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Introduction

Problem: Decomposition of a signal into the sum of two components:

1. Oscillatory (rhythmic, tonal) component

2. Transient (non-oscillatory) component

Outline

1. Signal resonance and Q-factors

2. Morphological component analysis (MCA)

3. Tunable Q-factor wavelet transform (TQWT)

4. Split augmented Lagrangian shrinkage algorithm (SALSA)

5. Examples

References (MDCT, etc)

S. N. Levine and J. O. Smith III. A sines+transients+noise audio representation for data compression and time/pitch scale

modications. (1998)

L. Daudet and B. Torrésani. Hybrid representations for audiophonic signal encoding. (2002)

S. Molla and B. Torrésani. An hybrid audio coding scheme using hidden Markov models of waveforms. (2005)

M. E. Davies and L. Daudet. Sparse audio representations using the MCLT. (2006)
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Oscillatory (rhythmic) and Transient Components in EEG

Many measured signals have both an oscillatory and a non-oscillatory component.
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Rhythms of the EEG:

Delta 0 - 3 Hz

Theta 4 - 7 Hz

Alpha 8 - 12 Hz

Beta 12 - 30 Hz

Gamma 26 - 100 Hz

Transients in EEG due to:

1) unwanted measurement artifacts

2) non-rhythmic brain activity (spikes, spindles, and vertex waves)
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Signal resonance and Q-factor
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(a) Signals. (b) Spectra.

Figure 1: The resonance of an isolated pulse can be quantified by its Q-factor, defined as the ratio of its center frequency to its bandwidth. Pulses 1 and 3,

essentially a single cycle in duration, are low-resonance pulses. Pulses 2 and 4, whose oscillations are more sustained, are high-resonance pulses.
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Resonance-based signal decomposition
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(a) Resonance-based decomposition. (b) Frequency-based filtering.

Figure 2: Resonance- and frequency-based filtering. (a) Decomposition of a test signal into high- and low-resonance components. The high-resonance signal

component is sparsely represented using a high Q-factor WT. Similarly, the low-resonance signal component is sparsely represented using a low Q-factor WT. (b)

Decomposition of a test signal into low, mid, and high frequency components using LTI discrete-time filters.
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Resonance-based signal decomposition must be nonlinear

SIGNAL LOW−RESONANCE COMPONENT

= +

= +

= +

= +

= +

= +

= +

HIGH−RESONANCE COMPONENT

Figure 3: Resonance-based signal decomposition must be nonlinear: The signal in the bottom left panel is the sum of the signals above it; however, the low-resonance

component of a sum is not the sum of the low-resonance components. The same is true for the high-resonance component. Neither the low- nor high-resonance

components satisfy the superposition property.

F (s1 + · · · + s6) 6= F (s1) + · · · + F (s6)

6



Rational-dilation wavelet transform (RADWT)

Prior work on rational-dilation wavelet transforms addresses the critically-sampled case.

1. K. Nayebi, T. P. Barnwell III and M. J. T. Smith (1991)

2. P. Auscher (1992)

3. J. Kovacevic and M. Vetterli (1993)

4. T. Blu (1993, 1996, 1998)

5. A. Baussard, F. Nicolier and F. Truchetet (2004)

6. G. F. Choueiter and J. R. Glass (2007)

RADWT (2009) gives a solution for the overcomplete case.

Reference:

Bayram, Selesnick. Frequency-domain design of overcomplete rational-dilation wavelet transforms. IEEE Trans. on Signal

Processing, 57, August 2009.

New: Tunable Q-factor wavelet transform — dilation need not be rational.

7



Low-pass Scaling

x(n) LPS ↵ y(n)
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High-pass Scaling

x(n) HPS � y(n)
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Tunable Q-factor wavelet transform (TQWT)

x(n)

H0(!) LPS ↵
v0(n)

H1(!) HPS �
v1(n)

LPS 1/↵ H⇤0 (!)

