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Abstract—Near-optimal or globally optimal integrated sidelobe
level (ISL) polyphase codes are found for lengths 46 through80
by using a stochastic optimization technique. Polyphase Barker
codes are found for lengths 64 to 70, and 72, 76 and 77 using
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I. I NTRODUCTION

Pulse compression coding is used in radar applications to

gain the signal-to-noise (SNR) benefits of a long pulse along

with the range resolution of a short pulse. An important

figure of merit used to describe pulse compression codes is

the peak sidelobe level (PSL). Codes with good PSL can be

used to discriminate returns of interest from unwanted close-in

discrete returns.

Perhaps the most well-known phase codes used in radar

pulse compression are the binary Barker codes. These are

codes with elements either1 or −1 for which the PSL-to-peak

voltage ratio is1/N , whereN is the length of the code. Barker

codes exist for several lengths up to13, but no Barker codes

exist for odd lengths over13 [1]. It is generally accepted that

there are no such biphase codes of even length greater than

4. Furthermore, exhaustive searches have been conducted to

establish that the longest codes with PSL-to-peak ratios of

1This work was funded by PEO IWS 1.0 and 2.0 under BAE prime contract
N00024-01-D-7014

2/N and 3/N are probably length28 and 53 respectively

(refer, e.g., to [2] and [3]). Codes achieving4/N sidelobe

levels have been found at lengths up to and including 82 [4].

In 1965 Golomb and Scholtz [5] started to look at more

general sequences called generalized Barker sequences which

obey the same PSL-to-peak ratio maximum, and have complex

elements not necessarily of uniform size. Here we will focus

on codes that have elements of uniform size. We refer to them

as ”complex uniform”, or polyphase codes. It has become

a challenge to extend the list of lengths for which such

sequences are known. Zhang and Golomb found polyphase

Barkers up to length19 in 1989 [6]. Friese and Zottman [7]

extended the list to length31 in 1994. Brenner [8] found codes

up to length45 in 1998. Borwein and Ferguson [9] found

codes of length up to63 in 2005. Also in 2005, Nunn [10]

found four polyphase Barker codes of length64. Borwein and

Ferguson [11] subsequently presented a polyphase Barker of

length 65 in 2007.

Whereas one goal of this paper is to find yet longer

polyphase Barker sequences, much of the effort is concentrated

on finding codes with very good integrated sidelobe levels
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(ISL), defined as

ISL = 10 ∗ log10

∑

i 6=0

(

Ri

R0

)2

,

where theRi are the elements of the autocorrelation sequence,

i = 1 − N, . . . , N − 1, and R0 is the autocorrelation peak

[12]. This is done because long codes cannot have Barker-

level sidelobes without also having good ISL. With this in

mind good ISL codes are found, and then used as starting

points for local searches for low-PSL codes.

In a previous publication [10], one of the authors of this

paper indicated methods for finding local minima for objective

functions related to pulse compression figures of merits such

as matched filter ISL and PSL. These methods were used in

conjunction with a stochastic search to find large numbers of

32-element and64-element codes with locally optimal ISL.

These codes were then used as initial conditions for length-

32 and length-64 Barker searches. The methodology used in

this paper is similar to the method of Borwein and Ferguson

[9]. They used a different local optimization strategy witha

stochastic search to find polyphase Barker codes for lengths

from 46 to 63. They also used a variation of the Inverse

Coupon Collectors problem to establish, with 99 percent

certainty, the equivalent of minimum possible ISL values

(refer, e.g., to [13] and [14]).

It is one purpose of this paper to use the local optimiza-

tion/stochastic search strategy to extend the list of known

lengths for which polyphase Barker codes may be found. In

addition this paper will attempt to give a feel for the overall

number of available Barkers.

II. D ISCUSSION OFMETHODS AND RESULTS

To find polyphase Barker codes, the authors of this paper

used an existing set of routines which were designed to find

large numbers of good ISL codes. These routines evolved over

a number of years, and have been used effectively to find many

codes of various lengths both binary and polyphase. It would

be difficult to completely describe the methodology of these

tools, but the basic methodology is as described in Borwein

and Ferguson’s paper i.e. the use of a local optimization

strategy combined with a stochastic, or global optimization

strategy.

