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Methods are given for obtaining the ambiguity characteristics of
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modulate&, pulsed or CW. The analysis deals mainly with random
modulations, to which majV complicated types of waveform approximate.
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1. Introduction

Since originally proposed as a useful description of the properties
of a radar modulation (ref. 1), the ambiguity function has been subject
to considerable study and further development (refs. 3-8), but it is not

an easy function to compute. This paper sets out the mathematics upon
which some simple constructions may be based and derives formulae and
schematic diagrams for certain primitive modulations. Most of these
are of randcm or quasi-random type, being the simplest forms of high
resolution signal to treat. They include, as a particular case, the
commonest of all modulations, the incoherently phased pulse-train,
reached in section 11 of the paper.

As a summary of the definitions from which we start, we have in the
first place the generalized auto-correlation function of any complex
modulation u(t). This is given by

(Ila) A (t,f) = 2(-(j )w1fJpi

or the equivalent formula

whi'nh is a complex fwiction of tim t and frequenoy f, though in simple
casua it often turns out to be purely real. The function describeb the
characteristic response of an ideal signal filtering system designed to
inclicatc. the time-shift t and frequency-shift f imposed on a transmitted
radar signal as a result of echoing from a point target. Its form is
characteristic of the radar modulation u(t), and ideally it would be zero
at all points in the t-f plans except at the origin, which corresponds to
the target position. Thus a target at (T, F) would produce a response
A(t-T, f-F), but in reality the diffuse form of A produces indications
not only at (T, F) but at many other points besides. The resulting
ambiguity of radar measurement is mathematically unavoidable, h, aever
the received signal may be processed, because the ambiguity resides
fundamentally in the transmitted modulation.

The use of complex functions is apt to cause confusion in our minds,
but is essential to the mathematical treatmient. Some reminders may
thersfore be not out of place. The actual voltage waveform transmitted
is assumed to have the form

Real 1 J LL

where f is the radio frequency and u(t) is a low-frequency modulation,

real for pure amplitude modulation and complex for phase modulation.
The voltage response from the filtering system is given by

Real p,42F J c tF -2-ri

before detection. After detection, it would become

I) A (tj
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where D represents the detector characteristic. When considering inter-
ference between signals from separate targets, strict analysis demands
addition of A' a, shifted appropriately in t and f and properly phased in
relation to each other. If, however, the density of targets is so
great that the number of (effectively randomly phased) superpositions
is large, as in the case of clutter, the appropriate function for
convolution as pointed out by G. R. Whitfield (ref. 9) is

IAtt,f)i "

Clu •er apart, this function is fundamental in the mathematical theory
for a cingle-point target, and is known as the unnormalized ambigut
funution. Its importance is due to its two properties (ref.-1"

(2) IA(L,f)=L A"(oo)

Vhen normalized, the ambiguity function hab the form

1A(•,FI 1)l

A' (0,0)
which can be regarded as the actua2l degree of ambiguity on a scale from
0 to I, between two signals which differ from each other through a time-
shift, t, and a frequency-shift, f. The integral of the normalized
ambiguity function with respect to t and f is always equal to unity,
from (3). Thus, in view of (2), the ambiguity of a modulation must be
spread over unit area of the t-f pleiia at the very least. Raenm
modulation and other complicated waveforms are mostly aimed at r'eaucing
unwanted ambiguity by spreadisig it more thinly over much larger areas.

2. Siebert' a Theorem

The definition of A(t, f) is more symmetrical in t and f than
might appear from (ia). An alternative form (ref. 1) is

(4-) A(t,,f) - F) U e aIP

where U(f) is the Fourier Transform of u(t). The two forzms (Ia) and
(4) when considered together, show close symmetry in time and frequency.
Further, Siebert's Theorem (ref. 3) states that

(5) ,A, (T, F') caTcF = I A (t, F) 12

The ambiguity function is its own two-dimensional Fourier Transform
with time and frequency interchanged.
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3. The sinfle pulse

The whole of the present treatment is restricted, for reasons of
simplicity, to the Gaussian function in one shape or form. There is an
immediate losm of generality but a very great simplifioation, enabling
one to draw rule-of-thumb conclusions of quite wide applicability when
refined calculations are not required. In keeping with this approach, we
define the simplest rad"r pulse modulation as

(6) 
v(O) - k-e

which is a single (physically unrealisable!) pulse centred at t 0. By
aubstituning into (1) and choosing the normalising oonstant as

we obtain

(7) A(tf) e- e- 2a-

and hence the (normalised) ambiguity function

(8) lA(t,)" -e- e

which is an elliptical Gaussian hill in t and f. Conveniently we may
define the "width" of a Gaussian function as the product of standard
deviation with if(2ff), because this makes the product of widths of v(t)
and its spectrum equal to unity (see Fig. 1). Thus, by definition,
the signal duration and bandwidth become

(9) T F-7"

These two quantities happen, in this simple instance, to be the widths
of the ambiguity function along its principal axes. It mamy at first
seem surprising that no faotor of root two has crept in, sinoe ambiguity
is a squared and therefore a narrowed quantity, but the narrowing is
exactly balanced by the broadening due to auto-correlation.

