Existence of frames with prescribed norms and frame operator

Marcin Bownik

University of Oregon

February Fourier Talks 2012

University of Maryland, College Park, February 16-17, 2012

Statement of problem

Definition

A sequence $\{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is called a frame if there exist constants $0 < A \le B < \infty$ such that

$$A\|f\|^2 \leq \sum_{i\in I} |\langle f, f_i \rangle|^2 \leq B\|f\|^2 \qquad \forall f \in \mathcal{H}.$$

A frame operator $Sf = \sum_{i \in I} \langle f, f_i \rangle f_i$.

Problem. Characterize all possible sequences of norms $\{||f_i||\}_{i \in I}$ of frames with prescribed frame operator *S*.

Statement of problem

Definition

A sequence $\{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is called a frame if there exist constants $0 < A \le B < \infty$ such that

$$A\|f\|^2 \leq \sum_{i\in I} |\langle f, f_i \rangle|^2 \leq B\|f\|^2 \qquad \forall f \in \mathcal{H}.$$

A frame operator $Sf = \sum_{i \in I} \langle f, f_i \rangle f_i$.

Problem. Characterize all possible sequences of norms $\{||f_i||\}_{i \in I}$ of frames with prescribed frame operator *S*.

Trivial necessary condition:

$$0\leq ||f_i||^2\leq B.$$

• Schur (1923), Horn (1954) - diagonals of Hermitian matrices

個 と く ヨ と く ヨ と …

3

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator

向下 イヨト イヨト

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames

- 本部 とくき とくき とうき

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames

(《圖》 《문》 《문》 - 문

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames
- Arveson, Kadison (2006) Schur-Horn for trace class operators

(ロ) (同) (E) (E) (E)

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames
- Arveson, Kadison (2006) Schur-Horn for trace class operators
- Kaftal, Weiss (2010) Schur-Horn for compact operators

(ロ) (同) (E) (E) (E)

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames
- Arveson, Kadison (2006) Schur-Horn for trace class operators
- Kaftal, Weiss (2010) Schur-Horn for compact operators
- Bownik, Jasper (2010) frames with prescribed lower and upper bounds

(ロ) (同) (E) (E) (E)

- Schur (1923), Horn (1954) diagonals of Hermitian matrices
- Casazza, Leon (2002 published in 2010) finite frames with a given frame operator
- Kornelson, Larson (2004) infinite frames with a given frame operator
- Antezana, Massey, Ruiz, Stojanoff (2007) Schur-Horn theorem and frames with prescribed norms and frame operator
- Kadison (2002) complete answer for Parseval frames
- Casazza, Fickus, Kovačević, Leon, Tremain (2006) fundamental inequality for finite Parseval frames
- Arveson, Kadison (2006) Schur-Horn for trace class operators
- Kaftal, Weiss (2010) Schur-Horn for compact operators
- Bownik, Jasper (2010) frames with prescribed lower and upper bounds
- Jasper (2011) -frames with 2 point spectrum frame operator

Proposition

Let \mathcal{K} be a Hilbert space with orthonormal basis $\{e_i\}_{i \in I}$ and $0 < A \leq B < \infty$. If E is a positive operator on \mathcal{K} with $\sigma(E) \subseteq \{0\} \cup [A, B]$, then $\{Ee_i\}$ is a frame for $\mathcal{H} = E(\mathcal{K})$ with bounds A^2 and B^2 .

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Proposition

Let \mathcal{K} be a Hilbert space with orthonormal basis $\{e_i\}_{i \in I}$ and $0 < A \leq B < \infty$. If E is a positive operator on \mathcal{K} with $\sigma(E) \subseteq \{0\} \cup [A, B]$, then $\{Ee_i\}$ is a frame for $\mathcal{H} = E(\mathcal{K})$ with bounds A^2 and B^2 .

The converse is also true.

