## Using Network Flow to Bridge the Gap between Genotype and Phenotype



#### Teresa Przytycka NIH / NLM / NCBI





*Journal "Wisla" (1902) Picture from a local fare in Lublin, Poland* 

#### Genotypes



#### Phenotypes



Journal "Wisla" (1902) Picture from a local fare in Lublin, Poland

#### **Association studies**





#### **Genotype:**



## effects of genotypic variation:

- change in amino acid
- change in gene structure
- copy number variations ....

#### Genotype:



# nic

#### Phenotype (e.g. disease)

## effects of genotypic variation:

- change in amino acid
- change in gene structure
- copy number variations ....

#### Goals :

- A method for system level analysis of propagation of such perturbation in the network
- Prediction of "causal" mutations
- Prediction of master regulators (network hubs) involved in disease
- Prediction of pathways dys-regulated in disease

#### Propagation of the effects of Copy number aberrations in Glioma

#### CNV



## chromosomes



Integrated Protein-protein, protein-DNA phosphorylation network









#### Method outline

- 1. Selecting marker genes to be used as "phenotype"
- 2. Genotype-phenotype association
- 3. Uncovering information flow between genotype and phenotype
- 4. Inferring dys- regulated, genes, pathways, and causal mutations

#### Selecting "phenotype" genes

#### Cancer Cases Gene expression data



#### Selecting "phenotype" genes



#### Selecting "phenotype" genes



#### Associations between copy number variations and gene expression of selected target genes



Cancer Cases CNV data Cancer Cases Gene expression data

## Significant correlation between CNV and expression



## Significant correlation between CNV and expression



## Significant correlation between CNV and expression



#### Uncovering pathways of information flow between CNV and target gene



#### Using expression to guide path discovery



#### Translating probabilities it resistances



**Resistance - set to favor most likely path -based on gene expression values** (reversely proportional to the average correlation of the expression of the adjacent genes with expression of the target gene)

#### Finding subnetworks with significant current flow



**Resistance - set to favor most likely path -based on gene expression values** (reversely proportional to the average correlation of the expression of the adjacent genes with expression of the target gene)

#### Goals :



- A method for system level analysis of propagation of such perturbation in the network
- Prediction of "causal" mutations
- Identification master regulators (network hubs) involved in disease
- Identification pathways dys-regulated in disease



**Resistance - set to favor most likely path -based on gene expression values** (reversely proportional to the average correlation of the expression of the adjacent genes with expression of the target gene)

#### Causal copy number aberrations

| ABCA1   | ACP1   | ADCY8   | AGA     | AHR       | AKAP6              | AKAP9              |
|---------|--------|---------|---------|-----------|--------------------|--------------------|
| AKT1    | ANXA11 | ANXA2   | APP     | ARHGAP11A | ARHGAP29           | <mark>ATR</mark>   |
| BUB3    | CAD    | CAMK2G  | CCNC    | CDC2      | CDC5L              | CDKN2A             |
| CEBPA   | CEP70  | CFH     | СНИК    | COBL      | CRMP1              | CSF2               |
| CSNK2A1 | CUL1   | DARC    | DDX56   | DIAPH3    | DLC1               | EFNA5              |
| EGFR    | EIF2B1 | EIF3A   | EIF3B   | EIF3F     | ELMO1              | EPB41              |
| ERBB4   | ERCC6  | FAS     | FER     | FHL2 ->   | <b>GBAS</b>        | GBE1               |
| GSTK1   | HEATR1 | HSDL2   | IFNA4   | ILK       | ITGB3BP            | <b>KITLG</b>       |
| LMO7    | MAP2K4 | MCM7    | MED10   | MON2      | MRLC2              | <mark>MS4A1</mark> |
| NDUFA4  | NDUFB8 | NRXN1   | NUP205  | NUPL1     | ORC5L              | PARP1              |
| PCDH7   | POLR1A | POLR2J  | POLR3A  | POLR3B    | POM121             | PPIA               |
| PRIM1   | PRKAB1 | PRKCA   | PSAP    | PSMA1     | <mark>PSMA4</mark> | PSMA5              |
| PSMB1   | PSMC3  | PSMC6   | PTEN    | РТК2В     | PTPRD              | PTPRJ              |
| PTPRK   |        | RB1     | RBMX    | RBPMS     | REL                | RGL1               |
| RHOBTB2 | RPL10  | RPL10L  | RPS17   | SEC61A2   | <mark>SF3B4</mark> | SFRS2              |
| SFRS3   | SGCB   | SLC25A4 | SLC27A2 | SNRPB2    | SPTA1              | STXBP6             |
| SYNGR1  | TAF2   | TERF2IP | THBS1   | TOP1 ->   | TP53               | TRIP13             |
| TSSC1   | U2AF2  | UBE3A   | USF2    | VAV3      | VDAC2              | VIM                |
| VWF     | ZNF107 |         |         |           |                    |                    |

#### Goals :



- A method for system level analysis of propagation of such perturbation in the network
- Prediction of "causal" mutations
- Prediction "master regulators" (network hubs) involved in disease
- Prediction pathways dys-regulated in disease

## Solve current flow for all pairs and find nodes belonging to many paths



Cancer Cases CNV data Cancer Cases Gene expression data

#### Hubs

| MYC(110)   | E2F1(88)   | E2F4(43)  | CREBBP(34) | GRB2(27)  | SP3(26)    | ESR1(25)  |
|------------|------------|-----------|------------|-----------|------------|-----------|
| TFAP2A(25) | NFKB1(23)  | MYB(22)   | JUN(22)    | E2F2(22)  | RELA(21)   | AR(21)    |
| SP1(20)    | RPS27A(20) | MAPK3(19) | POU5F1(17) | HIF1A(16) | PPARA(15)  | CDC42(15) |
| UBA52(13)  | CDK7(13)   | YBX1(13)  | YWHAZ(12)  | CEBPB(12) | POU2F1(12) | UBE2I(11) |
| SMAD3(11)  | TAL1(11)   |           |            |           |            |           |