For each number of chips from 10 through 80 the program

was run for a substantial amount of time on a a set of

computers containing one or more Intel or AMD processors.

These searches were performed off and on, in the background

for many months. Computers that have been used in these

searches include a computer with a 2.4 GHZ Intel quad-core

processor, a 3.4 GHz Intel Pentium D processor, a pair of 2.8

GHz single core processors, and a Beowulf cluster combining

18 single core 2.2 GHz Opteron processors.

The work in this paper consisted of three tasks or ob-

jectives. The first part was to establish the length of the

longest polyphase Barker code attainable with the routines

and processing power available to the project. The second

objective which was consistent with, and accomplished con-

currently with, the first was to apply sophisticated searches

and significant computational effort to seek low, and possibly

optimally low, ISL values for codes from length 46 through

80. The third part was to partially understand the quantity and
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nature of available polyphase Barkers.

To accomplish the first and second task, existing routines

were run for a substantial amount of time for each length

from 10 through 80 to find large numbers of excellent ISL

codes. The amount of effort used at each of these lengths was

consistent with, and in most cases exceeded, the level of effort

Borwein and Ferguson used to establish the equivalent of best

ISL values for lengths up to 45 with 99 percent certainty. The

codes which eventually yielded the polyphase Barker codes of

lengths 65 through 70 in this paper were found in a relatively

short time on a pair of desktop computers. The effort was

continued and extended in order to search for better ISL codes

and further polyphase Barker codes, and in the case of the

codes from length 10 through 52, to ensure that as many

polyphase Barkers as possible were found. This continued

search ultimately yielded a polyphase Barker code at each of

the lengths 72, 76 and 77.

The best ISL values found for lengths 41 through 80 along

with the PSL values of the codes with the best ISL are shown

in Table 1. The results for lengths less than 64 are compared to

the results reported in [9]. These results were always at least

as good as, and often better than, the comparison results. For

lengths 64 and above, there are no comparison results. Though

some of the improvements exhibited in Table 1 appear small,

it should be noted that the point of this table is to find the

lowest ISL values ever found.

The codes resulting from this search were used as starting

points for a constrained optimization search, as describedin

[10], with the objective of finding polyphase Barker codes.

This attempt was successful for all lengths below 71, and for

lengths 72, 76, and 77. Table 2 gives the ISL values found for

sequences used as starting points for searches that resulted in

Barker sequences of length 70, 72, 76 and 77.

Table 1. ISL and PSL of Lowest-ISL Sequences Found
N ISL (dB) PSL (dB) Min ISL (dB)

in [9]
41 -17.19 -29.84 -17.19
42 -16.14 -29.50 -16.14
43 -16.63 -27.38 -16.57
44 -16.44 -31.10 -16.44
45 -16.53 -29.67 -16.53
46 -17.11 -29.72 -16.30
47 -17.98 -29.94 -17.98
48 -16.70 -29.45 -16.70
49 -17.25 -26.48 -16.97
50 -16.78 -30.77 -16.57
51 -18.57 -31.25 -17.61
52 -16.97 -30.93 -16.48
53 -17.47 -32.53 -17.05
54 -17.63 -31.43 -16.50
55 -18.22 -30.59 -17.22
56 -17.08 -30.74 -17.00
57 -18.02 -29.49 -16.63
58 -17.28 -29.85 -17.28
59 -17.99 -29.92 -16.69
60 -17.32 -31.37 -16.88
61 -17.28 -32.54 -16.64
62 -17.46 -30.99 -16.83
63 -17.62 -32.39 -16.87
64 -17.45 -31.13 -17.36
65 -18.37 -32.22 �

66 -17.70 -30.48 �

67 -18.06 -28.91 �

68 -18.08 -32.41 �

69 -17.61 -31.67 �

70 -18.08 -31.78 �

71 -17.78 -29.44 �

72 -17.66 -33.83 �

73 -18.00 -30.60 �

74 -17.53 -33.25 �

75 -17.90 -30.74 �

76 -17.93 -33.58 �

77 -18.35 -31.46 �

78 -17.77 -32.54 �

79 -17.80 -32.06 �

80 -17.69 -34.44 �
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Four Barker sequences were found for length 70. Barkers

were also found for lengths 65 through 69. The resulting

polyphase Barker codes are shown in Tables 3a, 3b, and 3c.