Proposition

Let $\{f_i\}_{i\in I}$ be a frame for \mathcal{H} with optimal bounds A^2 and B^2 . Then, there exists a larger Hilbert space $\mathcal{K} \supset \mathcal{H}$ with basis $\{e_i\}_{i\in I}$ and positive operator E on \mathcal{K} such that $E(e_i) = f_i$ and

 $\{A,B\}\subseteq \sigma(E)\subseteq \{0\}\cup [A,B].$

・ 回 と ・ ヨ と ・ ヨ と

Proposition

Let \mathcal{K} be a Hilbert space with orthonormal basis $\{e_i\}_{i\in I}$ and $0 < A \leq B < \infty$. If E is a positive operator on \mathcal{K} with $\sigma(E) \subseteq \{0\} \cup [A, B]$, then $\{Ee_i\}$ is a frame for $\mathcal{H} = E(\mathcal{K})$ with bounds A^2 and B^2 .

The converse is also true.

Proposition

Let $\{f_i\}_{i \in I}$ be a frame for \mathcal{H} with optimal bounds A^2 and B^2 . Then, there exists a larger Hilbert space $\mathcal{K} \supset \mathcal{H}$ with basis $\{e_i\}_{i \in I}$ and positive operator E on \mathcal{K} such that $E(e_i) = f_i$ and

 $\{A,B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A,B].$

 \mathcal{K} can be identified with $\ell^2(I)$. *E* is unitarily equivalent with $S^{1/2} \oplus \mathbf{0}$, *S* frame operator, **0** on \mathcal{H}^{\perp}_{-} . Theorem (Antezana, Massey, Ruiz, Stojanoff (2007))

Let $0 < A \le B < \infty$ and S be a positive operator on a Hilbert space \mathcal{H} with $\sigma(S) \subset [A, B]$. The following sets are equal:

 $\left\{ \left\{ \|f_i\|^2 \right\}_{i \in I} \middle| \begin{array}{c} \{f_i\}_{i \in I} \text{ is a frame for } \mathcal{H} \text{ with } \\ frame \text{ operator } S \end{array} \right\}$

 $\left\{ \left\{ \langle Ee_i, e_i \rangle \right\}_{i \in I} \middle| \begin{array}{c} E \text{ is self-adjoint on } \ell^2(I) \text{ and} \\ unitarily equivalent with } S \oplus \mathbf{0} \end{array} \right\}$

・ 「 ト ・ ヨ ト ・ ヨ ト ・

Theorem (Antezana, Massey, Ruiz, Stojanoff (2007))

Let $0 < A \le B < \infty$ and S be a positive operator on a Hilbert space \mathcal{H} with $\sigma(S) \subset [A, B]$. The following sets are equal:

 $\left\{ \left\{ \|f_i\|^2 \right\}_{i \in I} \middle| \begin{array}{c} \{f_i\}_{i \in I} \text{ is a frame for } \mathcal{H} \text{ with } \\ frame \text{ operator } S \end{array} \right\}$

 $\left\{ \left\{ \langle Ee_i, e_i \rangle \right\}_{i \in I} \middle| \begin{array}{c} E \text{ is self-adjoint on } \ell^2(I) \text{ and} \\ unitarily equivalent with } S \oplus \mathbf{0} \end{array} \right\}$

Reformulated Problem. Characterize diagonals of positive operators *E* with $\{A, B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A, B]$.

Parseval Frames

Definition

A sequence $\{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is a tight frame (Parseval frame if B = 1) if

$$\sum_{i\in I} |\langle f, f_i \rangle|^2 = B ||f||^2 \qquad \forall f \in \mathcal{H}.$$

Problem. Characterize sequences of norms of Parseval frames.

Parseval Frames

Definition

A sequence $\{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is a tight frame (Parseval frame if B = 1) if

$$\sum_{i\in I} |\langle f, f_i \rangle|^2 = B ||f||^2 \qquad \forall f \in \mathcal{H}.$$

Problem. Characterize sequences of norms of Parseval frames. **Reformulated Problem.** Characterize diagonals of orthogonal projections.