Schematically, we may represent the basic Gaussian ambiguity pattern
(8) by drawing a rectangle as in Fig. 2. We may conveniontly think of
this as an "eq-_ivalent" a.bi-Auty gurf.co, m --at-A-..-1 Ut-

inditcatng widths and volumes correctly. The diagram represents a
brick-shaped hill of unit altitude where shaded black, sero elsewhere,
and of unit volme as WT = i.

The single pulse is the most basic form of radar with minimal
resolution in time and frequenoy.
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Fir. 1. Gnucsian function

T, width used throuC-hoiit the T~rrer

FiC 2 . .Echeie,ltic repre rent,-,ti on of Gaurp'ion anbiriiity
furction C-(T, '~J) for a crin(gle radnr piilre of
dii~ration T and bp~nd%,idth W.

For thip c~irmne mu1!-~e, TV/ = 1.

Thi!7 and rill ciuhr'ecjert Fir'1.urer- are drnwir to rr'nr' cte



4. The "bed of nails"

One of the most useful idealized wuveforms in radar theory is a train
of unit delta-functions, which has the convenient property of Fourier
transforming into itself when the pulse repetition period is taken to be
unity. From this waveform any periodic function can immediately be
generated by scaling and convolution. It has been shown elsewhere that
such a waveform gives rise to a generalized auto-correlation function of
the form

(10) A(Ct,f) L.n) ~I-n)
n Y

which has been described by Robert Price (ref. 6) as a "bed of nails" -
sharp side up,

It is perhaps fortunate that questions of normalization need not
concern us unduly, as they generally become clear when physical realism
has been imrosed. The function (10) would be particularly troublesome
in this respect, as the normalization factors associated with it are
always zero or infinite. Fcr example, the radar modulation leading to
(W0) would consist of an iafinitely long train of pulses each of zero
energy, finite amplitude and zero duration. And the associated
normalized ambiguity consicts of an infinite number of packets of zero
ambiguity at the integer lattice points in t and f. These physic.-]
absurdities are unombarrassing, as the bed of nails is merely a means
to an end.

Simple changes of variable show that the lattice spacings can be
generalized, as in Fig. 3, to become R in time and i/A in frequency,
where R is any arbitrary repetition period. The modulation giving
rise to such a lattice diagram is of course the pulse-train

0ii)

In the limits R = 0 and R = oo, the ambiguity diagram degenerates. In
one direction all but a single row of nails pass out of the picture,
whilst at the same time in the other direction the nails crowd together
into what might be described as a razor edge. This is also the limit
of the single pulse considered in section 3 when either W or T goes to
zero.

The modulation (i1) is bedevilled by periodic ambiguity, but apart
from this the resolution in t and f is perfect, except in the limits
just mentioned. When in these limits the nails make contact, the
modulation suddenly becomes an example of a radar with minima_.
rebolution.

5. Convolution of modulations

Let v(t) and w(t) be two complex modulations, and let A, and Aw

be their auto-correlation functions. Let u(t) be the convolution of
v and w, thus

(12) WtXC

We may wish to know the auto-correlation function of u. Substituting
in (9a), we obtain



-7-

adinf.

. .? I :

ad inf.

Fig 3. Delta-lattice or "bed of nails' I(R, R-1)
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SimPpl manipulations and changes of variable enable us to recast this
expression in the form

which is the convolution of Av and A, with respect to the time-dimension.

An exactly similar result can be derived in the frequency dimension.
Thus we have two useful r-Ales:

Rule • If two modulncions axe convolved in the time domain (or multiplied
in the frequency domain), their generalized auto-correlation functions are
convolved in the time coordinate.

Rule 2 If two modulations are convolved in the frequency domain (or
multiplied in the time domain), their generalized auto-correlation
functions are convolved in the frequency coordinate.

The operation of these two rules is non-commutative.

6. Functional notation

We now set up a functional notation adapted to the application of
rules I and 2 and designed to facilitate the process of transferring
mathematical formulae to graphical form. The notation is not always
well adapted to detailed analytical work, such as the evaluation of
integrals, and will be brought into play only when appropriate.

(a) !aussian function of one variable G(L)

For reasons which are not merely obtuse, the variable itself is not
stated. G(L) stands for a gaussian function of width L, centred at the
origin, "width" being defined by

(04) L

where a is the standard deviation. The amplitude is taken to be unity
in the middle. Thus, for example, the waveform

- (EMr)

would be written

It is particidarly to be noticed that the Fourier Transfo~rm of this wave-
form u, defined as usual with conjugate variables t (seconds) and f
(cycles per second), is simply

U T. (T )

(b) Gau:ian function of two var-iblw5 G(L, L')

•his denotes the product of G(L) in one variable with G(L') in

Am
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another. Throughout this paper the two variables are understood
to be t and f respectively.

