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RADAR AMBIGUITY ANALYSIS

by P. M. Woodward

Supmary

Methods are given for obtaining the ambiguity characteristics of
various types of high-resolution radar waveform, amplitude or phase
modulated, pulsed or CW. The analysis deals mainly with random
modulations, to which many complicated types of waveform approximate.
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1. Introduction

Since originally propossd as a uselul deacription of the properties
of a radar modulation (ref. 1), the ambiguity function has been subject
to considerable study and further develepmsnt (refs. 3-8), but it is not
an sasy function to computs. This paper sets out ths mathematica upon
which some simple constructions may be based and derives formulae and
schamatic diagrams for certain prigitive modulations., MWost of these
are of randcm or quaai-random type, being the simplest forms of high
resclution signal to treat. They include, as a partiocular case, the
commonsst of all modulations, the incohsrently phased pulse-train,
reached in section 11 of the paper.

As & summary of the definitions from which we start, we have in the
first place the generalized auto-correlation function of any complex
modulation u(t). This is given by

[- -}

) -2xif
(1a) Afe,§) = ]u*(p-&tmwme &P ap
or ths equivalent formula -
(1b) A(t,¢) = e--mft, S u.*(‘p) wip+ t) c_?'ﬂ'FP dp
~ e

whish is a complex function of time t and frequency f, though in simple
casus it often turns out to be purely real. The function describes the
characteristic response of an ideal signal filtering system designed to
indicatc the time-shift ¢ and frequancy-shift f imposed on a transmitted
radar signal as a result of echoing from a poiunt target, Its form is
charactsristic of the radar modulation u(t), and ideally it would be zero
at all pointa in the t-f plans except at ths origin, which corresponds to
the target position. Thus a target at (T, F) would produce a response
A(t-T, £-F), but in reality the diffuss form of A produces indications
not only at {T, F) but at many other points besidss. The resulting
egbiguity of radar measuremant is mathematically unavoidable, hr wever

the received sigunal may be proosssed, because the asmbiguity resides
fundamentally in the transmitted modulation.

The uses of complex functions is apt to cause confusion in our minds,
but is sasential to the mathematical treatment. Sone reminders may
therafore be not cut of place. The actual voltage waveform transmitted
is assumed to bave the form

Real part of u(b)ez‘rcf“b

where fo is the radio frequency and u(t) is a low-frequency modulation,

real for pure amplitude modulation and complex for phass modulation.
The voltage response from the filtering system is given by

Real Parl’ of A(b,F)ebﬁﬁt

before detection. After detection, it would become

D(iAa(t,)1)
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where D represents the detector characteristic. When conaidering inter-
ference betwsen siguals from separate targets, strict analysis dsmands
additdon of A's, shifted appropriately in t and { end properly phased in
relation to each othar. If, however, the density of targets ias so
great that the number of (effectively randomly phased) superpositions

is large, as in the case of clutter, the appropriate function for
convolution as pointed out by G. R. Whitfield (ref. 9) is

AL £)]".

Clu ser apart, this function ias fundamentel in the mathematical theoxry
for a gingle-point target, and is known as the unnormalized ambiguit
function. Its importence is due to its “wo properties (ref. 1)

(2) A, F)" € A*(o,0)
(3) H A (E. )" at af = A*(0,0).
-
Vhen normalized, the ambigulty function has the form
lA (e, )1
A (0,0)

which can be regarded as the actual degree of ambiguity on & scale from
0 to 1, butween two signals which differ from eech other through a time-
shift, t, and & frequancy-shift, £, The integral of the normalized
ambiguity function with respect to t and f is eiways equal to unity,
from (3). Thus, in view of (2), the ambiguity of a modulation must be
spread over unit area of the t-f plene at the very leagt. Kandam
modulation and other complicated waveforms are mostly simed at seaucing
unwanted ambiguity by spreading it more thinly over much larger areas.

2. Siebert's Theorem

The definition of A(t, f) is mere symmetrical in t and £ than
might appear from (1a). An alternative form (ref. 4) is -

-

(%) Ale,f) = fU(wH)U*(p-wez"“* dp
where U(f) is the Fourier Transform of u(t). The two forms (1a) and

(&) when considered together, show close symmetry in time and frequency.
Further, Siebert's Theorem (ref. 3) atates that

(4

6 [ A T e < s

—~“ad

The ambiguity function is ita owmn two-dimensional Fourier Tranaform
with time and frequency interchanged.




.
B Lo A

3. The single pulse

Ths whole of the present treatment is restrictsd, for reasons of
simplieity, to the Gaussian function in one shape or form. There ia an
iomediats loss of gensrality but a very great simplification, enabling
one to draw rul¢-of-thumb conclusions of quite wide applicability when
refined calculations are not required. In keeping with this approach, we
define the simplest radar pulse modulation as

at®

(6) vie) = k.e”

which is & single Ephyaically unrealisable!} pulse centred at t = O. By
substitu-ing into (1) and ohoosing ths normaiising constant as

2a\'*
k= (%)

we obtain

—iatr - €
(N At F) = e T e™ 2
and henoce the (normalised) ambiguity function

D if? i

(8) lA(t,F)]z < e abk e Yo . |

which is an elliptical Gaussian hill in t and £f. Conveniently we may . f
define the "width" of a Gaussian function as the product of standaxd ;
deviation with ¥(2n), becauss this makes the product of widtha of w(t) !
and its spectrum equal to unity (see Fig. 1). Thus, by definition,
the signal duration and bandwidth become

(9) T = JTT/G
W = Jd-/ﬂ’

These two quantities happen, in this simple instance, to be the widths
of the ambiguity function along its prinoipal axes. It may at first
seen purprising that no factar of root two has crept in, since ambiguity
is a squared and therefore a narrowed quantity, but the narrowing is
exactly baianced by the broadening dus to auto-correlation.