・日・ ・ ヨ・ ・ ヨ・

Parseval Frames

Definition

A sequence $\{f_i\}_{i \in I}$ in a Hilbert space \mathcal{H} is a tight frame (Parseval frame if B = 1) if

$$\sum_{i\in I} |\langle f, f_i \rangle|^2 = B ||f||^2 \qquad \forall f \in \mathcal{H}.$$

Problem. Characterize sequences of norms of Parseval frames. **Reformulated Problem.** Characterize diagonals of orthogonal projections.

This problem was solved by Kadison (2002) and independently in the finite case by Casazza, Fickus, Kovačevíc, Leon, and Tremain (2006) using frame potentials.

$$\max_{i=1,\ldots,M} ||f_i||^2 \leq \frac{1}{N} \sum_{i=1}^M ||f_i||^2 = B.$$

Let $\{d_i\}_{i\in I}$ be a sequence in [0,1] and $\alpha \in (0,1)$. Define

$$\mathcal{C}(\alpha) = \sum_{d_i < \alpha} d_i, \qquad \mathcal{D}(\alpha) = \sum_{d_i \ge \alpha} (1 - d_i).$$

There exists an orthogonal projection on $\ell^2(I)$ with diagonal $\{d_i\}_{i \in I} \iff$ either:

(本間) (本語) (本語) 三語

Let $\{d_i\}_{i\in I}$ be a sequence in [0,1] and $\alpha \in (0,1)$. Define

$$\mathcal{C}(\alpha) = \sum_{d_i < lpha} d_i, \qquad \mathcal{D}(\alpha) = \sum_{d_i \ge lpha} (1 - d_i).$$

There exists an orthogonal projection on $\ell^2(I)$ with diagonal $\{d_i\}_{i \in I} \iff$ either: **1** $C(\alpha) = \infty$ or $D(\alpha) = \infty$, or

マロト イヨト イヨト 二日

Let $\{d_i\}_{i\in I}$ be a sequence in [0,1] and $\alpha \in (0,1)$. Define

$$\mathcal{C}(\alpha) = \sum_{d_i < lpha} d_i, \qquad \mathcal{D}(\alpha) = \sum_{d_i \ge lpha} (1 - d_i).$$

There exists an orthogonal projection on $\ell^2(I)$ with diagonal $\{d_i\}_{i \in I} \iff$ either:

•
$$\mathcal{C}(lpha)=\infty$$
 or $\mathcal{D}(lpha)=\infty$, or

3
$$C(\alpha), D(\alpha) < \infty$$
, and $C(\alpha) - D(\alpha) \in \mathbb{Z}$.

(《圖》 《문》 《문》 - 문

Let $\{d_i\}_{i \in I}$ be a sequence in [0,1] and $\alpha \in (0,1)$. Define

$$\mathcal{C}(\alpha) = \sum_{d_i < \alpha} d_i, \qquad \mathcal{D}(\alpha) = \sum_{d_i \ge \alpha} (1 - d_i).$$

There exists an orthogonal projection on $\ell^2(I)$ with diagonal $\{d_i\}_{i \in I} \iff$ either:

$${f 0} \ \ {\cal C}(lpha)=\infty$$
 or ${\cal D}(lpha)=\infty$, or

2
$$C(lpha), D(lpha) < \infty$$
, and $C(lpha) - D(lpha) \in \mathbb{Z}.$

The same condition characterizes sequences of norms of Parseval frames. The finite case is a consequence of the Schur-Horn theorem—the necessary and sufficient condition is $\sum d_i \in \mathbb{N}$.

