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Speech as a Biometric

Speech is “performed”, while many other biometrics
(fingerprint and iris) are not. Performances are affected by
Internal factors (“intrinsic”) as well as external ones
(“extrinsic”).

Modern speaker recognition is concerned with text-
Independent matching.

Testing assumes the talker is not “cooperative”; i.e. the talker
IS unaware of the system.

Most testing uses a verification paradigm (i.e. an identity is
claimed; the system says yea or nay). This generalizes to
predict closed-set or even open-set testing results.

Note: Human SID performance is generally worse than
machine performance! (exception: close friends, loved ones).
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Sources of Speaker Variability
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Generic SID Biometric Block Diagram
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What comes out of a SID verifier?

A number representing the likelihood that the current
speaker is the same as the “model” speaker

The figure shows actual score histograms (NIST 2008 eval.)
. Target PDF: u=4.5, 6=2.01
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Characterizing Performance: The DET Curve

The Detection Error Tradeoff curve shows performance at
all threshold settings simultaneously
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——) = Speaker Recognition Techniques
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Sources of Speaker ldentity (Features)

Low-level (10 — 30 msec)
Anatomical structure of vocal tract (e.g. nasal passages)
Acoustical characteristics of glottal source
Medium-level (100s of msec)
Prosodics: rhythm, speed, intonation, volume
Idiosyncrasies (e.g. lip smacks, ‘uh-huh’)
High-level (100 — 1000 msec)
Word choices
Grammatical usages
Accent/Dialect/Language
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Prosodic Features in SID

Pitch, energy & duration short-time values are converted
into “features” as shown below:
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(etc.)

Those features are turned into even more sophisticated
features using N-grams, rank normalization, etc; ultimately
a classifier is applied (e.g. Support Vector Machine).

Good performance requires several minutes of speech
Fuses very well with other methods
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MLLR: Deviation from the Average Speaker

The MLLR (Maximum Likelihood Linear Regression)
technique originally used in speech recognition, has proven

valuable for SID

Transformations are of the form
277N uwnew=A*u+b

peakerindependent . <3 Where A is a matrix & b is a vector
ro® ’,;:“\' (A is 39x39 and b is 39x1)
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Gaussian Mixture Modeling (GMM)

With a small number of 2-D Example*: Training uses
parameters, complex EM iterative algorithm) to build
shapes can be modeled (3 3-element model

1-Dim. Gaussians shown

below): xx 5/
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[* Actually 40-dim features, 1-2k mixtures]
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“Supervectors” & Dimension Reduction

Concatenate GMM mixture means to make a “Supervector”
(up to 2k*40)=80k length vector

Reduce “noise” dimensions by applying Joint Factor
Analysis or i-vector/PLDA
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Expanding Speaker Recognition Applications

Landline Telephone: 1970

Consistent “Calibration”: 1996
Cellular Telephone: 2001

Language (Multiple/Cross) : 2004
Interview (Cross) Microphone: 2008
Cross-Channel (tel. vs. interview): 2008
Aging: 2010

Vocal Effort/Lombard: 2010

Additive Noise: 2011

Room Reverberation: 2011
Cross-Room (‘bright’ vs. ‘dead’): 2011
Minimal/No Training Data: 2011
“Confidence”: 2011

Page 16
MITRE Approved for Public Release 12-0099. Distribution Unlimited.

© 2012 The MITRE Corporation. All rights reserved.



—> w Dealing with “Unseen” Conditions
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Defining the “Unseen” Data Problem

Traditional pattern recognition techniques require
substantial training data from the same source

Without such training data, getting a valid log-likelihood
ratio is problematic

But real-world applications may not cooperate with our
needs

Infinite number of room sizes, microphone positions, wall
materials, noise sources, etc.

Unlike telephone where standards limit variation

Algorithms historically never self-modified, based on
conditions. Even now, they do very little....

What can be done to limit the damage when a new source of
data appears?

“Solving” this problem means getting close to clean
performance
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Solving the “Unseen” Data Problem

Use simulation to create extrinsic conditions (noise, reverb)
Feed simulated data to make backend (JFA, i-vectors) better
Collect intrinsic conditions
Whisper to shout (effort), fast to slow (rate)
Read vs. oration vs. telephony vs. interview (style)
lliness, drunk, sleepy, aging
Understand the effects on Speaker models
Automatically detect conditions (e.g. SNR, speech rate)

Modify algorithms according to the differences between training
and test conditions

For a brand-new condition:
Use unsupervised adaptation to improve performance over time
Learn to detect data too bad to process effectively (no-decision)
Use supervised adaptation with a few known “true” cuts
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Example Condition-Driven Algorithm Mods

Modify front-end feature extraction based on conditions,
because a feature set is robust against reverb

Decide to weight certain speech sounds (phonemes)
differently because noise is distorting them (fricatives,
mixed-excitation sounds —“zh”)

Change fusion weights based on SNR or Reverb (RT)
because (e.g.) prosodic energy features degrade quickly in
that condition.

Modify decision threshold to reflect large differences in
either extrinsic or intrinsic conditions (e.g. vocal effort)
between training and recognition samples
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Conclusions

Speaker recognition is still a serious research issue 40
years after its birth

The expansion of application conditions since 2006 has
been dramatic

But we are coming to a crossroads:
Collecting hundreds of speakers is expensive

Exposing them to many extrinsic/intrinsic conditions is time-
consuming & difficult

Encouraging algorithm developers to use simulated
extrinsic data to become more robust

Must continue to collect intrinsic variations until better
models of speech behavior can be built

Encourage algorithm developers to estimate
extrinsics/intrinsics & modify algorithms accordingly
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Thanks for inviting me and listening!
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Extra Slides
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Mel-Warped Cepstrum Features

Linear Frequency va. Mel Frequency
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Frequency Domain Linear Prediction

Alternative Feature set, shows robustness to reverb
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I-Vector Generation/PLDA

M=m + Tw (m is the UBM Supervector, M is the incoming
Supervector)

Estimate the Total variability matrix T, given training GMM
Supervectors (using the EM algorithm).

The i-vectors (w) are the speaker/session factors of the T
matrix (analogous to the factors in JFA)

Results in a ~400 element vector w
PLDA breaks it down further, with the i-vectors as an input:
w = m+ Vy + Ux + ¢, where
V = speaker subspace (y are the factors)
U = channel subspace (x are the factors)
m = mean vector over all training data
g = residual noise (covariance matrix )
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“Shoebox” Room Reverberation Simulation

Allows the user to specify:
Materials for the 4 walls, ceiling & floor
Dimensions (X,Y,2)
Positions of the sound source & receiver
HRTF for receiver

Results in a Room Impulse Response
Characterized by “RT60” metric

Which can then be convolved with clean
speech

Key Limitation: can’t put humans in the
room — bodies soak up sound. As a result
RIR is overly “bright”.

Much more sophisticated room
simulations exist ($$$)
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"
Collecting Interview Room Data (NIST/LDC)

Typical
Experiments

Room #1 Room #2

Train Test

Each room has ~16 microphones. In addition,
telephone calls are made by the same speakers
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Vocal Effort Collections?
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Score-Level Fusion

Fusion weights and offset developed using a small
development data set

Fusion DET Curve
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