Schematically, we may represent ths besic Gaussian ambigulty pattern
(8) by drawing a rectangle aa in Pig, 2, We may conveniently think of

thie as an "equivalent® ambizulty surface, distortsd gecmstrically but

indicating widtha and volumes correctly. The diagrax represents a
brickeshaped hill of unit altitude where shaded black, sero elsewhers,
and of unit volume as WT = 1.

The single pulse is the most basic form of radar with minimal _
resolution in time and frequency. |



b g

=

>
L =oJ2w

Mg 1. Goucsian function

T, = width used throughont the raover

Frequency
time |
|
i
|
J
Pig 2, Scheratic reprecentntion of Gaursian ambicuity !
furction G(T, W) for a rcingle radar pulre of
duration T and brndwidth V.

¥or thies cirmle mulre, TV = 1.

This and nll rubhrequert Fijurec are drrwr to srme reole,

T



-6

4, The "bed of nails” ’

One of the most useful idealized wuveforms in radar theory is a train
of unit delta—functions, which has the convenient property of Pourier |
transforming into itself when the pulse repetition period is taken to be \
unity. From this waveforw any periodic function can irmediately be 1
generated by scaling and convolution., It has been shown elsewhere that :
such a waveform gives rise to a generelized =uto-correlation function of
the forw

(10) A(.t,F) = ([';E,S(t—n)su:-m)

which has been described by Robert Prioce (ref, 6) as a "bed of nails" -
sharp side up.

It is perhaps fortunate that questiona of normalization need not
concern us unduly, as they generally become clear when physical realism
has been imposed. The function (10) would be particularly troublesoms
in this reaspect, as the normalization factors associated with it are
always zero or infinite., Fcr example, the redar modulation leading to
(10) would consist of an iafinitely long train of pulses each of zero
ensrgy, {inite amplituds and rzero duration. And the associated
normaliged ambiguity consietas of an infinite number of packets of zero
ambiguity at the integer lattice points in t and f. These physic.l
absurdities are uncmbarrassing, as the bed of nails is merely a means
to an end,

Simple changes of variasble show that the lattice aspacings can be
generalized, as in Fig. 3, to become R in time and 1/R in frequency,
where R is any arbitrary repetition period. The modulation giving
rise to such a lattice diagram is of course the pulse-trein

(11) wit) = k)}%(t-nR)

In the limita B = 0 and B = o, the ambiguity diagram degensrates. In
one dirsction all but a single row of nails pass out of the pioture,
whilst at the same time in the other direction the neils crowd together
into what might be described as a raror edge. This is also the limit
of the single pulse considered in section 3 when elther W or T goes to
zero .

The modulation (44) is bedevilled by periodic ambiguity, but apart
from this the resgolution in t and f is perfeot, except in the limits
Just mentioned. When in these limits ths nails make contact, the
modulation suddealy becomes an example of a radar with minimal !

resolution.

5. Convolution of modulations

Let v(t) and w(t) be two complex modulations, and let A, and A_

be their auto-correlation functions, Let u(t) be the convolution of
v and w, thus

(12) a(t) = 5V(x)w(t—x)c\x;.

Tag

Ve may wish to know the auto-correlation function of u. Substituting
in (Ya), we obtain




ad inf.

Fig 3. Delta-lattice or "bed of naile" I{R, R~!)
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_Zﬂ'\(’
A = V) vly)w(p-st -2)w(prit-y)e” T Pdx dydp

Siaple manipulations and chenges of variable enable us to recast this
expression in the form
o2

| (13) AL E) = TALX )AL (E- X, F)dx,
~ae
which 1s the convolution of A, and AL with respect to the time-dimension.
An exactly similar result can be derived in the frequency dimension.
Thus we have two useful rules:

Rule 1 If two modulecions are convolved in the time domain (or multiplied
in the frequsncy domain), their generslized auto-correlation functions are
convolved in the time coordinsate,

Rule 2 If two modulations are convolved in the frequenoy domain (or
multiplied in the time domain), their generalized auto-correlation
functions are convolved in the frequency coordinate,

The operation of these two rules 1s non-commutative.

6. Functional notation

We now zet up a functional notation adapted to the application of
rules 1 and 2 and deaigned to facilitate the process of transferring
mathematical formulae to graphical form. The notation is not always
well adapted to detailed analyticel work, such as the evaluation of
integrals, and will be brought into play only when appropriats.

(a) faussian function of one variable G(L)

For ressons which are not merely obtuse, the variuble itself is not
stated. G(L) stands for a gaussian function of width L, centred at the
origin, "width" being defined by

(14) L = o/2r

where o is the standard deviation., The amplitude is taken to be unity
in the middle., Thua, for example, the waveform

Wity = o TN

would be written

= G(7).