イボト イラト イラト

Theorem (Schur (1923), Horn (1954))

Suppose S is an $N \times N$ Hermitian matrix with eigenvalues $\{\lambda_i\}_{i=1}^N$ and diagonal $\{d_i\}_{i=1}^N$ listed in nonincreasing order. Then,

$$\sum_{i=1}^{n} d_i \leq \sum_{i=1}^{n} \lambda_i \quad \forall n = 1, \dots, N$$

$$\sum_{i=1}^{N} \lambda_i = \sum_{i=1}^{N} d_i$$
(1)

Conversely, if (1) holds, then there is a real $N \times N$ Hermitian matrix with eigenvalues $\{\lambda_i\}$ and diagonal $\{d_i\}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Theorem (Schur (1923), Horn (1954))

Suppose S is an $N \times N$ Hermitian matrix with eigenvalues $\{\lambda_i\}_{i=1}^N$ and diagonal $\{d_i\}_{i=1}^N$ listed in nonincreasing order. Then,

$$\sum_{i=1}^{n} d_i \leq \sum_{i=1}^{n} \lambda_i \quad \forall n = 1, \dots, N$$

$$\sum_{i=1}^{N} \lambda_i = \sum_{i=1}^{N} d_i$$
(1)

Conversely, if (1) holds, then there is a **real** $N \times N$ Hermitian matrix with eigenvalues $\{\lambda_i\}$ and diagonal $\{d_i\}$.

(1) is equivalent to the convexity condition

$$(d_1,\ldots,d_N)\in \mathsf{conv}\{(\lambda_{\sigma(1)},\ldots,\lambda_{\sigma(N)}):\sigma\in \mathcal{S}_N\}\subset\mathbb{R}^N.$$

・吊 トイヨト イヨト 二日

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0, B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a positive operator *E* with $\{A, B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A, B]$ and diagonal $\{d_i\} \iff$ either:

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0, B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a positive operator E with $\{A, B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A, B]$ and diagonal $\{d_i\} \iff$ either:

•
$$C = \infty$$
 or $D = \infty$, or

A (10) A (10)

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0, B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a positive operator E with $\{A, B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A, B]$ and diagonal $\{d_i\} \iff$ either:

•
$$C = \infty$$
 or $D = \infty$, or

$$NA \leq C \leq A + B(N-1) + D.$$

マロト イヨト イヨト

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0, B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a positive operator E with $\{A, B\} \subseteq \sigma(E) \subseteq \{0\} \cup [A, B]$ and diagonal $\{d_i\} \iff$ either:

•
$$C = \infty$$
 or $D = \infty$, or

2 $C, D < \infty$ and $\exists N \in \mathbb{N} \cup \{0\}$,

$$NA \leq C \leq A + B(N-1) + D.$$

The nonsummability $\sum d_i = \infty$ is not a true limitation.

Corollary (Bownik, Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}$ be a nonsummable sequence in [0, B]. Define the numbers

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a frame with optimal bounds A and B and $d_i = ||f_i||^2 \iff$ either:

•
$$C = \infty$$
 or $D = \infty$, or

2 $C, D < \infty$ and $\exists N \in \mathbb{N}$,

$$NA \leq C \leq A + B(N-1) + D.$$

(1) マン・ション・

Moving diagonal in desirable configuration

Lemma (Moving toward 0-1)

Let $\{d_i\}_{i \in I}$ be a sequence in [0, B]. Let $I_0, I_1 \subset I$ be two disjoint finite subsets such that $\max\{d_i : i \in I_0\} \leq \min\{d_i : i \in I_1\}$. Let

$$0 \leq \eta_0 \leq \min \bigg\{ \sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i) \bigg\}.$$

イロン 不良と 不良とう

э

Lemma (Moving toward 0-1)

Let $\{d_i\}_{i \in I}$ be a sequence in [0, B]. Let $I_0, I_1 \subset I$ be two disjoint finite subsets such that $\max\{d_i : i \in I_0\} \leq \min\{d_i : i \in I_1\}$. Let

$$0 \leq \eta_0 \leq \min\bigg\{\sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i)\bigg\}.$$