No polyphase Barker codes were found for lengths 71, 73, 74,

and 77 through 80.

Table 2. Starting Point ISL and PSL
N ISL (dB) PSL (dB)
70 -18.08 -31.78
70 -17.68 -31.91
70 -17.41 -31.44
70 -17.35 -32.06
72 -17.27 -33.24
76 -17.93 -33.58
77 -17.84 -33.48

Each of the nine codes in Tables 3a, 3b, and 3c have

zero phase in the the first two elements. This is a standard

form for polyphase codes which can be achieved for a given

code by applying some combination of four PSL-preserving

transformations [15]. In order to save space, these zero phase

elements were not displayed.

Table 3a. New Polyphase Barkers
Length

i 65 66 67

3 0.669 0.651 0.250
4 0.705 1.094 -0.361
5 1.620 1.098 -1.531
6 2.788 0.760 -1.742
7 -2.279 1.194 -1.431
8 -0.927 0.695 -1.171
9 -0.873 -0.238 -1.722
10 -1.549 0.359 3.130
11 -0.016 1.129 2.805
12 0.796 2.068 -2.514
13 -3.044 2.624 -1.989
14 -1.513 -2.402 -0.967
15 -0.131 -0.501 -0.748
16 1.590 -0.828 0.023
17 -3.074 -1.854 0.234
18 2.644 -0.840 -1.041
19 2.095 0.230 -2.578
20 -3.042 2.393 1.586
21 2.130 -3.060 0.326
22 1.384 1.131 1.287
23 -2.918 -0.166 0.641
24 -2.928 -1.944 -1.280
25 3.034 2.866 2.454
26 1.542 -2.745 1.149
27 0.033 -2.547 -1.694
28 -2.990 0.957 -2.947
29 -2.381 1.582 1.998
30 -1.370 -0.442 0.742
31 2.276 0.103 -1.043
32 1.634 1.712 -1.372
33 -0.725 -0.986 0.169
34 -1.637 -1.787 2.094
35 -1.782 1.166 2.940
36 2.485 -1.647 -2.672
37 1.889 -1.843 0.929
38 -2.605 2.849 -0.487
39 1.191 2.671 -2.745
40 1.564 1.365 -2.633
41 1.478 -0.730 -0.853
42 0.231 0.377 0.507
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Table 3a, continued
Length

i 65 66 67

43 -0.868 2.694 1.177
44 -2.381 2.546 -1.797
45 1.418 -0.056 1.766
46 -2.004 -0.933 -1.942
47 -2.523 3.130 2.306
48 2.127 0.163 -0.263
49 1.523 2.659 -3.031
50 -1.510 -2.094 -0.351
51 1.840 0.546 -3.107
52 -1.345 -1.692 -1.176
53 2.376 0.850 1.226
54 0.815 2.688 1.354
55 -2.078 -2.075 -2.455
56 0.387 1.289 -0.458
57 2.949 -1.056 2.348
58 -0.379 2.784 -2.290
59 2.532 0.931 0.382
60 -1.659 -2.703 -2.872
61 1.053 0.141 0.618
62 -2.749 -2.331 -2.105
63 0.520 0.424 0.139
64 -2.746 2.853 1.967
65 0.824 0.024 -2.217
66 -2.306 0.454
67 -3.091