It is particularly to be noticed that the Fourier Transform of this wave-
form u, defined as usual with conjugate variables t (seconds) and f
(cycles per second), is aimply

U = T.¢(7h

(b) Gaussian function of two varimbles G(L, L')

This denotes the product of G(L) in one variable with G(L') in

|
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another. Throughout this paper the two variables are understood
to be t and f respectively.

(¢) Row of nails in one variasble I(R)

A train of unit delt. Jjunctiona at reguler separatinns R. Por .
example, squation (41) would be written as

. = k. I(R)

e

() Bed of nails in two variables I(R, R')

Consists uf unit delta-funetions at the lattice points (nR, mR')
where n and m are intagers. For example, with variab.es t and f
understood, equation (10) would be written as

A T(1,1).
The more general case illustrated in Fig. 3 is

A = I(R,R™

(e) Convolution

A letter t or f under ths star denotes the variable of
convolution. Por example, equation (13) would be vritten

A, = A, * A,
€

(f) Arbitrary normaliging constant k

It is convenient to reserve a letter, such as k in this paper, ‘
for a constant whose value need not be consistent in the analyasis.

7. Ths coherent pulse-train

The simplest finite pulse-train for mathematical analysis
consists of the carrier modulated in amplitude by two functiorns
together, a sucoassion of gaussian shaped pulsss and an overall
gaussian taper long compared with the repetition rate. This may
be written in the notation of the previous nection as |

(15) k(W) + 1(R)).c(T)
whare R = repetition period
T = duration of train)
% = bandwidth § W& >> 1

Before we can apply either of rules 1 and 2, we require the gensralised
auto-cozrelation function of G, In ssction 3, it ham been stated that
the waveform (6) givea the auto-correlatlon function (7). Rewriting

in terms of the widths defined at (9), we have the essily proved result
that the waveform

(16) w = k. .GQ(T)

has the generalized auto-correlation function
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(17) A = G(TJz,T72)

Applying rules 1 and 2 of section 5, we thus obtain the auto-correlation
function of (15) in the form

8 A = (6(w2,Wi2)x I(R,R"))-: G (T42, T-Y2)

! and, after aquaring,

2

(19) |AlY = (c(w“,ww;ItR,R">)4€+c(T,T")

which is {llustratad in Pigwe 4, a woll-knowm disgram. It should
partioularly be noted that the central zone, which is a measure of
the radar resolution, can be made as fine as desired by increasing
the duration T and bandwidth W of the radar transmission, assuing
that both are fully utilized.

8. Complex noise modulation

The ambiguities showm in Figure 4 may prove embarrassing in a
practical situation., They can be amoothed out, while preserving the
central sone, as illustrated in Figure 5, if ihe radar transmits noise
modulation of the same duration and bandwidth as befors, This
represents a Gausaian hill of unit amplitude standing on a lowsr wider
Gausaian pedestal; it is the aim in this section of the paper to
derive and comwent upon this rather well-known result.

Pirst it is neceasary to take note of the statistical nature of

- the amdbigulty function. Any partiocular high-resolution no'se wave-
forn possesses a normalized ambiguity function whoass value is unity
at the origin, and has a random skirt, pedestal, or side-lobe pattern,
extending well beyond the central zone. A differer’ sample ~f noise
would produce a different ambiguity function, the ups and downs of the
pedestal differing in their detailed arrangement. The only simpls
answer 1s to work with the msan ambiguity function for an ensembla ~f
noiss modulations, 1.e. the mean squared auto-ocorrelation funct)ou

(20) [ALE,B)I*

This proves to be unnecessaiily restrictive in the analysis, and
instead of it we propose to atudy the function

(21) A, 6) AY(L, E)

which is the complex co-variance of the generalized asuto-correlation
funotion, By putting the two t's and the two f's equal, the mean
ambiguity is immediately obtainable, but (21) can tell us more. It
contains information about the structure of the random variations
of amblgulty in *he pedestal. When (21) is zero, the fluctuation
of ambiguity at ¢, f1) can be regarde’ as uncorrelated with that

at (t,, ;). It may be important to know about this when a
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Fig 4. Ambiguity of coherent pulse-train

T
W

duration of train R =
bandwidth

repetition period

The above diacrram is drawn with TW = 15
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Fis 5. Anbiguity zZ(T, W) of a burst of noise

T = duration of buret W = bandwidth of noise
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convolution is performed upon A, since simple addition in “power" is
valid only in the asbsence of corrslation,

The modulntion to be considered .n this section will be of the form

(22) w(t) = vit).n(t)

where v(t) is Caussian amplituds taper (of. sqn (6))

(23) () = 422 ek

and n(t) is a complex stationary random function of time. Its powsr
spectrum will be assumed to be centred upon zero frequenoy, to be of
Gausaian shaps, and indeed n(t) will be asssumed to have all the usual
properties of Gausslan noise. Thus, when modulating the radio-
frequency ecarrier, n(t) would produce a typical narrow-band noise wave-
form displaying random fluctuations both in smplitude and phase. (Had
vo postulated that n(t) be purely real, this would not have been tha
case, and the radar signal would have been modulated in amplitude only).

To put a goale on tho time-structure of n(t), equivalent to setting
its bandwidth, we shall now asaume the following auto-correlation
function (for comment, ses Appendix 2)

(24) $(t) = nE@n¥=+0) = e

In a statistical senss, the waveform u(t) is now fully determined,
The constantas have been chosen so as to make
[ -] .00

(25) J (a2 dt = |nl* j vi(e) dt

!

il

The constants a and b control respectively the duration of the nolise
burst and the correlation time of the noise.