(i) There exists a sequence {*d̃*_i}_{i∈I} in [0, B] satisfying: *d̃*_i = d_i for i ∈ I \ (I₀ ∪ I₁), *d̃*_i ≤ d_i i ∈ I₀ and *d̃*_i ≥ d_i, i ∈ I₁,
η₀ + ∑_{i∈I₀} *d̃*_i = ∑_{i∈I₀} d_i, and η₀ + ∑_{i∈I₀} (B - *d̃*_i) = ∑_{i∈I₀} (B - d_i).

A (10) A (10) A (10) A

э

Lemma (Moving toward 0-1)

Let $\{d_i\}_{i \in I}$ be a sequence in [0, B]. Let $I_0, I_1 \subset I$ be two disjoint finite subsets such that $\max\{d_i : i \in I_0\} \leq \min\{d_i : i \in I_1\}$. Let

$$0 \leq \eta_0 \leq \min \bigg\{ \sum_{i \in I_0} d_i, \sum_{i \in I_1} (B - d_i) \bigg\}.$$

(i) There exists a sequence {*d̃*_i}_{i∈I} in [0, B] satisfying: *d̃*_i = d_i for i ∈ I \ (I₀ ∪ I₁), *d̃*_i ≤ d_i i ∈ I₀ and *d̃*_i ≥ d_i, i ∈ I₁, *η*₀ + ∑_{i∈I₀}*d̃*_i = ∑_{i∈I₀} d_i, and *η*₀ + ∑_{i∈I₁}(B - *d̃*_i) = ∑_{i∈I₁}(B - d_i).
(ii) *Ẽ* self-adjoint operator with diagonal {*d̃*_i}_{i∈I} ⇒ there exists an operator *E* unitarily equivalent to *Ẽ* with diagonal {*d*_i}_{i∈I}.

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a self-adjoint operator E with diagonal $\{d_i\}_{i \in I}$ and $\sigma(E) = \{0, A, B\} \iff$ either:

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a self-adjoint operator E with diagonal $\{d_i\}_{i \in I}$ and $\sigma(E) = \{0, A, B\} \iff$ either:

•
$$C = \infty$$
 or $D = \infty$, or

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a self-adjoint operator E with diagonal $\{d_i\}_{i \in I}$ and $\sigma(E) = \{0, A, B\} \iff$ either:

①
$$C=\infty$$
 or $D=\infty$, or

2 $C, D < \infty$ and $\exists N \in \mathbb{N}, k \in \mathbb{Z}$

$$C - D = NA + kB$$
 and $C \ge (N + k)A$.

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a self-adjoint operator E with diagonal $\{d_i\}_{i \in I}$ and $\sigma(E) = \{0, A, B\} \iff$ either:

①
$$C=\infty$$
 or $D=\infty$, or

2 $C, D < \infty$ and $\exists N \in \mathbb{N}, k \in \mathbb{Z}$

$$C - D = NA + kB$$
 and $C \ge (N + k)A$.

 $\sum d_i = \sum (B - d_i) = \infty$ is not a true limitation.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □

Corollary (Jasper (2011))

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ be a sequence in [0, B] with $\sum d_i = \sum (B - d_i) = \infty$. Define

$$C = \sum_{d_i < A} d_i$$
 and $D = \sum_{d_i \geq A} (B - d_i).$

There is a frame such that $\sigma(S) = \{A, B\}$ and $d_i = ||f_i||^2 \iff$ either:

•
$$C = \infty$$
 or $D = \infty$, or
• $C, D < \infty$ and $\exists N \in \mathbb{N}, k \in \mathbb{Z}$
• $C - D = NA + kB$ and $C \ge (N + k)A$.