+ y(n)

y0(n)

HPS 1/� H⇤1 (!)
y1(n)

0 < �  1, 0 < ↵ < 1, ↵ + � > 1

Y0(!) =

8
><

>:

|H0(!)|2X(!) |!|  ↵⇡

0 ↵⇡ < |!|  ⇡

Y1(!) =

8
><

>:

0 |!| < (1� �) ⇡

|H1(!)|2X(!) (1� �) ⇡  |!|  ⇡

Y (!) =

8
>>>>>><

>>>>>>:

|H0(!)|2X(!) |!| < (1� �) ⇡

(|H0(!)|2 + |H1(!)|2)X(!) (1� �) ⇡  |!| < ↵⇡

|H1(!)|2X(!) ↵⇡  |!|  ⇡
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For perfect reconstruction, the filters should satisfy

|H0(!)| = 1, H1(!) = 0, |!|  (1� �) ⇡

H0(!) = 0, |H1(!)| = 1, ↵⇡  |!|  ⇡

The transition bands of H0(!) and of H1(!) must be chosen so that

|H0(!)|2 + |H1(!)|2 = 1 (1� �) ⇡ < |!| < ↵⇡. (1)
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The transition band of H0(!) and H1(!) can be constructed using any power-complementary function,

✓(!),

✓2(!) + ✓2(⇡ � !) = 1, (2)

We use the Daubechies filter frequency response with two vanishing moments,

✓(!) =
1

2

(1 + cos(!))
p
2� cos(!), |!|  ⇡. (3)

Scale and dilate ✓(!) to obtain transition bands for H0(!) and H1(!).
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(a) Fourier transform of input signal, X(!).
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(b) Frequency responses H0(!) and H1(!).
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(c) Fourier transforms of input signal after filtering.
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(d) Fourier transforms after scaling.
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Iterated Filters

x(n) stage 1

stage 2

stage 3

c(n)

d1(n)

d2(n)

d3(n)

Redundancy (total oversampling rate) for many stages:

r =
�

1� ↵

When ↵  1, �  1, we have the system equivalence:

x(n) H0(!) LPS ↵ · · · H0(!) LPS ↵ H1(!) HPS �

⌘ H
(j)
1 (!) LPS ↵j�1 HPS � dj(n)

j � 1 stages
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The equivalent filter is

H
(j)
1 (!) :=

8
>>>>>><

>>>>>>:

0 |!| < (1� �)↵j�1 ⇡

H1(!/↵
j�1

)

j�2Y

m=0

H0(!/↵
m
) (1� �)↵j�1 ⇡  |!|  ↵j�1 ⇡

0 ↵j�1 ⇡ < |!|  ⇡.

(4)

!

0 (1� �)↵j�1⇡ ↵j�1 ⇡ ⇡

Hj
1(!)

Q-factor:

Q =

!c

BW
=

2� �

�

Scaling factors ↵, �:

� =

2

Q + 1

, ↵ = 1� �

r
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LOW Q-FACTOR WT HIGH Q-FACTOR WT
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Finite-length Signals...

The TWQT can be implemented for finite-length signals using the DFT (FFT)....

x(n)

H0(k) LPS N :N0

v0(n)

H1(k) HPS N :N1
v1(n)

LPS N0 :N H⇤0 (k)

+ y(n)

y0(n)

HPS N1 :N H⇤1 (k)
y1(n)
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Low-pass scaling N :N0

x(n) LPS N :N0 y(n)
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Low-pass scaling with N0 < N Low-pass scaling with N0 > N .
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High-pass scaling N :N1
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N/20 N � 1

X (k)

(a) DFT of input signal, X(k).
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(b) Filters H0(k) and H1(k). The transitions-bands are indicated by ‘T ’.
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20



Example: Low Q-factor vs High Q-factor WT
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Low Q-factor vs High Q-factor WT after sparsification
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Low Q-factor vs High Q-factor WT
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Low Q-factor vs High Q-factor WT after sparsification
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Constant-Q vs Constant-BW
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Tunable Q-factor wavelet transform (TQWT) — Run Times

Total execution time for forward/inverse N-point TQWT.

N time (ms) N time (ms)

32 0.010 8192 4.938

64 0.025 16384 10.367

128 0.056 32768 21.935

256 0.120 65536 46.280

512 0.260 131072 96.659

1024 0.537 262144 203.580

2048 1.118 524288 448.498

4096 2.350 1048576 1014.719

• Run times measured on a 2010 base-model Apple MacBook Pro (2.4 GHz Intel Core 2 Duo).

• C implementation.
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Tunable Q-factor wavelet transform (TQWT)

Summary:

1. Fully-discrete, modestly overcomplete

2. Exact perfect reconstruction (‘self-inverting’)

3. Adjustable Q-factor:

Can attain higher Q-factors than (or same low Q-factor of) the dyadic WT.

=) Can achieve higher-frequency resolution needed for oscillatory signals.