Evaluation of (21), using the definition (1b), procesds as
follows

(26) AAS

A(t,,F) A, )

- e-rrL(F.t. t) ”v(-n)v(1+t‘)v(a')v(cr+t’=_) %

*In(tet)n@)n*o+t,). e T (fix -f:0) dr d«

It is shown in Appendix 2 that the syatem averaged quadruple product
is equal to

. .
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(27) SN VE) + b E-T+E-k,).

Substituting into (26), we find that the first of these terms leads to
a separate produot of single integrals, which can be identified as

- — _wifk, - F by
) A = e TR

vlt) [ v(v)vleeti)e 2rifT e, ¥ (cz)jv(ﬁ) v(o+t,) " ye

This is the "systematic" contribution to the mean squared modulus of
A, reducing to the square of the mean, and it corresponds, as we
might enticipate, to the csntral sone of the an?i ty diagrem. The
integrala are readily evaluated, using (6) and (7) as the pattern;
using (24) also, we obtain

.‘-ri .
(29) A oo 3 (a+2b)(t; + 1) e -,_—_;(F."-vﬂ’).
172
Hence, identifying suffixes i and 2, we find

(30) 1A1Y = gw™,T™)

where T and W are given by

() T = duration of noise burst = w/a
(32) W = bandwidth of noiss = 4 (o+2b)/T

The two terms contributing to W arise bscause the anmplitude
modulation of the noise broadens the bandwidth slightly. In
an application the condition

(33) bs>a (i.e. TWS>1)

would be likely to apply, and the spactral broadening dus to
the Gaussian taper would be very elight.

The second term of (27) also contributes to (26) and the
resuiting double integral does not separate so readily. To
describe the evaluation as merely tedious would be an understatewent.
The result, however, is simple to write down, end is



Al

(y*) \’Q/(Q-Q.Zb) e"-‘ia(t, “hx)e—ib(t‘—b:) “

1 wib
e "o (W + 1) o ~ o (- F)°

Henoa, by equating suffixes 1 and 2, and remembering to include the
term (23) already derived, we obtain

—— 4l —2f? Y -2 E7/(a+2b)
) (AR = BRI TR ol et

or, in functional form, using (31) and (32),

f

6 |Al® CW™ T + (WG (T, W) = Z(T,W) say

This is the result illustrated in Figure 5, It shows that ambiguity
is spread with density 1/WT over a region corresponding to the product
of the duration and bandwidth of ths signsl, whilast the central zone,
which ia exactly similar in shape, has a size governed by the
reciprocals of signal bandwidth and duration. In the limit when

T =W = o0, this radar is perfect.

An interesting question is whetker (36) can be aaid to be properly
normalised. VWhen no random element is present, the normalized value
of A and henoe also of its square, is unity at t = f = 0. This can
be assured from equations (1) by normalizing the radar modulation so
that

(37) j\ukt)lzdt = \.

When thers is a random element in the waveform, equation (25) merely
ensures

|A(o,0)| =1,

but does not ensure

|A(0,0)|* = 1.

Indeed, from equation (36), for example, we have
(38) A0 = 1+ (TW)

The small second term (cf. (33)) is due to the random pedestal upon
whioh the normalized central sone astands, and is the msan squared
deviation of A fram its squared mean, However, the right hand side
of (38) can also be interpreted, from the theorem of equation (3), as
the total volume under the ambiguity surface, It is now clear that
the first term on the right of (38) arises from the intesgral of the
second term of (36), which is the mean volume of the pedestal, while
"the smaller second term in (38) is the volume of the central sone.
Thus neither of the terms in (38) can bs aszoclated uniquely with one
or other of the components of the ambiguity function (36). To
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return to the question of normalization, it is clear that the fully
normaliged funoction would be

- |
(39) RS GWTLTT) + R G(TW)

but there is no special requiremsnt for this form.

As for the fluctuations of the pedestal, inspection of (34) shows
that these are effectively de-correlated at separations given by

(40) (&,-t) 2w/b

"

(1) (£ - ¢

]

2a (a +2b)/(wb)

i.e, at separationa which are similar in magnitude and direction to
the radius vector of the limit to ths .central zons of the diagram.
This would be expectsd on purely intuitive grounds, as the central
zone describes the typical resolution of the matched filter outputs.

It is interesting to note that the central zons 1s the two-
dimensional Fourier Transform of the mean pedestal and vice versa.
This is evident from Siebert's Theorem, and it must generally ensurs
that the central zone is similar in shape to the outer boundary of
the ambigulty diagram.

9. Bursts of complex noise

By applying rules 1 and 2 of section 5, the basic ambiguity
diagram derived in the previous section for a single noiss burst
can be generalized for more complicated signals, 1In this section
we consider two cases

(1) a finite train of identical complex noise bursts

(11) a finite train of independent complex noise bursts
In case (i), 1t is necessary to qualify the word "identical’, as the
limitation on the number of bursts will be imposed by means of a slow
Geussian amplitude taper extending over an otherwise infinite train.
Let :

(42) bandwidth of the noise

duration of the train

v 3 oo
n

= duration of each burst
R = repetition period betwsen bursts.

