS Reconstruction
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4 Snapshots

Raw CCD Capture CS Reconstruction
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8 Snapshots

Raw CCD Capture CS Reconstruction
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16 Snapshots

Raw CCD Capture CS Reconstruction
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2 Snapshots

Raw CCD Capture CS Reconstruction
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4 Snapshots

Raw CCD Capture CS Reconstruction
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8 Snapshots

Raw CCD Capture CS Reconstruction
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16 Snapshots

Raw CCD Capture CS Reconstruction
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