Table 3b. New Polyphase Barkers
Length

i 68 69 70

3 0.4067 0.07976 1.42523
4 -0.5046 0.58296 2.08816
5 -2.1282 1.81485 -3.05258
6 -2.0912 1.82098 -2.77191
7 -1.7483 1.00855 -2.45249
8 2.8677 0.89255 -2.46227
9 1.7844 0.29756 -2.24951
10 2.0184 -0.1533 -0.37481
11 1.5365 0.64288 0.13029
12 1.0150 0.69489 2.02962
13 1.0508 1.43504 2.1759
14 2.2799 2.14618 -1.16998
15 1.9425 -2.20297 -0.38929
16 2.6898 -1.69645 0.65086
17 1.7585 -0.50078 1.61698
18 1.6239 -1.0920 1.80808
19 1.9010 -1.69751 0.10839
20 2.9506 -1.8551 0.3322

Table 3b, continued
Length

i 68 69 70

21 -2.5654 -2.67005 0.30113
22 -2.0949 2.01319 0.06233
23 -0.7560 1.26739 -1.16039
24 0.6002 1.43274 -2.26534
25 0.4148 0.47052 -2.67878
26 1.9365 -0.75635 -2.41804
27 0.4734 2.38315 2.01812
28 -2.6279 2.35055 0.66465
29 2.1562 -1.98574 -2.15192
30 -0.0834 -0.85718 3.04328
31 -2.9324 -0.54268 0.13284
32 1.1235 2.63622 -1.15376
33 -0.6224 2.65743 -2.66255
34 2.7057 -1.48012 3.08902
35 -0.4964 1.16378 0.38185
36 2.1708 1.01598 -1.61902
37 -1.1933 -1.5716 -2.00515
38 2.1368 0.83961 -2.09872
39 0.3980 2.20069 -2.48749
40 -2.3617 -2.18334 2.2047
41 -0.9185 -1.0478 -2.32013
42 2.4076 2.60719 0.27012
43 -0.5770 1.49634 -1.40224
44 1.1069 0.19691 -2.17547
45 2.6485 -2.1478 2.10378
46 -0.5231 -2.44501 -1.30729
47 2.6271 1.10051 1.15889
48 -1.4287 0.36299 -1.32073
49 0.7318 -1.58034 -1.99762
50 -2.2603 2.13499 2.40911
51 2.0771 -0.94564 -0.34463
52 0.1169 -3.12196 2.85139
53 -0.2964 0.90333 -1.25682
54 -2.4187 -1.80092 0.2813
55 -3.0375 1.50286 3.09061
56 1.5290 -2.97088 -1.54634
57 0.1530 -0.01951 0.14218
58 -0.9203 -1.64371 2.22836
59 2.6488 2.25934 -1.49084
60 -2.5165 -0.46549 -0.09963
61 -0.4344 2.26634 2.5801
62 0.8895 -1.4276 -1.00357
63 2.1702 1.22248 2.87771
64 -1.5633 -1.93941 0.04429
65 -0.7039 1.07472 -2.79157
66 2.1541 -2.80148 0.36066
67 2.8912 -0.28353 -2.43624
68 -0.3947 2.33779 0.50735
69 -0.91657 -3.00861
70 0.13762
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Table 3c. New Polyphase Barkers
Length

i 72 76 77

3 -0.1198 -0.2554 0.4842
4 -1.0806 -0.9594 1.3605
5 -1.9605 -0.8675 1.4647
6 -2.4183 -0.3549 1.3807
7 2.8421 -0.021 0.6939
8 2.3423 -0.9241 0.7884
9 2.1876 -1.5966 1.0706
10 1.0962 -1.2608 2.3907
11 0.7354 -1.667 3.1198
12 1.3757 3.0338 -2.9635
13 1.6034 1.3757 -1.6182
14 2.2493 -0.0373 -1.0878
15 2.3479 -1.1547 -0.4648
16 2.5616 -2.5654 1.9737
17 2.3693 1.6511 2.7293
18 -1.9032 1.1046 2.5286
19 -2.1234 1.0662 2.6055
20 -0.7022 -1.2648 2.2223
21 -1.3015 -1.4643 1.1757
22 1.8598 0.6193 1.482
23 0.878 0.7471 -1.444
24 -0.3462 -2.6102 -0.0035
25 -2.3613 2.7774 1.8144
26 2.9272 0.8379 1.4187
27 -0.2282 1.3649 0.0879
28 -1.751 2.8297 0.3141
29 2.0565 2.9632 -2.1991
30 0.4911 -0.847 -1.6148
31 -2.4045 -1.8794 2.151
32 -2.2363 1.97 1.4875
33 -2.5211 -0.1631 -0.5051
34 2.0985 -1.8844 0.0665
35 -0.5782 1.7583 -2.9933
36 -1.1035 -1.5173 0.3578
37 -2.297 3.1287 1.0729
38 2.3064 -0.7578 -1.5457
39 1.6868 -2.616 -2.5396