(c) Row of nails in one variablo I(R)

A train of unit delt, .unctions at regular separatirons R. For
example, equation (i1) would be written as

(d) Bed of nails in two variables I(R, R')

Consibts of unit delta-funetiona at the lattice points (MR, mR')
where a and m are integers. For example, with variables t and f
understood, equation (00) would be written as

The more general case illustrated in Fig. 3 in

A I(R,R-)

(e) Convolution

A letter t or f under the star denotea the variable of
convolution. For example, equation (13) would be 'rritten

AQ A, *A

(f) Arbitrary normalizing constant k

It is convenient to reserve a letter, such as k in this paper,
for a constant whose value need not be consistent in the analysis.

7. The coherent pulse-train

The simplest finite pulse-train for mathematical analysis
consists of the carrier modulated in amplitude by two functions
together, a succession of gaussian shaped pulses and an overall
gaussian taper long compared with the repetition rate. This may
be written in the notation of the previous ,ection as

(15) k.( .- ) R) ,(T)

where R = repetition period
T = duration of tr-4ni) T >
W = bandwidth )

Before we can apply either of rules I and 2, we require the generalised
auto-coirelation function of C. In section 3, it has been stated that
the waveform (6) gives the auto-correlation function (7). Rewriting
in terms of the widths defined at (9), we have the easily proved result
that the waveform

(16) u.= k (T)

has the generalized auto-correlation function
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(17) A , (TJ2, T"J 2)

Applying rules I and 2 of section 5, we thus obtain the auto-correlation

function of (05) in the form

(i8 A(c * ( 1w42,WýZ) 7 I x(R, P'))> C c(74, T-V2)

and, after squaring,

(9) W'12  ( cvr~N* R, 'R-)) 4- C (T, _r

which in illustrated in Figure 4, a well-known diagram. It should
particularly be noted that the central zone, which is a measure of
the radar resolution, can be made as fine as desired by increasing
the duration T eAnd bandwidth W of the radar transmission, assuming
that both are fully utilived.

8. Complex noisa modulation

The ambiguities shown in Figure 4 may prove embarrassing in a
practical situation. They can be amoothed out, while proserving the
central sone, as illustrated in Figure 5, if the radar transmits noise
modulation of the same duration and bandwidth as before. This
represents a Gaussian hill of unit amplitude standifi on a lower wider
Gaussian pedestal; it is the aim in this section of the paper to
derive and oomzent upon this rather well-known result.

First it is necessary to take note of the statistioal nature of
the ambiguity function. Any particular high-resolution no:'se wave-
foni possesses a normalized ambiguity function whose value is unity
at the origin, and has a random skirt, pedestal, or LAae-lobe pattern,
extending well beyond the central zone. A differe•L sample cf noise
would produoe a different ambiguity function, the ups and downs of the
pedestal differing in their detailed arraangement. The onljy simple
answer is to work with the suean ambiguity function for an ensumb), -f
noise modulations, i.e. the mean squared auto-oorrelation funct oa,

(20) 1A(,F 2

This proves to be unneoessaiily restrictive in the analysis, and
instead of it we propose to study the function

()

which is the complex co-varianoe of the generalized auto-correlation
funotion. By putting the two t's and the two f's equal, the mean
ambiguity is immediately obtainable, but (21) ua tell us more. It
contains information about the structure of the random variations
or ambiguity in the pedestal. when (21) is zero, the fluctuation
of ambiguity at tIy fi ) can be regardea! as uncorrelated with that

at (t2, f2. It may be important to know about this when a

I I I I I I I I I I I I I I
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Fie 4. Ambiguity of coherent pulse-train

T = duration of train R = repetition period
I = bandwidth

The above diaEran is drawn with TW = 15

; 5. Anbiguity Z(T, W) of a burst of noise

T = Ouration of burnt W bandwidth of noise

S(TV)-l

I~
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convolution is performed upon A, since simple addition in vpower" is
valid only in the absence of' correlation.

The modula.tion to be considered ,n this section will be of the form

(22) .41L ( tt). n(

where Y(t) is Gaussian amplitude taper (of. eqn (6))

(23) V t E '.~ e ,I
-Tr

and n(t) is a nomplex atationary random function of time. Its power
spectrum will be assumed jo be centred upon zero frequenoy, to be of
Gau3sian shape, and Indeed n(t) will be aSs3Ued to have all the usual
properties of Gaussian noise. Thus, when modulating the radio-
frequency carrier, n(t) would produce a typical narrow-band noise wave-
form displaying random fluctuations both in &mplitude and phase. (H-A
ve postulated that n(t) be purely real, this would not have been the
oases, and the radar signal would have been modulated in amplitude only).

To put a scale on the time-structure of n(t), equivalent to setting
its bandwidth, wi slmll now assume the following auto-correlation
function (for ocomnt, see Appendix 2)

In a statistical sense, the waveform u(t) is now fully determined.
The constants have been chosen so as to make

The constants a and b control respectively the duration of the noise
burst and the correlation time of the noise.