4. Samples the time-frequency plane more densely in both time and frequency.

=) Exactly invertible, fully-discrete approximation of the continuous WT.

5. FFT-based implementation
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Morphological Component Analysis (MCA)

Given an observed signal

x = x1 + x2, with x, x1, x2 2 RN,

the goal of MCA is to estimate/determine x1 and x2 individually. Assuming that x1 and x2 can be

sparsely represented in bases (or frames) �1 and �2 respectively, they can be estimated by minimizing the

objective function,

J(w1,w2) = �1kw1k1 + �2kw2k1

with respect to w1 and w2, subject to the constraint:

�1w1 + �2w2 = x.

Then MCA provides the estimates

ˆx1 = �1w1

and

ˆx2 = �2w2.

Reference:

Starck, Elad, Donoho. Image Decomposition via the Combination of Sparse Representations and a Variational Approach,

IEEE Trans. on Image Processing, Oct 2005.
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Why not a quadratic cost function?

If a quadratic cost function is minimized,

J(w1,w2) = �1kw1k22 + �2kw2k22

subject to �1w1 + �2w2 = x,

then, using �1�
t
1 = �2�

t
2 = I, the w1 and w2 can be found in closed form:

w1 =
�2
2

�2
1 + �2

2

�

t
1 x,

w2 =
�2
1

�2
1 + �2

2

�

t
2 x

and the estimated components, ˆx1 = �1w1 and ˆx2 = �2w2, are given by

ˆx1 =
�2
2

�2
1 + �2

2

x,

ˆx2 =
�2
1

�2
1 + �2

2

x

Both ˆx1 and ˆx2 are just scaled versions of x.

=) No separation at all!
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MCA as a linear inverse problem

The constrained optimization problem

min

w1,w2

�1kw1k1 + �2kw2k1

subject to �1w1 + �2w2 = x

can be written as

min

w
k��wk1

subject to Hw = x

where

H =

h
�1 �2

i
, w =

2

4w1

w2

3

5

and � denotes point-by-point multiplication.

This is ‘basis pursuit’, an `1-regularized linear inverse problem . . .

• Non-di↵erentiable

• Convex

=) We use a variant of SALSA (split augmented Lagrangian shrinkage algorithm).

Reference: Afonso, Bioucas-Dias, Figueiredo. Fast Image Recovery Using Variable Splitting and Constrained Optimization. IEEE Trans. on Image

Processing, 2010.
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SALSA for MCA (bais pursuit form)

Applying SALSA to the MCA problem yields the iterative algorithm:

initialize: µ > 0,di (5)

ui  soft(wi + di, 0.5�i/µ)� di, i = 1, 2 (6)

c x� �1 u1 � �2 u2 (7)

di  
1

2

�

t
i c i = 1, 2 (8)

wi  di + ui i = 1, 2 (9)

repeat (10)

where soft(x, T ) is the soft-threshold rule with threshold T ,

soft(x, T ) = xmax(0, 1� T/|x|).

Note: no matrix inverses; only forward and inverse transforms.
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Figure 4: Reduction of objective function during the first 100 iterations. SALSA converges faster than ISTA.
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Example: Resonance-selective nonlinear band-pass filtering
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Figure 5: LTI band-pass filtering. The test signal (a) consists of a sinusoidal pulse of frequency 0.1 cycles/sample and a transient. Band-pass filters 1 and 2 in

(b) are tuned to the frequencies 0.07 and 0.10 cycles/second respectively. The output signals, obtained by filtering the test signal with each of the two band-pass

filters, are shown in (c) and (d). The output of band-pass filter 1, illustrated in (c), contains oscillations due to the transient in the test signal. Moreover, the

transient oscillations in (c) have a frequency of 0.07 Hz even though the test signal (a) contains no sustained oscillatory behavior at this frequency.
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Figure 6: Resonance-based decomposition and band-pass filtering. When resonance-based analysis method is applied to the test signal in Fig. 5a, it yields the

high- and low-resonance components illustrated in (a) and (b). The output signals, obtained by filtering the high-resonance component (a) with each of the two

band-pass filters shown in Fig. 5b, are illustrated in (c) and (d). The transient oscillations in (c) are substantially reduced compared to Fig. 5c.
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Example: Resonance-based decomposition of speech
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Figure 7: Decomposition of a speech signal (“I’m”) into high- and low-resonance components. The high-resonance component (b) contains the sustained oscillations

present in the speech signal, while the low-resonance component (c) contains non-oscillatory transients. (The residual is not shown.)
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Figure 8: Frequency spectra of the speech signal in Fig. 7 and of the extracted high- and low-resonance components. The spectra are computed using the 50 msec

segment from 0.05 to 0.10 seconds. The energy of each resonance component is widely distributed in frequency and their frequency-spectra overlap.
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Figure 9: Frequency decomposition of high-resonance component in Fig. 7. Reconstructing the high-resonance component from a few subbands of the high Q-factor