For the present, we shall assume that
(63) PW >> 1,

Consider case {i). The passage from a single burst to a train
of identical bursts is exactly similar to the discussion at equations
(16)-(19) applying to an ordinary pulse.
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Hence the ambiguity function is
(b) (z (P, W) * 1(R,R")) * G(T, T
t

where Z is the ambiguity function for a single burst, i,e.

(45) Z(P,w) = G(W™,P™) + (PW)'G(P,W)

from equation (36). The funotion (44) is shown at Fig, 6. At those
lattioce points which are not, to a arude approximation, fully ambiguous,
the density of ambiguity is found to be 1/WP, as also in the wings of
all the ambiguities.

In ocase (ii), it 1s necessary to give the single burst which we
teke as our starting point a duwration T, and then to multiply this
by a modulation

(46) c(P) » 1(R)

which i3 an infinitely long train of amplitude pulses esach of length
P and separation R. Henoe the smbiguity funotion is

(47) z (T,W) * (G (P,P")iz 1(rR,R™))

as illustrated in Figure 7. On this diagram, the bandwidth marked W
- is slightly greater than the W appearing in the expression (47},
owing to the effect of convolution in frequency. In other words,
the resultant bandwidth has been slightly broadened by the amplitude
modulation associated with P, whioh ?unlike that due to T) is not
included in the W defined at (32) as used in the formula (47).

For completeness, and for subsequent reference, a further
ambiguity diagram can be deduced from the last expression. Let
us retain the original definition of W given at (32), but now choose
P s0 small as to make

Pw <1

i.e, let the individual pulses be so short that there is no time for
the noise to fluoctuate within the pulss, The signal is then a pulse-
train whose bandwidth is entirely controlled by P. It is noise-
modulated only irasmuch as each individual pulass possesses a random
phase and amplitude, and the ambiguity diagram will be found to be

as shown at Pigure 8. A modulation of this type is, of course,

never used in a practiocsl radar and is of purely theoretical interest.



-19-

10. Noise amplitude modulation

A radar signel endowed with random amplitude modulation Lut no
phase modulation is a somewhat artificial idea, but it possesses
mathematical interest and is included here for the sske of generality.
The amplitude modulation is of the type which permits positive and
negative amplitudes (in fact a Gaussian distribution) and hence
introduces phase-reversals of an artificial oharacter.

The analysis starts from equation (26) as before, though the
conjugate signs are now redundant both in that equation and in the
definition (24). As is clear from Appendix 1, an additional term
must now be inoluded in (27). This is a term

(48) gl +t-a)¥(t,+o-%)

Putting t + <t = <, the additional contribution to (26) may be written
in full as

eni. (6, +6k) Jv (_‘ ‘_ E)v(z)v (o.) vie+ k).

$(x/~0) p (/- -t ~t,) e-Z"L(F‘TI-F’e) dt’ de

and, by inspection, we see that thid i1s exactly the same as the
contribution to (26) from the second term of (27) with the sign of t
changed. Consequently, an extra term must be added to (35) by
changing the sign of t, in (3), t.e.

R LICRLOy

1q

(49)

in (34) must be replaced by

-4 -t,)? .
(50) e‘w' ) + e’"li“t'”*)t.

Upon equating the suffixes 1 and 2, the resulting ambiguity function
is found to be

(51) ‘A‘Z < e” t'(a +2b) e-w’f'/a

i _ wiF?
+(—“—)‘e arh o~

'/;_ _‘W‘Fz _1 +2L
+( ‘”) e a33b (o+25)

or, in functional form, using (31) and (32),
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(2 (A = glw™ T + (TW)'G (T, W) + (Tw)"a (W W)

i}

X (T, W), sey

48 11lustrated in Figure 9. The analysis is exact.

That amplituds noise modulation suffers in ocomparison with complex
noise only in its ability to resolve Doppler whan thers is no renge
difference must presumably be due to the excessive fades in an
amplitude-modulated signal of the type considered. When there is
a quadrature component, these fades are, for the moat part, filled in.

Mathematically, the result is interesting for two reasons. If
the paremetsr b is set equal to zero, t:s noise will have no time to
fluctuate before the burst is over. Hence the signal will consist
of a aimple Gaussian-shaped pulse of Gaussian randon emplitude, an
extrems form of non-ergodic modulation. From (31) and (32) we asee
that WT 1is then equal to unity as we should expect. Howsver, we
£ind from (52

(53) (AY = G(r,™™" b=0
(54) AP = 36T b=0

By contrast, for a complex noise-burst which lacks the third term in
(52) we have

(55) |_A_l—1 = 26(T, T b=0

These results are due to the fact that, for a resl Gaussian random
number n, we have the well-known property

Y
(56) Av (n*) = 3 [Av(n’)]
whilst for a complex random Gaussian number, we have
Av nt] = Av[(=+y)’)

= Av(z%) + 2 A (=)Av(f) + Avly*)

= (3+2+3)[A(=D]

= 2 [Av (x'+ 3")]2
(57) = 2[avim]’

which acts as a crude check on ths results so far obtained.