Evaluation of (21), using the definition (lb), proceeds as
follows

(26) AA 1

A (tF,•) A (tJ)*

Ji

It is shown in Appendix 2 that the system averaged quadruple produot
is equal to
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(27) +(4~ + -. )

Substituting into (26), we find that the first of these terms leads to

a separate product of single integrals, which can be identified as

(28) -A A = f ) x

This is the "systematic" contribution to the mean squared modulus of

A, reducing to the square of the mean, and it corresponds, as we

might anticipate, to the central sons of the arbiguity diagrin. The

integrals are readily evaluated, using (6) and 7) as the pattern;

using (24.) also, we obtain

(29) A A* Z6 +t%

Hence, identifying suffixes i and 2, we find

(30) I % = C (W-1, -r-

where T and W are given by

(31) T = duration of noise burst

(32) W = ban1dwidth of noise + -U) /____

The two terms ocntributinC to V arise because the amplitude

modulation of the noise broadens the bandwidth slightly. In

an application the condition

(33) 6 >> a 4 .e. -Tw >':O I

would be likely to apply, and the spectral broadening due to

the Gaussian taper would be very slight.

The second term of (27) also contributes to (26) and the

resulting double integral does not separate so readily. To

describe the evaluation as merely tedious would be an understatemwnt.

The result, however, is simple to write down, and is
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(•- /(,o,+T2 b) e e-
- " (F... F(1 ..

HoenI by equating suffixes I and 2, and remembering to include the
term k29) already derived, we obtain

or, in functional form, using (31) and (32),

(36) IAI' , (w',-r-') + (rTW)-'% (-.r,w) - Z("rw) ,*,

This in the result illustrated in Pigure 5. It shows that ambiguity
is spread with density 1/WT over a region corresponding to the produot
of the duration and bandwidth of the sigmal, whilst the oentral zone,
which is exactly similar in shape, has a size governed by the
reciprocals of signal bandwidth and duration. In the limit when
T = W = oc, this radar is perfect.

An interesting questinn is whether (36) can be said to be properly
normalimed. When no random element is present, the normalized value
of A and henoe also of its square, is unity at t = f = O. This can
be assured from equations (1) by normalizing the radar modulation so
that

J 2.(37) ] ' au. t) U1

When there is a random element in the waveform, equation (25) merely
ensure$

A (0,) 0,

but does not ensure

IA(o,0)l .

Indeed, from equation (36), for example, we have

(38) IA(O,o)I -1 + (TW)-'

The small second term (of. (33)) is due to the random pedestal upon
which the normalized oentral sone stands, and is the mean squared
deviation of A from its squared mean. However, the right hand side
of (38) can also be interpreted, from the theorem of equation (3), as
the total volume under the ambiguity surface. It is now clear that
the first term on the right of (38) arises from the integral of the
second term of (36), which is the mean volume of the pedestal, while
the smaller second term in (38) is the volume of the oentral zone.
Thus neither of the terms in (38) can bq associated uniquely with one
or other of the components of the ambiguity 'unction (36). To
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return to the question of normalization, it is clear that the fully

normalized function would be

i+TW

but there is no special requirement for this form.

As for the fluctuations of the pedestal, inspection of (34) shows
that these are effeotively de-correlated at separations given by

(40) ( t -t)2' 1w/

(4.1) (20. (ar.,

i.e. at separations which are similar in magnitude and direction to
the radius vector of the limit to the central zone of the diagram.
This would be expected on purely intuitive grounds, as the central
zone describes the typical resolution of the matched filter outputs.

It is interesting to note that the central zone in the two-
dimensionas Fourier Transform of the mean pedestal and vice versa.
This is evident from Siebert's Theorem, and it must generally ensure
that the central zone is similar in shape to the outer boundary of
the ambiguity diagram.

9. Bursts of complex noise

By applying rules I and 2 of section 5, the basic ambiguity
diagram derived in the previous section for a single nois6 burst
can be generalized for more complicated signals. In this section
we consider two cases

Mi) a finite train of identical complex noise bursts

(ii) a finite train of independent complex noise bursts

In case (i), it is necessary to qualify the word "identical, as the
limitation on the number of bursts will be imposed by means of a slow
Gaussian amplitude taper extending over an otherwise infinite train.
Let

(42) W = bandwidth of the noise

T = duration of the train

P = duration of each burst

It = repetition period between bursts.

For the present, we shall assume that

(43) PW .> I

Consider case (i). The passage from a single burst to a train
of identical bursts is exactly similar to the discussion at equations
(16)-(19) applying to an ordinary pulse.
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P

Fir 6. Ambiguity of coherent train of noiqe-bihctrt

T = total duration of rignal W = bandwidth
F = duration of each burs~t R = repetition period

Ench burst is Lmde frot, the same noise pattern

S(Pwy-'

I I I I I I II u 1



-17-

PR11

I"

W-1

P R

Fig 7. Arbiguiity of train of inderiendent noise bu2rsts

T = total duration of signal W = bandwidth
P = duration of each burst R = repetition period

~ R/(TWI')

-\ \
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Hence the ambiguity function is

(44) (z (,w) I *(p(,,R-))

t F

where Z is the ambiguity function for a single burst, i.e.