3 point spectrum and prescribed multiplicites

Definition

Let $0 < A < B < \infty$ and $\{d_i\}_{i \in I}$ in [0, B]. Define the sets

$$I_1 = \{i \in I : d_i < A\}, \ I_2 = \{i \in I : d_i \ge A\},\$$

$$J_2 = \{i \in I_2 : d_i < (A + B)/2\}, \ J_3 = I_2 \setminus J_2$$

and the constants (each possibly infinite)

$$C = \sum_{i \in I_1} d_i \qquad D = \sum_{i \in I_2} (B - d_i)$$
$$C_1 = \sum_{i \in I_1} (A - d_i), \ C_2 = \sum_{i \in J_2} (d_i - A), \ C_3 = \sum_{i \in J_3} (B - d_i).$$

Let E be a bounded operator on a Hilbert space. For $\lambda \in \mathbb{C}$ define $m_E(\lambda) = \dim \ker(E - \lambda)$.

イロト イヨト イヨト イヨト

E has diagonal $\{d_i\}$ and $\sigma(E) = \{0, A, B\} \iff$

3 point spectrum and prescribed multiplicites

Theorem (Jasper (2011))

E has diagonal $\{d_i\}$ and $\sigma(E) = \{0, A, B\} \iff$

	$m_{E}(0)$	$m_E(A)$	$m_E(B)$	Condition
(a)	Ζ	N	К	I = Z + N + K $\sum_{i \in I} d_i = NA + KB, \ C \ge (N + K - I_2)A$
(<i>b</i>)	∞	N	К	$ l_1 = \infty,$ $\sum_{i \in I} d_i = NA + KB, \ C \ge (N + K - l_2)A$
(c)	∞	N	∞	$C + D = \infty$ or $C, D < \infty, l_1 = l_2 = \infty,$ $\exists k \in \mathbb{Z} \ C - D = NA + kB \ C \ge A(N + k)$
(<i>d</i>)	Z	∞	К	$ I = \infty, \ C_1 \le AZ$ $\sum_{i \in I} (d_i - A) = K(B - A) - ZA$
(e)	Z	~	~	$C_{1} \leq AZ, C_{2} + C_{3} = \infty$ or $ I_{1} \cup J_{2} = J_{3} = \infty, C_{1} \leq AZ, C_{2}, C_{3} < \infty$ $\exists k \in \mathbb{Z}, C_{1} - C_{2} + C_{3} = (Z - k)A + kB$
(<i>f</i>)	∞	∞	∞	$C + D = \infty$

Marcin Bownik

Existence of frames with prescribed norms and frame operator

Theorem (Bownik, Jasper (2012))

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$. Assume $\sum d_i = \sum (B - d_i) = \infty$. For $\alpha \in (0, B)$ define $C(\alpha) = \sum_{d_i < \alpha} d_i$ and $D(\alpha) = \sum_{d_i \ge \alpha} (B - d_i)$. There exists a self-adjoint operator E with diagonal $\{d_i\}_{i \in I}$ and $\sigma(E) = \{A_0, A_1, \ldots, A_{n+1}\} \iff either:$

Theorem (Bownik, Jasper (2012))

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$. Assume $\sum d_i = \sum (B - d_i) = \infty$. For $\alpha \in (0, B)$ define $C(\alpha) = \sum_{d_i < \alpha} d_i$ and $D(\alpha) = \sum_{d_i \ge \alpha} (B - d_i)$. There exists a self-adjoint operator E with diagonal $\{d_i\}_{i \in I}$ and $\sigma(E) = \{A_0, A_1, \ldots, A_{n+1}\} \iff$ either: **Q** $C(B/2) = \infty$ or $D(B/2) = \infty$, or

Theorem (Bownik, Jasper (2012))