~ The second point of interest lies in comparing the ambiguity
function for amplitude modulation with that for pure phase modulation,
to which we now pass.
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11. Random phase modulation

We now assume a modulation of the form given at equation (22), with
n(t) re-defined to de

(58) nE) = e-»'ux(t)

where x(t) is a purely real Gausaian random function., This will be a
noise-burst, smooth and gaussian-shaped in amplitude but randomly
varying in phase. The desired co-variance of auto-correlation (26) wiil
then entail svaluation of the syster average of the form

(59) M = exp(ix -ix,-lxg+ ix,)

in place of the barred produst in (26). PFortunately this is directly
obtainable from the moment generating funoction defined at (A-2) in
Appendix 14,

Puttingy1 -yk-1 andyzsys--hnhan

(60) M o= e 2@

where

(61) Q = Xt - 2xx, - 2xzx, + 2x=,
+ = o+ 2%z, - 2x%,

Here wo have used the shorthand notation

x, = x(<)

x, = =(t+t)
(62) x; = =z ()
x, = = (o + t,)
Now denoting the auto~-correlation funetion of x by o, we have from (61)
and (62)
(63) Mo o 260+ clt)+ c(t) *eloma)re(v-g b t)-clema-t)

—c(t‘d’*‘t‘)

To obtain the ambiguity funotion, it is necessary to make approximaticns,
dividing the t-f plane into two regions now to be considered in turn.



(1) t, and ¢, amali

When the t's are sero, the exponent in (63) vanishes entirely, we
have M 2 4, and the whole problem becomes identical to an unmodulated
burst, i.e. to the simple pulse considered in section 3. This provides
the olue for approximation when the t's are small but not neceasarily
sero, which is to expand the functiona appearing in (63) in the form of
power series and see what happens. Auto-correlation funotions are
always even and may be expanded in the form

(&) ct) = a, - a.‘tt 4+ .-
More appropriately we may write
(65) c(t) = <(0). (1 = 2m2B** & )

where B, whioh will not really enter the present discussion, is inter-
preted by ths well-known relation

(66) 32 = variance of power spectrum of x(t) in ops2

Expansion of all the terms in (63) leads to s0 much cancellation that
all terms in ¥ and o vanish, and we are left with

(57) M = e c(t) + c(k,) - 2¢(0)

which comes outside the integrals in (26). To interpret this result,
we must relate the auto-correlation funoction o, which applies to the
random phase angle, to the auto-correlation function for the actual
noise modulation., At (24) we assumed

(68) ple) = nlx)n*(ct+t) = e‘\":z

Substituting from (58), we now find

(69) $(t) = exp (-ix(e) +ixlec+ t))

and this con be evaluated in a aimilar manner to (59). Putting
y3=3, =01n (A-2), we see that

(70) $lt) = -0
and henoe (67) becomes
(7) M o= g (e)ule,) = e PETED),

the last equation coming from (68). Identifying suffixes 1 and 2,
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this expression can be introduced as a multiplying factar to the
result for an unmodulated burst given at (8). So, finally,

NG e-(q+2¥)t o -t f i/ a

(72) = G(w' T

>

exaotly as at (30). The significance of this result ia considerabls,
sinocs the previous result for camplex noise at (30) was only a part of
that an=wer. The ordinary ocomplex noise burst has, in addition, a
pedestal term which is, in the pressent case, entirely absent. There
is, in faot, a clear strip along the f-axis outside the central zonse
given by (72). This is fully in accordance with simple enginearing
commonsense, sinoe the random phass modulation does nothing to impede
& good Doppler determination provided that there is no unknown time-
delay to produce a statistical muddle from temporal auto-correlation.
If ‘he range of the target is known, the randomneas of the phase
modulation is sntirely irrelevant and compensatable.

(ﬁ)ﬂmﬂ%lup

When the t's are large compared with ths width of c(t), an entirely
different method of evaluating {63) is necessary, because the power
series expansions of sub-section (1) cease to be valid. The trick is
to regard the exponent in (63) as a function of ¢ and o, or more
simply as a function of t~ ¢, and consider the effect of integration
with respect to v and 0. The exponent is made of the tsrms

() =2 c(0)

(v) + cly) + <)

(e) ~clt~o+t) - clr-o-t,)
() ¥ cft-0) + c(vt-0 +t-t,)

For large t, auto-correlation tends to zero and the terms (b) can be
neglected. The terms (c) produce "dips" in the integrand at

W
)
e

1-c , + t,

but these occupy little of the total area of integration and may safely
be neglscted. Finally, then, we are lef't with

(73) M o -+ elz-ari-t,) - 2¢(0)
and again using (70), we find

(74) M = Y-y dlx-a+t,-t,)

This is exactly the second of the terms at (27), which gave the result
at {34), or more briefly from (36),
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(75) 1Al = (tw) a(T, W)

This is the familiar noisy pedestal, but it is found only outsids the
central strip previously discussed.

The complete ambiguity diagram for random phase modulation,
based on the results (72) and (75) is shown in Figure 10 on page 20.