(45) z (P,w) = C (v1,P-') + (pv4Y"(pw)

from equation (36). The funotion (44) is shown at Fig. 6. At those
lattice points which are not, to a crude approximation, fully ambiguous,
the density of ambiguity is found to be 1/'P, as also in the wings of
all the ambiguities.

In case (ii), it is neoessary to give the single burst which we
take as our starting point a duration T, and then to multiply this
by a modulation

which i an infinitely long train of amplitude pulses each of length
P and separation R. Hence the ambiguity function is

(47) z (-r,w) * ((PP-') * L (R,R"))
t

as illustrated in Figure 7. On this diagram, the bandwidth marked W
is slightly greater than the W appearing in the expression (47),
owing to the effect of convolution in frequency. In other words,
the resultant bandwidth has been sli ghtly broadened by the amplitude
modulation associated with P, which (unlike that due to T) is not
included in the T defined at (32) as used in the formula (47).

For completeness, and for subsequent reference, a further
ambiguity diagram can be deduced from the last expression. Let
us retain the original definition of W given at (32), but now choose
P so mall as to make

PW <

i.e. let the individual pulses be so short that there is no time for
the noise to it'uotuate within the pulse. The signal is then a pulse-
train whose bandwidth is entirely controlled by P. It is noise-
modulated only iramuch as each individual pulse possesses a random
phase and amplitude, and the ambiguity diagram will be found to be
as shown at Figure 8. A modulation of this type is, of course,
never used in a practical radar and is of purely theoretical interest.



-19-

10. Noise amplitude modulation

A radar signal endowed with random amplitude modulation 'ut no

phase modulation is a somewhat artificial idea, but it possesses
mathematical interest and is included here for the sake of generality.

The amplitude modulation is of the type which permits positive and

negative amplitudes (in fact a Gaussian distribution) and hence
introduces phase-reversals of an artificial character.

The analysis starts from equation (26) as before, though the
conjugate signs are now redundant both in that equation and in the
definition (24). As is clear from Appendix i, an additional term
must now be included in (27). This is a term

(48) 4 t

Putting t + -C the additional contribution to (26) may be written
in full as

(- e ISCO

and, by inspection, we see that thii is exactly the same as the
contribution to (26) from the second term of (27) with the sign of t
changed. Consequently, an extra term must be added to (35) by
changing the sign of tI in (31.), i.e.

(49) •"•i6(t.- ')2

in (3.1) must be replaced by

(50) •-

Upon equating the suffixes I and 2, the resulting ambiguity function
is found to be

(51) e- 2b -w Cfko

-rF -Y.f+ •"( ) e-e

or, in functional form, using (301) and (32),
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7

4P > -R

R /T

P-1 t-

Fig 8. Ambiguity of trrain of irnoorrelated puilses

P = pike length T =dura-tion of tra-i~n
R= repetition period

Each pulse has an independent random Priplitude & phr'ae

Fir 9. Amnbiguity X(T, W) of a. bu-rr:t of
noise ann~litude modulatioci,

T =duraýtion of bwurt Wt bardwidth

w-I

WIT

Fir 10. Ambig-uity Y(T, W) of a burst of
random rhace modulation

Iotc the clear central strip
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(52) A T (Tw)-'4 (T, W) + (TW)-'c (W'I W)

= '(Tw), ,

as illustrated in Figure 9. The analysis is exact.

That amplitude noise modulation suffers in comparison with complex
noise only in its ability to resolve Doppler when there is no range
difference must presumably be due to the excessive fades in an
amplitude-modulated signal of the type considered. When there is
a quadrature component, these fades are, for the most part, filled in.

Mathematically, the result is interesting for two reasons. If
the parameter b is set equal to zero, ths noise will have no time to
fluctuate before the burst is over. Hence the signal will consist
of a simple Gaussian-shaped pulse of Gaussian randon amplitude, an
extreme form of non-ergodic modulation. Prom (31) and (32) we see
that WT is then equal to unity as we should expect. However, we
find f rm (52)

(53) -" (T,-r) IT 0

(54) AI' 3C, (T,") 6 = 0

By contrast, for a complex noise-burst which lacks the third tea in
(52) we have

(55) IA1" = 2. C (T,T') 0

These results are due to the fact that, for a real Gaussian random
number n, we have the well-known property

(56) Av (n'I-) = 3 1Av 2n)

whilst for a complex random Gaussian number, we have

Av In"] :A X 'ý)I

= Av (z"') - 2 Av (X)A'AV ) + AVl4j)
(3 ÷+2.+3) [Av(=)

(57) ' 2[Av, I)1]2

which acts as a crude check on th3 results so far obtained.

The second point of interest lies in comparing the ambiguity
function for amplitude modulation with that for pure phase modulation,
to which we now pass.
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11. Mdom pRhase modulation

We now assume a modulation of the form given at equation (22), with
n(t) re-defined to be

(58) n(k)

where x(t) is a purely real Caussian random function. This will be a
noise-burst, smooth and gaussian-shaped in amplitude but randomly
varying in phase. The desired oo-varianoe of auto-correlation (26) wili
then entail evaluation of the system average of the form

(59) - ex? (ix, L X'-3 ' t )

in place of the barred product in (26). Fortunately this in directly
obtainable from the moment generating function defined at (A-2) in
Appendix 1.