WT at a time, yields an e�cient AM/FM decomposition.
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Constant bandwidth + Constant Q-factor
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A constant bandwidth and a constant Q-factor decomposition can have high coherence due to some

analysis functions, from each decomposition, having similar frequency support. This can degrade the

results of MCA in principle.
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Constant Q-factor: High Q-factor + Low Q-factor
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Two constant Q-factor decompositions with markedly di↵erent Q-factors will have low coherence because

no analysis functions from the two decompositions will have similar frequency support. This is beneficial

for the operation of MCA.
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Small coherence between low and high Q-factor WTs

0 f1

p
Q1/f1

f1/Q1

 1(f )

f2

p
Q2/f2

f2/Q2

 2(f )

f

Figure 10: For reliable resonance-based decomposition, the inner product between the low-Q and high-Q wavelets should be small for all dilations and translations.

The computation of the maximum inner product is simplified by assuming the wavelets are ideal band-pass functions and expressing the inner product in the

frequency domain.

The inner products can be defined in the frequency domain,

⇢(f1, f2) :=

Z
 1(f ) 2(f ) df,

as a function of their center frequencies (equivalently, dilation).

The maximum value of the inner product, ⇢(f1, f2), occurs when f2 = f1(2 + 1/Q1)/(2 + 1/Q2) and is

given by

⇢max =

s
Q1 + 1/2

Q2 + 1/2
, Q2 > Q1. (11)
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Constant Bandwidth: Narrow-band + Wide-band
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Two constant bandwidth decompositions with markedly di↵erent bandwidths will also have low coherence

and are therefore also suitable transform for MCA-based signal decomposition. This gives a bandwidth-

based decomposition, rather than a resonance-based decomposition.
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Conclusion: Resonance-based signal decomposition

Low Q-factor WT used for sparse representation of the transient component.

High Q-factor WT used for sparse representation of the oscillatory (rhythmic) component.

Morphological component analysis (MCA) used to separate the two signal components.

• Oscillatory component not necessarily high-pass — contains both low and high frequencies.

• Transient component not necessarily a low-pass signal — contains sharp bumps and jumps.

• Software available (Matlab software on web, C code by request).

• http://eeweb.poly.edu/iselesni/TQWT/
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Graphical User Interface: Facilitates interactive selection and tuning of parameters.
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Group Sparsity with Fully Overlapping Groups
Po-Yu Chen

Basis pursuit denoising (no group structure):

argmin

c
ky � �ck22 + �kck1

Generalized basis pursuit denoising (overlapping group sparsity):

argmin

c
ky � �ck22 + �

N�3X

i=0

p
|c(i)|2 + |c(i + 1)|2 + |c(i + 2)|2

(group size 3)

1



Example: Speech Enhancement
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Example: Speech Enhancement
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Basis pursuit denoising using `
1

norm, i.e. no group structure.
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The spectrogram exhibits many spurious noise spikes which produces
‘musical noise’
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Example: Speech Enhancement
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The spectrogram does not exhibit spurious noise spikes. The denoised
signal is free of ‘musical noise’ artifact
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Example: Speech Enhancement
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The spectrogram does not exhibit spurious noise spikes. The denoised
signal is free of ‘musical noise’ artifact
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Quasi-Polynomial Approximation via Sparse Derivatives
Xiaoran Ning

y = x+ noise

Total variation denoising:

argmin

x

ky � xk22 + �kDxk1

Dual-component polynomial denoising:

argmin

x1,x2
ky � x1 � x2k22 + �1kDx1k1 + �2kD2

x2k1

2



First order difference (derivative)







Second order derivative





Estimate of the demo signal using TV filtering
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Figure: Total Variation Filtering.
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Stair case artifact