It might at first appear that the above analysis is independent
of the standard deviation of the actual phase angle and the bandwidth
of i1ts temporal fluctuation, as the results seem only to involve the
total bandwidth of the signal as a whole. This is, in reality,
untrue. The methods of approximation will be found, upon careful
analysis, to assume a "reasonable" value for ¢(0), i.e. an r.m.s.
phase excursion just large snough to de-correlate the signal for
lerge time-delays. This would imply phase-excursions of the order
of one cyols, i.e. littls more than Jitter. Comparison of (65) and
(70) and (685 show

(76) b= 2x*B'c(0)

and it will be appreciated that b is proportional to the square of the
overall noise bandwidth, The same value of b could be achieved by

means of a large mean squared phase excursion o(0) and a correspondingly
smaller rate of fluctuation B, Under these conditions, it is found

that the approximation (i) extends over a widsr central strip than before,
as the interface betwsen the two regions is really detsrmined by B

rather then #b. Thus a wider central strip wouldi be cloared, but

range resolution would be unnecessarily worssned. Thera seems 1ittle
point in doing this, as it ies wasteful of radar bandwidth,

To summarize, we have found that, assuming minimum phase excursion
neceasary to de-correlate ths radar modulation at large time-shifts,
the functional formula fcr embiguity is given dy

() Gw™, T, lelew™
Y(T,W) =
| WY C(T.W), (el > W

approximately. To a graphlcal approximation, which would be exact
for our conventional drawings, this could as well be writtsn in the
form

() YW = cw, T+ (W) [c (W) - & (w7 w)]

Comparison with (36) and (52) show the remarkable result

() 2Z = X + Y

The ambiguity function for complex noise is the sum of the functions
for amplitude noise and phass noise ~ strangs bed-fellows in mosat
mathesatical problems.
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The result (77), illustrated at Figure 10, lends itself to
generalization in exactly the same way as the "complex noise burst®
given at (36) and Figure 5. Various types of pulse-train are obtain-
able as described in section 9 merely by reading Y in place of Z. Thus
Figure 11 shows the diagram for a finite succession of identically phase-
modulated bursts, Figure 12 shows bursts of independent phase modulation,
and finally Pigure 13 is the diagram for & conventional incoherent pulsed
radar with no random phass modulation exocept in the senss that each pulse
is triggered at a random carrler phase-angle.

12. EBlimination of "range side-lobes"

It goes almost without saying that the roles of time and frequerncy
may be interchanged with impunity. This turns all diagrams through a
right angle, and Pigure 10 thus suggests a means of clearing a strip
along the t-axis free of random side-lobes. The signal would consist
of a apectrum of oscillations phased at random but smooth in amplitude
vorsus frequency. In other words, we might start with a conventional
pwlse and then disperse ths pulse by means of a filter, flat in
amplitude but with an slaborate finely-structured phase characteristioc.
The power spectrum of the signal would be unaltered, and hsnce the
temporal auto-ocorrelation function would remain as clean as it was
for the original pulse.

13, Skew ai 8

The ambiguity diagrams discussed in this paper all possess
rectangular symmetry, but the method of convolution described in section
5 can be powerfully employed to obtain diagrams for akew signals such
as linear frequency modulation. One could take as a primitive signal,
for example, the linear frequenoy modulation

(80) u.(t) - e‘-"Lrb

for which the instantaneous frequency is

(81) «F = i!; ;‘%E(wrtz) = (t

v

Substitution into (1a) yields

(82) A= S(F-rt)

which is an oblique line of ambiguity. Convolution with this
aignal will shear any ambiguity diagram to any desired extent.

4. A Futility Theorem

There is continued apeculation on the subject of embiguity clear-
ance. Like slums, ambiguity has a way of appearing in one place as
fast as 1t 1s made to disappear in another. That it must be conserved
is completely accepted, but the thought remains that ambiguity might

" be segregated in some unwanted part of the t-f plane where it will
ceade to be a practical embarrassment, We now put forward a line
of reasoning, suggested by a similar approach of Robert Price, which
should at least dispose of any prandiose alearance schemes.
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The reesoning ic based on Siebert's Theorem, which we have not
yet applied in any way. Since an ambigulty diagram 1s its own double
Fourier Transform, we can apply a double convoluticn theorem, using
fcr example a Gaussian weighting function, Thus, if H denotes any
ambiguity function, Siebert's Theorem states

(83) H « H

where twiddle denotes transposition of axes and arrow denotes Fourier
Transformation with respect to t and f. From the property of Gaussian
functions, we have

(84) G(R,L) < a(r7, L")

and hence by the convolution theorem applied in both dimensions, we have
§ ~ -~ -1 R—')
() H* ¢(r,L) & H.G(L7,

As an illustration, consider the ambiguity function shown at Figure 14.
The dotted rectangle represents

=1
(86) ¢ (R,R7")
The part of the diagram inside the dotted rectangle is

(87) M. G(R,R7T) = ca(w™,T7)

Transposing, transforming, and comparing with (85), we find

(88) H % G(R,R™) = G(T,w).

Inspection of the figure immediately verifies the truth of this equation,
even though we perform the verification in terms of rectangles rather .
than ellipses. Wherever the dotted rectangle is mcved, it will enclose
the same amount of ambiguity until we reach the edges of the diagram.

As a reductio ad absurdum, suppose that a much larger area had been
cluared of embiguity. (It would appear at first that we already have a
factor of almost four in hand, but we must remember that the diagrams
are not truly black and whits.) Then it wouald be posaible to argue as
follows.

Let G(k&, kR‘1) be a rectangle, much larger than G(R, R-1), but
which still encloses only the central pip of the diagrom.  Then

(89) H.G(kR,kR™") = G(w™ T7)

and as previously,

(30) H* ¢ (K'R,K'R™) = 4T, W)
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From the result on the right-hand side, we u.ee that the Gaussian function
on the left can never {save at the edges of the diasrem) fit inside a
clear area of H. But since, in area covered,

(51) Atea of (k'R kTR << Area f G (KR, kR™),

this is contraxy to hypothesis.