Putting Yj a y4 -I and Y2 = Y - we have

(60) 4t_

where

(61) X1 - 2* % -- 21,1 +

+~ X,

+

Here we have used the shorthand notation

(62) X Co-)

Now denoting the auto-correlation function of x by a, we have froM (61)
and (62)

(63) tA e - 2 c(0) + t)+ +c - r -(V0 ,t,) d
- C. (- - + t,

To obtain the ambiguity function, it is necessary to make approximations,
dividing the t-f plane into two regions now to be considered in turn.

-!
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(i) t1 and t 2 ama- L

When the t's are zero, the exponent in (63) vanishes entirely, we

have X = - , and the whole problem becomes identical to an unmodulatod

burst, i.e. to the simple pulse considered in section 3. This provides
the clue for approximation when the t's are smal but not necessarily
Zero, which Is to expand the functiona appearing in (63) in the form of
power series and see what happens. Auto-oorrelation functions are
always even and may be expanded in the form

(615.) c(t) -- C - ,' ,.-.

More appropriately we may write

(65) c(t) - C(o). (i - iL 2 il .-- )

where B, which will not really enter the present discussion, is inter-
prettd by the uell-knoun relation

(66) B2 w variance of power spectru of x(t) in cps2

Expansion of all the terms in (63) leads to so much cancellation that
all terms in c and r vanish, and we are left with

(67)M W c(t,) + cC•) - 2'(0)

which comes outside the integrals in (26). To interpret this resilt,
we must relate the auto-correlation function e, which applies to the
random phase angle, to the auto-oorrelation function for the actual
noise modulation. At (21.) we assumed

(68) +()- n (t) n't4( )

Substituting from (58), we now find

(69) e 1

and this can be evaluated in a similar manner to (59). Putting
Y3 = y1* = 0 in (A-2), we see that

(70) -) e

and hence (67) becomes

(71) , - -4(t:' + e1)

the last equation coming from (68). Identifying suffixes I and 2,
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this expression can be introduced as a multiplying factor to the
result for an unmodulated burst given at (8). So, finally,

(72) C. (W-', T-')

exactly as at (30). The significance of this result is considerable,
since the previous result for complex noise at (30) was only a part of
that ans-wer. The ordinary complex noise burst has, in addition, a
pedestal term which in, in the present case, entirely absent. There
is, in fact, a clear strip along the f-axis outside the central zons
given by (72). This is fully in accordance with simple engineering
comeonsense, since the random phas6 modulation does nothing to impede
a good Doppler determination provided that there is no unknown time-
delay to produce a statistical muddle from temporal auto-correlation.
If the range of the target is known, the randomness of the phase
modulation is entirely irrelevant and compensatable.

(a) t 1 and t2 large

When the t's are large compared with the width of c(t), an entirely
different method of evaluating (63) is necessary, because the power
series expansions of sub-section (i) cease to be valid. The trick is
to regard the exponent in (63) as a function of t and a,, or more
simply as a function of -t -a-, and consider the effect of integration
with respect to - and a-. The exponent is made of the terms

(a) -2 C(G)

(b) + c t,) + c..t.)

(c) - c. ( a- -+ , - C -c- - 2.)

(d) + j -cLtr) _t- __ -(t 0O + t It-2)

For large t, auto-correlation tends to zero and the terms (b) can be
neglected. The terms (c) produce "dips" in the integrand at

but these occupy little of the total area of integration and may safely
be neglected. Finally, then, we are left with

(73) M - e c(t -+ - ( -c-- + t, - 2t

and again using (70), we find

(74) M = C• +(C•-T t-ke,-e)

This is exactly the second of the terms at (27), which gave the result
at (34), or more briefly from (36),
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(75) JAI = (TW)-'r. (-r, W)

This is the familiar noisy pedestal, but it is found only outside the
central strip previously discussed.

The complete ambiguity diagram for random phase modulation,
based on the results (72) and (75) is shown in Figure 10 on pape 20.

It might at first appear that the above analysis is independent
of the standard deviation of the actual phase angle and the bandwidth
of its temporal fluctuation, as the results seem only to involve the
zotal bandwidth of the signal as a whole. This is, in reality,
untrue. The methods of approximation will be found, upon careful
analysis, to assume a "reasonable" value for c(O), i.e. an r.m.e.
phase excursion Just large enough to de-correlate the signal for
lerge time-delays. This would imply phase-excursions of the order
of one cyole i e. little more than Jitter. Comparison of (65) and
(70) and (6B) show

(76) 6 = 2- 13 2 C,(o)

and it will be appreciated that b is proportional to the square of the
overall noise bandwidth. The same value of b could be achieved by
means of a large mean squared phase excursion o(O) and a correspondingly
smaller rate of fluctuation B. Under these conditions, it is found
that the approximation (i) extends over a wider central strip than before,
as the interface between the two regions is really determined by B
rather then 4/b. Thus a wider centraJ strip would be cleared, but
range resolution would be unnecessarily worsened. There seems little
point in doing this, as it is wasteful of radar bandwidth.