Let $0 = A_0 < A_1 < \ldots < A_{n+1} = B$, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$. Assume $\sum d_i = \sum (B - d_i) = \infty$. For $\alpha \in (0, B)$ define $C(\alpha) = \sum_{d < \alpha} d_i$ and $D(\alpha) = \sum_{d > \alpha} (B - d_i).$ There exists a self-adjoint operator E with diagonal $\{d_i\}_{i \in I}$ and $\sigma(E) = \{A_0, A_1, \dots, A_{n+1}\} \iff either:$ $C(B/2) = \infty \text{ or } D(B/2) = \infty, \text{ or }$ 2 $C(B/2), D(B/2) < \infty$, and $\exists N_1, \ldots, N_n \in \mathbb{N}$ and $\exists k \in \mathbb{Z}$ $C(B/2) - D(B/2) = \sum^{n} A_j N_j + kB,$

Theorem (Bownik, Jasper (2012))

Let
$$0 = A_0 < A_1 < \ldots < A_{n+1} = B$$
, $n \in \mathbb{N}$. Let $\{d_i\}_{i \in I} \subset [0, B]$.
Assume $\sum d_i = \sum (B - d_i) = \infty$. For $\alpha \in (0, B)$ define
 $C(\alpha) = \sum_{d_i < \alpha} d_i$ and $D(\alpha) = \sum_{d_i \geq \alpha} (B - d_i)$.
There exists a self-adjoint operator E with diagonal $\{d_i\}_{i \in I}$ and
 $\sigma(E) = \{A_0, A_1, \ldots, A_{n+1}\} \iff$ either:
1 $C(B/2) = \infty$ or $D(B/2) = \infty$, or
2 $C(B/2), D(B/2) < \infty$, and $\exists N_1, \ldots, N_n \in \mathbb{N}$ and $\exists k \in \mathbb{Z}$
 $C(B/2) - D(B/2) = \sum_{j=1}^n A_j N_j + kB$,
 $(B - A_r)C(A_r) + A_r D(A_r) \geq (B - A_r) \sum_{j=1}^r A_j N_j + A_r \sum_{j=r+1}^n (B - A_j)N_j$
for all $r = 1, \ldots, n$.

Question: Given a fixed sequences $\{d_i\} \subset [0, 1]$, for what numbers 0 < A < 1 does there exist a frame $\{f_i\}$ such that $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A, 1\}$?

Question: Given a fixed sequences $\{d_i\} \subset [0, 1]$, for what numbers 0 < A < 1 does there exist a frame $\{f_i\}$ such that $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A, 1\}$?

Theorem (Jasper (2011))

Let $\{d_i\}_{i\in\mathbb{N}}$ be a sequence in [0,1] and set

$$\mathcal{A} = \{A \in (0,1) : \exists E \text{ with } \sigma(E) = \{0,A,1\} \text{ and diagonal } \{d_i\}\}.$$

Either A = (0, 1) or A is a finite (possibly empty) set.

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = egin{cases} 1-eta^i, & i>0\ eta^{|i|} & i<0. \end{cases}$$

Then

回 と く ヨ と く ヨ と

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = egin{cases} 1-eta^i, & i>0\ eta^{|i|} & i<0. \end{cases}$$

Then

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = egin{cases} 1-eta^i, & i>0\ eta^{|i|} & i<0. \end{cases}$$

Then

| 4 回 2 4 U = 2 4 U =

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = egin{cases} 1-eta^i, & i>0\ eta^{|i|} & i<0. \end{cases}$$

Then

| 4 回 2 4 U = 2 4 U =

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = egin{cases} 1-eta^i, & i>0\ eta^{|i|} & i<0. \end{cases}$$

Then

$$\mathcal{A} = \begin{cases} \varnothing & 0 < \beta < 1/3, \\ \{\frac{1}{2}\} & 1/3 \le \beta < \frac{-1+\sqrt{13}}{6} \approx 0.434, \\ \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\} & \frac{-1+\sqrt{13}}{6} \le \beta < 1/2, \\ \{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}\} & 1/2 \le \beta < x \approx 0.56, \end{cases}$$