#### Goals :

- A method for system level analysis of propagation of such perturbation in the network
- Prediction of "causal" mutations
- Prediction of "master regulators" (network hubs) involved in disease
- Prediction of pathways dys-regulated in disease

#### Are there common functional pathways?

#### Cancer Cases CNV data

#### Cancer Cases Gene expression dat



#### Common GO pathways

| cell cycle arrest                                      | 10     |  |  |  |
|--------------------------------------------------------|--------|--|--|--|
| epidermal growth factor receptor signaling pathway     |        |  |  |  |
| negative regulation of cell growth                     | 9      |  |  |  |
| Ras protein signal transduction                        | 9      |  |  |  |
| regulation of sequestering of triglyceride             | 8      |  |  |  |
| cell proliferation                                     | 7      |  |  |  |
| nuclear mRNA splicing, via spliceosome                 | 7      |  |  |  |
| regulation of cholesterol storage                      | 7      |  |  |  |
| nucleotide-excision repair                             | 7      |  |  |  |
| RNA elongation from RNA polymerase II promoter         | 7      |  |  |  |
| insulin receptor signaling pathway                     | 6      |  |  |  |
| transcription initiation from RNA polymerase II prom   | oter 6 |  |  |  |
| N-terminal peptidyl-lysine acetylation                 | 5      |  |  |  |
| phosphoinositide-mediated signaling                    | 5      |  |  |  |
| positive regulation of lipid storage                   | 4      |  |  |  |
| positive regulation of specific transcription from RNA |        |  |  |  |
| polymerase II promoter                                 | 3      |  |  |  |
| positive regulation of epithelial cell proliferation   | 3      |  |  |  |
| base-excision repair                                   | 2      |  |  |  |
| negative regulation of hydrolase activity              |        |  |  |  |
| gland development                                      | 2      |  |  |  |
| positive regulation of MAP kinase activity             | 2      |  |  |  |
| regulation of nitric-oxide synthase activity           | 2      |  |  |  |
| estrogen receptor signaling pathway                    | 2      |  |  |  |
| regulation of receptor biosynthetic process            | 2      |  |  |  |
| response to organic substance                          | 2      |  |  |  |
| JAK-STAT cascade                                       | 2      |  |  |  |
| regulation of transforming growth factor-beta2         | 2      |  |  |  |
| production                                             | 2      |  |  |  |
| G1/S transition of mitotic cell cycle                  | 2      |  |  |  |
| SMAD protein nuclear translocation                     | 2      |  |  |  |

#### Goals :

- A method for system level analysis of propagation of such perturbation in the network
- Prediction of "causal" mutations
- Prediction of "master regulators" (network hubs) involved in disease
- Prediction of pathways dys-regulated in disease

#### Design details under the hood

Current flow reduces to solving a set of linear equations (Kirchhoff's laws)
Caveat: We had to solving a linear system with 20,000 variables

thousands of times for permutation test required new methodology

- Many biological interactions are directional. This can be taken care by solving linear program with corresponding constraints - Caveat: the network is to big for solving thousands of linear programs
- Null model and p-value estimations

Kim, Wuchty, Przytycka – *PloS Comp Bio 2011* Kim, Przytycki, Wuchty, Przytycka – *Phys. Bio.* 2011

#### Acknowledgments

#### Group members:

Yoo-Ah Kim DongYeon Cho Xiangjun Du Jan Hoinka Yang Huang Raheleh Salari **Damian Wojtowicz Collaborators:** Stefan Wuchty (NCBI)

Jozef Przytycki (GWU)



Journal "Wisla" (1902) Picture from a local fare in Lublin, Poland

my great-great uncle (the "Giant")

#### Acknowledgments

#### Group members:

Yoo-Ah Kim DongYeon Cho Xiangjun Du Jan Hoinka Yang Huang Raheleh Salari

**Damian Wojtowicz** 

Collaborators:

Stefan Wuchty (NCBI)

Brian Oliver (NIDDK) John Malone Nicolas Mattiuzzo

Justin Andrews (Indiana University)

Jozef Przytycki (GWU)



## Impact of gene copy number on gene expression in Drosophila melanogaster

Expression fold change (log<sub>2</sub>)



**Expression (wild type)** 

collaboration with Brian Oliver group (NIDDK)

## CNV-related perturbations propagate trough interaction network





Co-complex network from Artavanis-Tsakonas group (unpublished)



#### Correlation between CNV and expression



#### **Genotype:**



## effects of genotypic variation:

- change in amino acid
- change in gene structure
- copy number variations ....

#### Phenotype

#### Genotype:

## effects of genotypic variation:

- change in amino acid
- change in gene structure
- copy number variations ....



#### Phenotype

#### Genotype:

## effects of genotypic variation:

- change in amino acid
- change in gene structure
- copy number variations ....



#### Molecular phenotypes

- gene expression
- Metabolite level

#### Copy number variations (CNV) (gene dosage)

- implicated in large number of human diseases (cancer, Crohn's disease, autism)
- 28,025 structural variants identified in 1000 genome study (2,000 changes affecting full genes or exons)
- Frequent type of somatic mutations in cancer

#### Genotype:





#### Phenotype



#### Molecular phenotypes

- gene expression
- Metabolite level