To summarize, we have found that, assuming minimum phase excursion
necessary to de-correlate the radar modulation at large time-shifts,
the functional formula for ambiguity is given by

(77) W"'c , T• -I", lb < W"1

1 (TWY'C (-T,w), ItI > W-'

approximately. To a graphical approximation, which would be exac±
for our conventional drawings, this could as well be written in the
form

(78) Y(TAW = r,(w-',)T-1) *- (-rw)Y ' [~(r, W) - C; (W~ w)

Comparison with (36) and (52) show the remarkable result

(79) 2. -Z - + Y

The ambiguity function for complex noise is the sum of the functions
for amplitude noise and phase noise - strange bed-fellows in most
mathematical problems.
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The result (77), illustrated at Figure 10, lends itself to

generalization in exactly the same way as the "complex noise burst"

given at (36) and Figure 5. Various types of pulse-train are obtain-
able as described in section 9 merely by reading Y in place of Z. Thus
Figure 11 shows the diagram for a finite succession of identically phase-
modulated bursts, Figure 12 shows bursts of independent phase modulation,
and finally Figure 13 is the diagram for a conventional incoherent pulsed
radar with no random phase modulation except in the sense that each pulse
is triggered at a random carrier phase-angle.

12. Elimination of "range side-lobes"

It goes almost without saying that the roles of time and frequency
may be interchanged with impunity. This turns all diagrams through a
right angle, and Figure 10 thus suggests a means of clearing a strip
along the t-axis free of random side-lobes. The signal would consist
of a spectrum of oscillations phased at random but smooth in amplitude
versus frequency. In other words, we might start with a conventional
pUlse and then disperse the pulse by means of a filter, flat in
amplitude but with an elaborate finely-structured phase characteristic.
The power spectrum of the signal would be unaltered, and hence the
temporal auto-correlation function would remain as clean as it was
for the original pulse.

13. Skew siznals

The ambiguity diagrams discussed in this paper all possess
rectangular symmetry, but the method of convolution described in section
5 can be powerfully employed to obtain diagrams for skew signals such
as linear frequency modulation. One could take as a primitive signal,
for example, the linear frequency modulation

ir. r I,
(80) e

for which the instantaneous frequency is

(81Jf - cl (1 (rr2) r

21r d~i

Substitution into (i a) yields

(82) A (F -rb)

which is an oblique line of ambiguity. Convolution with this
signal will shear any ambiguity diagram to any desired extent.

14. A Futility Theorem

There is continued speculation on the subject of ambiguity clear-
ance. Like slums, ambiguity has a way of appearing In one place as
fast as it is made to disappear in another. That it must be conserved
is completely accepted, but the thought remains that ambiguity might
be segregated in some unwanted part of the t-f plane where it will
ceaze to be a practical embarrassment. We now put forward a line
of reasoning, suggested by a similar approach of Robert Price, which
should at least dispose of any grandiose clearance schemes.



-28-

RI'

rir- 12. Ambiguity of train of irde-'e-dert burrtp of
raindom phmse modulp"tion

T= total durntjinn of 'IIrnl = briinviilt31P =duration of ich bur~rt F - rerietition Period

T'ote the clear cei~titra' v-trip

Pk/(i-WP)



-29-

The reasoning in based on Siebert's Theorem, which we have not
yet applied in any way. Since an ambiguity diagram is its own double
Fourier Transform, we can apply a double convoluticn theorem, using
for example a Gaussian weighting function. Thus, if H denotes any
ambiguity function, Siebert's Theorem states

(83) H 4 P

where twiddle denotes transposition of axes and arrow denotes Fourier
Transformation with respect to t and f. From the property of Gaussian
functions, we have

(8,4) (,L) ---," C, ( R -, L.-')

and hence by the convolution theorem applied in both dimensions, we have

(85) H * (9, L

As an illustration, consider the ambiguity function shown at Figure 14.
The dotted rectangle represents

(86) ,( , -'

The part of the diagram inside the dotted rectangle is

(87) HI. C . ,,9--') C (W -1,T-9

Transposing, transforming, and comparing with (85), we find

(88) H * CP,R-1) = CG(T,W).

Inspection of the figure immediately verifies the truth of this equation,
even though we perform the verification in terms of rectanglss rather
than ellipses. Wherever the dotted rectangle is mcved, it will enclose
the same amount of ambiguity untilwe reach the edges of the diagram.

As a reductio ad absurdum, suppose that a much larger area had been
clvared of ambiguity. (It would appear at first that we already have a
factor of almost four in hand, but we must remember that the diagras
are not truly black and white.) Then it would be possible to argue, as
follows.