回 と く ヨ と く ヨ と

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = egin{cases} 1-eta^i, & i>0\ eta^{|i|} & i<0. \end{cases}$$

Then

$$\mathcal{A} = \begin{cases} \varnothing & 0 < \beta < 1/3, \\ \{\frac{1}{2}\} & 1/3 \le \beta < \frac{-1+\sqrt{13}}{6} \approx 0.434, \\ \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\} & \frac{-1+\sqrt{13}}{6} \le \beta < 1/2, \\ \{\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}\} & 1/2 \le \beta < x \approx 0.56, \\ \{\frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}\} & x \le \beta < \dots \end{cases}$$

- 4 回 2 - 4 回 2 - 4 回 2

Extended example

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = \begin{cases} 1 - \beta^i, & i > 0\\ \beta^{|i|} & i < 0. \end{cases}$$

Determine the possible pairs of numbers (A_1, A_2) such that there exists a frame $\{f_i\}$ with $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A_1, A_2, 1\}$?

Extended example

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = egin{cases} 1-eta^i, & i>0\ eta^{|i|} & i<0. \end{cases}$$

Determine the possible pairs of numbers (A_1, A_2) such that there exists a frame $\{f_i\}$ with $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A_1, A_2, 1\}$? In other words we are interested in the set

$$ig\{(A_1,A_2)\in (0,1)^2: \exists\, E ext{ with } \sigma(E)=\{0,A_1,A_2,1\}$$
 and diagonal $\{d_i\}ig\}.$

Extended example

Example

Let $\beta \in (0,1)$ and define the sequence $\{d_i\}_{i \in \mathbb{Z} \setminus \{0\}}$ by

$$d_i = egin{cases} 1-eta^i, & i>0\ eta^{|i|} & i<0. \end{cases}$$

Determine the possible pairs of numbers (A_1, A_2) such that there exists a frame $\{f_i\}$ with $d_i = ||f_i||^2$ and the spectrum of frame operator $\sigma(S) = \{A_1, A_2, 1\}$? In other words we are interested in the set

$$ig\{(A_1,A_2)\in(0,1)^2:\exists\, E ext{ with } \sigma(E)=\{0,A_1,A_2,1\}$$
 and diagonal $\{d_i\}ig\}.$

The following picture corresponds to $\beta = 0.8$.

Marcin Bownik

Existence of frames with prescribed norms and frame operator

æ

Marcin Bownik

Existence of frames with prescribed norms and frame operator

1.0

 Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator σ(S) is finite.

白 マイ キャー・ キャー

- Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.
- The non-tight case is qualitatively different than tight case $S = B\mathbf{I}$; majorization inequalities present in addition to the trace condition.

- Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.
- The non-tight case is qualitatively different than tight case $S = B\mathbf{I}$; majorization inequalities present in addition to the trace condition.
- Summable and non-summable conditions in the non-tight case are not the same; this is unlike Kadison's theorem.

- Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.
- The non-tight case is qualitatively different than tight case $S = B\mathbf{I}$; majorization inequalities present in addition to the trace condition.
- Summable and non-summable conditions in the non-tight case are not the same; this is unlike Kadison's theorem.
- Characterize diagonals of operators with finite spectrum and with prescribed multiplicities.

- Simple numerical condition characterizing sequences of norms of frames such that the spectrum of a frame operator $\sigma(S)$ is finite.
- The non-tight case is qualitatively different than tight case $S = B\mathbf{I}$; majorization inequalities present in addition to the trace condition.
- Summable and non-summable conditions in the non-tight case are not the same; this is unlike Kadison's theorem.
- Characterize diagonals of operators with finite spectrum and with prescribed multiplicities.
- Ultimately extend the Schur-Horn theorem to operators with infinite spectrum beyond the results of Arveson-Kadison (2006) and Kaftal-Weiss (2010).

(4回) (注) (注) (注) (三)