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Images are compressible

256× 256 “Boats” image
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Images are compressible
in discrete gradient

3



Images are compressible
in discrete gradient

The discrete directional derivatives of an image X ∈ RN×N are

Xx : RN×N → R(N−1)×N , (Xx)j ,k = Xj ,k − Xj−1,k ,

Xy : RN×N → RN×(N−1), (Xy )j ,k = Xj ,k − Xj ,k−1,

the discrete gradient operator is[
TV [X ]

]
j ,k

= (Xx)j ,k + i(Xy )j ,k
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Images are compressible
in discrete gradient

‖X‖p :=
(∑N

j=1

∑N
k=1 |Xj,k |p

)1/p
X is s-sparse if ‖X‖0 := {#(j , k) : Xj,k 6= 0} ≤ s

Xs is the best s-sparse approximation to X

σs(X )p = ‖X − Xs‖p is the best s-term approximation error in `p.

“Phantom”: ‖TV [X ]‖0 = .03N2, “Boats”: σs(TV [X ])2 decays quickly

in s
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Images are compressible
in Wavelet bases

Two-dimensional Haar Wavelet Transform of “Boats”
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Images are compressible
in Wavelet bases

X =
N∑

j ,k=1

cj ,kHj ,k , cj ,k = 〈X ,Hj ,k〉 , ‖X‖2 = ‖c‖2,

Figure: Haar basis functions

Wavelet transform is orthonormal and multi-scale. Sparsity level of
image is higher on detail coefficients.
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Images are compressible
in Wavelet bases

Figure: Boats image, 2D Haar transform, and compression using 10%
Haar coefficients

X = H−1H(X ) =
∑N

j ,k=1 cj ,kHj ,k

X is s-sparse (in Haar basis) if ‖c‖0 ≤ s

Xw
s is the best s-term approximation to X in Haar basis

σws (X )p = ‖X − Xw
s ‖p
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Imaging via Compressed Sensing
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Imaging via compressed sensing

Instead of storing all N2 pixels of X ∈ RN×N and then
compressing,

acquire information about X through m� N2 nonadaptive
linear measurements of the form

y` = 〈A`,X 〉 = trace(A∗`X )

or concisely y = A(X )
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Imaging via compressed sensing

More realistically, measurements are noisy,

y` = 〈A`,X 〉+ ξ`,

concisely y = A(X ) + ξ.

The goal is to use measurements A` and reconstruction algorithm
such that X ∈ RN×N is reconstructed from y ∈ Rm efficiently and
robustly

Robust: Reconstruction error ‖X̂ − X‖2 comparable to both noise
level ε = ‖ξ‖2 and best s-term approximation error in (discrete
gradient, wavelet basis) with s . m/ log(N).

Efficient: Using a polynomial-time algorithm
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Imaging via compressed sensing

Results in compressed sensing [CRT ’06, etc ...] imply:

I if X ∈ RN×N is s-sparse in an orthonormal basis B

I if we use m & s log(N) measurements y` = 〈A`,X 〉 where A`
are i.i.d. Gaussian random matrices

then with high probability,

X = argmin
Z∈RN×N

‖BZ‖1 subject to A(Z ) = y
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Imaging via compressed sensing

Moreover,

I if X ∈ RN×N is approximately s-sparse in orthonormal basis B

I if we use m & s log(N) noisy measurements y` = 〈A`,X 〉+ η`
with A` i.i.d. Gaussian

I If X̂ = argmin ‖BZ‖1 subject to ‖A(Z )− y‖2 ≤ ε,

then
‖X − X̂‖2 . ‖X − XB

s ‖1/
√

s + ε

This implies a strategy for reconstructing images up to their best
s-term Haar approximation using m & s log(N) measurements.
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Imaging via compressed sensing
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Imaging via compressed sensing

Let’s compare two compressed sensing reconstruction algorithms

X̂Haar = argmin ‖H(Z )‖1 subject to ‖AZ − y‖2 ≤ ε (L1)

and

X̂TV = argmin ‖TV [Z ]‖1 subject to ‖AZ − y‖2 ≤ ε. (TV )

‖Z‖TV = ‖TV [Z ]‖1.

The mapping Z → TV [Z ] is not orthonormal (inverse norm grows
with N), stable image recovery via (TV) is not immediately
justified.
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Imaging via compressed sensing

(a) Original

(b) TV (c) L1

Figure: Reconstruction using m = .2N2
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Imaging via compressed sensing

(a) Original

(b) TV (c) L1

Figure: Reconstruction using m = .2N2 measurements
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Imaging via compressed sensing
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Figure: Reconstruction using m = .2N2 measurements
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Stable signal recovery using total-variation minimization

Our main result:

Theorem
There are choices of m & s log(N) measurements of the form

A(X ) = (〈X ,A`〉)m`=1

such that given y = A(X ) + ξ and

X̂ = argmin ‖Z‖TV subject to ‖A(Z )− y‖2 ≤ ε,

with high probability

‖X − X̂‖2 . log(log(N)) ·
[σ(TV [X ])1√

s
+ ε
]

This error guarantee is optimal up to log(log(N)) factor
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Stable signal recovery using total-variation minimization

X̂ = argmin ‖Z‖TV subject to ‖A(Z )− y‖2 ≤ ε

=⇒ ‖X − X̂‖2 . log(log(N)) ·
[
σ(TV [X ])1√

s
+ ε
]

Method of proof:

1. First prove stable gradient recovery

2. Translate stable gradient recovery to stable signal recovery
using the following (nontrivial) relationship between total
variation and decay of Haar wavelet coefficients:

Theorem (Cohen, DeVore, Petrushev, Xu, 1999)

Let c(1) ≥ c(2) ≥ . . . c(N2) be the bivariate Haar coefficients of an

image Z ∈ RN×N , arranged in decreasing order of magnitude.
Then

|c(k)| ≤ 105
‖Z‖TV

k
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II. Stable signal recovery from stable gradient recovery

A(Z ) = 〈A`,Z 〉 , A` are i.i.d. Gaussian,

X̂ = argmin ‖Z‖TV A(Z − X ) = y

1. [CDPX ’99] Let D = X − X̂ . If c(k) are the Haar coefficients
HD in decreasing arrangement, then

|c(k)| .
‖D‖TV

k

so c = HD is compressible.

2. Gaussian random matrices are rotation-invariant, and
A(D) = 0 implies c = HD is in the null space of an (m × N2)
Gaussian matrix. Then c = HD must also be flat. (Null space
property)

Together these imply that ‖D‖2 = ‖HD‖2 ≤ log(N)‖TV [D]‖2
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Summary

We use the (nontrivial) relationship between the total variation
norm and compressibility of Haar wavelet coefficients to prove
near-optimal robust image recovery via total-variation minimization

Images are sparser in discrete gradient than in Wavelet bases, so
our results are in line with numerical studies
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Open questions

1. The relationship between Haar compressibiity and total
variation norm doesn’t hold in one-dimension. What about
stable (1D) signal recovery?

2. Do our stability results generalize to more practical
compressed sensing measurement ensembles (e.g. partial
random Fourier measurements?) (We have sub-optimal
results)

3. [Patel, Maleh, Gilbert, Chellappa ’11] Images are even sparser
in individual directional derivatives Xx , Xy . If we minimize
separately over directional derivatives, can we still prove stable
recovery?
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