Let G(kR, kR- ) be a rectangle, much larger than G(R, R-1), but
which still encloses only the central pip of the diagram. Then

(89) H C, (<R, I, ') C (w-, T')

and as previously,

H • r(k-'R,k-'R-) - CCT, W)
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From the result on the right-hand side, we .ee that the Gaussian function

on the left can never (save at the edges of the diagram) fit inside a

clear area of H. But since, in area covered,

(91) Area c • (k'K,' -7-) < AJa e .

this is contrary to hypothesis.

It follows from this line of reasoning that any ambimuity diagram

with a small ce, tral pip, i.e. showing high resolitiorn, must extend over

a reciprocal area in the t-f plane, and the clearer the surround Lo the

central zone, the more uniformly must be ambiguitl be spread over the

entire plane. No magic answers are to be found.
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Appendix 1 - Moment geeneration for corralated normal variates

Let xI x2 ... x bei s Gaussian random numbers with zero means, and

not necessarily independent. Further assume that all co-variances

(A-I) 'k 'Q

are given. Then the joint distribution of the a variables is
completely determined. However, it is often unnecessary to know the
distribution explioitly. The moment-generating fumction (see ref. 2) is

9 (',...) . J...Jr ,...xs)ed ( X...c 1e

(A-2) P ~ kk j

where p(x 1 ... x ) is the Gaussian probability density function. To

obtain any desired moments of the x's in p, we merely differentiate g
with respect to the corresponding y's and then put all the y's equal to
zero. Hence, for example, with s = 4 we find

and after performing the necessary manipulation,

(A-3) 7%.I7XLX 3 iL'. X3= + X% * ' 3X X 2. XLXý + X, X X ZL2

The application required in section 10 of tho text is for

where n is a stationary Gaussian random function. Hence

(A-4) 7- 4t I) Y- iV4(t 2)(+ C-) LT t

as shown at (27) and (48).



Appendix 2 - Complex noise

Little seems to have been published on the subject of complex random
funotiona; most treatises on noise strangely fail to take full advantage
of the complex notation which is ao-monplace in signal analysis. We must
therefore define with some care what is meant by a complex normal variate
and its generalization, the complex Gaussian random function.

Let x and y be normal variates of zero mean. Then

will be called a complex normal variate if and only if

(A-5)= .

This implies that x and y are uncorrelated but have the same standard
deviation. The variance of z is defined to be

(A-6) +z 2.

If s4 and s2 are two independent complex variates, we have

(A-7) 7-1-Z. = 0

because all four terms in the expansion (xix 2 , yiy 2 , xlY2 and x2yl) have

zero means. However, we shall show below that the above condition is
true, not merely for independent complex variates, but for any pair of
variates, whether independent or not.

The general multi-variate situation is set up by making a complex
linear transforuation of a set of independent complex numbers zi ... z a
Let this be

(A-8) nk .%

where the a's are complex constants. Then the n's are correlated
c4omplex numbers, and

flfL •La. z

Upon averaging, each term has a factor like (A-5) or (A-7) whether k = t
or not. Hence

(A-9) nknt = 0

invariably, and we may take this as oharacteristic of the complex multi-
variate distribution. If it holds good for any initial set of
variables, it must continue to hold good after these have undergone
any number of linear transformations.
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Correlation between a pair of complex numbers must be expressed
by the complex co-varianoe

(A-1O) ),n.

and in practical applications it is always the real part which is of

prime importance. This is due to the fact that

(A-11) in, -rn)( ( I)

- + Iz 2 ~ ( 7nf.

Thus, for instance, when two waveforms are cross-correlated to obtain
the best position of fit or minimum squared modulus of difference, it
is

Lf 2.

which must be maximized, and the imaginary part is not relevant. In

many practical oases, the complex co-variance proves to be purely real.

For example, it is readily shown that independent complex normal

variAtes subjected to a purely real linear transformation yield numbers
which have real oo-v~rianoes. For let the a's in (A-8) be real. Then
we have

nk n 'Z L

and each term in the averaged product is either real or zero. It is

interesting to note that, when

tn.

is real, we have (denoting the real and imaginary parts by u and v) by

hypothesis

(A-12) aVi L 2VP

but we also have

(A-13) UAV I\/ t x/ LýL %

from (PA-9). Thus, when the oo-varianne is real, we find that

(A-14) .V. I" Vv 2 0 L . = 0

It follows from the above discussion that s tationary white complex
noise, passed through a real linear circuit (stereo?), emerges with a

purely real auto-correlation function. It is thus sufficient that the
power spectrum of the noiine should be symmetrical about zero frequency,
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and we may then safely assume, from (A-I1) or indeed from the physical
insight provided by the thought of a stereo channel for quadrature
components, that the real and imaginary parts of the noise are
uncorrelated from each other at whatever instants of time we care to
choose.

At (26) in the text, it -s required to evaluate a fourth order
complex moment of the form

By expanding into real and imaginary parts, assuming n to have a real
auto-correlation function, and by using the results (A-3) and (A-11+5,
it can be shown that

(A- 15) r'i nzl~ 4-2'3 + 4ý3LIJ,4

where

This is how (27) was obtained. Whether or not equation (A-15)
extends to noise whose co-variance is not real has not been
investigated. It was not required in the paper.

I'MW/ IN