Estimate of the demo signal using sparse derivative
denoising

0 100 200 300 400 500 600 700 800 900

−0.5

0

0.5

1

1.5
The clean signal

0 100 200 300 400 500 600 700 800 900

−0.5

0

0.5

1

1.5
Y: Noisy signal,  SNR = 15 dB

0 100 200 300 400 500 600 700 800 900

−1

0

1

R1: Estimate of X1 

0 100 200 300 400 500 600 700 800 900

0

0.5

1
R2: Estimate of X2 

0 100 200 300 400 500 600 700 800 900

−0.5

0

0.5

1

1.5
The recovered signal = R1 + R2, SNR = 31.2347 dB

Figure: Sparse Derivative Denoising.
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To compare the two methods
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Figure: Sparse Derivative Denoising and TV Filtering.
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More slides...
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Comparison: EMD & TQWT

We compare

• Empirical Mode Decomposition (EMD)

• Sparse TQWT Representation

A goal of EMD is to decompose a multicomponent signal into several narrow-band components (intrinsic

mode functions).

For some real signals, a sparse TQWT representation leads to a more reasonable decomposition than

EMD (next two slides).
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Morphological Component Analysis (MCA) — Noisy signal case

In the noisy case, we should not ask for exact equality.

Given an observed signal

x = x1 + x2 + n, with x, x1, x2 2 RN,

where n is noise, the components x1 and x2 can be estimated by minimizing the objective function,

J(w1,w2) = kx� �1w1 � �2w2k22 + �1kw1k1 + �2kw2k1

with respect to w1 and w2. Then MCA provides the estimates

ˆx1 = �1w1

and

ˆx2 = �2w2.

Reference:

Starck, Elad, Donoho. Image Decomposition via the Combination of Sparse Representations and a Variational Approach,

IEEE Trans. on Image Processing, Oct 2005.
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Why not a quadratic cost function?

If the `2-norm is used for the penalty term,

J(w1,w2) = kx� �1w1 � �2w2k22 + �1kw1k22 + �2kw2k22,

then, using �1�
t
1 = �2�

t
2 = I, the minimizing w1 and w2 can be found in closed form:

w1 =
�1

�1 + �2 + �1 �2
�

t
1 x

w2 =
�2

�1 + �2 + �1 �2
�

t
2 x

and the estimated components, ˆx1 = �1w1 and ˆx2 = �2w2, are given by

ˆx1 =
�1

�1 + �2 + �1 �2
x

ˆx2 =
�2

�1 + �2 + �1 �2
x

Both ˆx1 and ˆx2 are just scaled versions of x.

=) No separation at all!
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MCA as a linear inverse problem

The objective function

J(w1,w2) = kx� �1w1 � �2w2k22 + �1kw1k1 + �2kw2k1

can be written as

J(w) = kx�Hwk22 + k��wk1

where

H =

h
�1 �2

i
, w =

2

4w1

w2

3

5

and � denotes point-by-point multiplication.

An `1-regularized linear inverse problem . . .

• Non-di↵erentiable

• Convex

=) Use Iterative Soft Thresholding Algorithm (ISTA) or another algorithm to minimize J(w).

Other algorithms include SparSA, TwIST, FISTA, SALSA, etc.
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Split augmented Lagrangian shrinkage algorithm (SALSA)

SALSA is an algorithm for minimizing

J(w) = kx�Hwk22 + �kwk1

SALSA is based on the minimization of

min

u
f1(u) + f2(u) (12)

by the alternating split augmented Lagrangian algorithm:

u(k+1)
= argmin

u
f1(u) + µku� v(k) � d(k)k22 (13)

v(k+1)
= argmin

v
f2(v) + µku(k+1) � v � d(k)k22 (14)

d(k+1)
= d(k) � u(k+1)

+ v(k+1)
(15)

Reference:

Afonso, Bioucas-Dias, Figueiredo.

Fast Image Recovery Using Variable Splitting and Constrained Optimization.

IEEE Trans. on Image Processing, 2010.
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SALSA

Applying SALSA to the MCA problem yields the iterative algorithm:

initialize: µ > 0,d (16)

ui  soft(wi + di, 0.5�i/µ)� di, i = 1, 2 (17)

c x� �1u1 � �2u2 (18)

di  
1

µ + 2

�

t
i c i = 1, 2 (19)

wi  di + ui, i = 1, 2 (20)

repeat (21)

where soft(x, T ) is the soft-threshold rule with threshold T ,

soft(x, T ) = xmax(0, 1� T/|x|).

Note: no matrix inverses; only forward and inverse transforms.
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