I4 follows from this line of reasoning that eny ambipuity diagram
with a small ce. tral pip, i.e. showing high resolutior, must extend over
a reciprocal area in the t-f plane, and the clecarer the surround to the
central zone, the more uniformly must be ambiguity be spread over the
entire plane. No magic answers are to be found.
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Appendix 1 - Moment generatior. for correlated normel varistes

Let X, Xy eee X be 8 Gaussian random numbers with zero means, and

not necessarily independent. Further assume that all co-variances

(A-1) B = X, ‘)LQ

are given. Then the joint distribution of the s varigbles is
completely determined. However, it is often unnecessary to know the
distribution expliocitly. The moment-generating function (see ref, 2) is

9 (%t”'ﬂss J”:[F(xln.xs)eLE:Ikyk dx, ... dx,

exp 1' 1 EK-Z! byoyy, 'ﬂ&

where p(x1 e xa) is the Gaussien probebility density function. To

(&-2)

i

obtain any desired moments of the x's in p, we merely differentiecte g

with respect to the corresponding y's and then put a1l the y's equal to
zero. Hence, for example, with 8 = 4 we find

e g . 1
LT, S dy,dy,dy;dy, a [~ 1%§bkwk\h} 24, =Ya=Yy, =0
947 Ys T Ys

and after performing the necessary manipulation,

A- = E
(A-3) x, %, X, Ty, XL, Xyx, + X x,. X, %X, + XX, X%

The application required in ssction 10 of tho text is for

x, = n{T)
x, = n(t+k)
13 = ﬂ(d‘)

x, = n(o+ t,)

where n is a stationary Gaussisn random function., Hence

(A)  xx o x, = (£ w(t) + be-o)lt-o+ b -ky)

A A
as shown at (27) and (48).



Appendix 2 - Complex noise

Little seems to have been published on the subject of complex random
functions; most treatises on noise strangely fail to take full advantage
of the complex notation which is commonplace in signal analysis, Ws must ,
therefore define with some care what is meant by a complex normal variate -
and its generalization, the camplex Gaussian random function.

Let x and y be normal variates of sero mean. Then
Z = x + Lj

will be called a complex normal variats if and only if

(a-5) z* = 0.

This implies that x and y are uncorrelated but have the same atandard
deviation, The wvarianoce of g is defined to be

(a-6) zz* = x* 4 ul = 2 xt = 271.

If s, and s, are two independent complex variates, we have

(a-7) z,Z, = O

because all four terms in the expansion (x1x2, ¥i¥or 4,5, and xzy1) have

gero means, However, we shall show below that the above condition is
true, not merely for independsnt complex variates, but for any pair of
vaeriates, whether independent or not.

The general multi-variate situation is set up by making a complex
linear transformation of a set of independent ccmplex numbers Zy eee T
Let this be

B L

where the a's are complex oonstants, Then the n's are correlated
complex numbers, and '

ey = et Loy

Upon averaging, each term has a factor like (A-5) or (A-7) whether k =
or not. Henoe

(A'9) Ny nl =0

invariably, and we may take this as characteristic of the complex multi-~
veriate distribution. If it holds good for any initisl set of
variables, it must continue to hold good after these have undergone

any number of linear transformetions.
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Correlation batween a pair of complex numbers must be expressed
by the complex co-varianoe

(Am0) 4 T ¢

and in practicel applications it is always the real part which is of
prime importance. This is due to the fact that

* (n =n)(nE=n)

Ind? + 1l = 2 % (rin).

(a=11) ln =n,

i

Thus, for instance, when two waveforms are cross-correlated to obtain
the best position of fit or minimum squared modulus of difference, it -

is
»
Q [u.,u,' dt

whioch must be maximigzed, and the imaginary part is not relevant. 1In
many practicel ozsea, the complex co-varisnoe proves to be purely real.
For example, it is readily shown that independent complex normal
variates subjected to a purely real linear transformation yiesld numbers
which have real co-variances. For let the a's in (A-8) be resl. Then
we have

* ¥
NNy = Sr"'kaiazb“uza

and each term in the averaged product is either real or szero. It is
interesting to note that, when

is real, we have {denoting the real and imaginary parts by u and v) by
hypothesis

(A-12) WV, o= U,y

but we also have

(A-13) ULV, + w,VY o= o

from (A-9). Thus, when the co-varianne is real, we find that

(a-14) wv, = uyv =0

It follows from the above discussion that s tationary white complex
" noise, passed through a real linear oirocuit (stereo?), emerges with &

purely real auto-correlation function. It is thus sufficient that the
power spectrum of the noise should be symmetrical about zero frequency,
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and we may then safely assume, from (A-14) or indeed from the physicsl
insight provided by the thought of a stereo channel for quadrature
components, that the resl and imaginary parts of the noise are
uncorrelated from each other at whatever instants of time we care to
choose.

At (26) in the text, it _s required to evaluate a fourth order
complex moment of the form

¥ %
NNy Ny Ny

By expanding into resl and imaginary parts, assuming n to have a real
auto-correlation function, and by using the results (A-3) and (A-1L),
it can be shown that

(A‘iS) n.*nzn;": = ¢|2¢3l¢- + ¢13¢M
where
(A-1€) e = MMy

wvnis is how (27) was obtained, Whether or nct equation (A-15)
extends to noise whose co-variance is not real has not been
investigated. It wazs not required in the paper,

PMW /NL
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