Table 3c, continued
Length

i 72 76 77

40 -2.6224 0.7383 -0.1418
41 -1.8485 -0.3336 0.5553
42 -0.7337 0.2405 -2.3394
43 2.4022 0.7288 -2.6826
44 1.5541 0.3513 -0.5124
45 -2.8166 3.1116 0.8723
46 -2.3892 2.7773 -2.7094
47 -0.5668 2.9883 -3.0903
48 1.7357 -1.7581 -0.0609
49 3.0393 1.8147 0.5818
50 -0.6961 0.249 -2.3695
51 2.3551 2.1562 -0.2644
52 2.7485 -1.1582 -2.3454
53 -1.436 -2.0082 -2.1221
54 0.7501 -0.3944 1.7057
55 2.3623 -2.3461 -2.7964
56 -2.0554 0.2543 0.8776
57 2.2897 2.2108 2.9202
58 -0.3058 1.1797 -0.6545
59 2.8183 2.7053 0.8063
60 -0.0986 -1.7175 -1.7238
61 -2.9669 0.4087 2.6827
62 0.8018 -2.278 -0.5054
63 3.0655 -0.1442 -2.5864
64 -0.2771 2.9859 2.3057
65 2.5553 -0.3654 1.1339
66 -0.9381 2.3881 -1.7974
67 1.3781 -1.1393 1.3614
68 2.8031 0.4539 -0.1384
69 -0.7153 1.6986 -2.5185
70 2.4486 -2.2759 0.5594
71 -0.7853 0.2246 -2.7806
72 1.8288 2.2318 0.3097
73 -2.527 -2.8669
74 -0.5133 1.1971
75 2.0835 -1.0393
76 -1.6578 2.5406
77 -0.1159

III. I F MY NET COMES BACK EMPTY, ARE THE FISH ALL

GONE?

It is natural to ask why there is a dearth of larger polyphase

Barkers in our results. As with previous efforts to find

polyphase Barkers, it is not possible to determine for certain

whether they were not found because they do not exist, or

they were not found because the methods employed were not

capable of finding them in the time alloted. Although this is
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not a question that can be answered for certain, evidence can

be gathered and presented which suggests the answer to this

question.

In an attempt to collect evidence of this kind, search yield,in

terms of numbers of polyphase Barkers found, was determined

for sizes from 10 to 52. As a first step, copious amounts of

time and effort were spent in finding the number of polyphase

Barkers for short lengths (below 20). The number of local

optimizations needed to find all of the polyphase Barkers at

these lengths were established. The effort was seen to be

growing at an exponential rate. The amount of effort was then

extrapolated from this lower length to lengths up to 52 chips.

That effort was then expended, and the numbers tabulated;

they are plotted in Figure 1.

To see if the exponential increase in effort was sufficient

to capture the number of polyphase Barker codes for lengths

from 10 to 52, an additional test was done at length 52. In

this test the program was run a large number of times over a

period of several days on an 18 element Beowulf cluster. At

the end of this time the program had executed 305 times. The

exact number of times the routine was run had no particular

significance other than the fact that it was a relatively large

number. Each time the routine was run, a number of polyphase

Barkers were found. Some were found every time, and some

were found only a small percentage of the time. Figure 2 shows

the results for the 48 codes found during the 305 trials.

Of the 305 times there were four codes found each of

the 305 times. One code was found only 4 times and all

the others were found 20 or more times. Interestingly, the
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Fig. 1. Numbers of polyphase Barker codes as a function of code length

number of codes found during this set of 305 trials was

exactly the same as the number of codes found during the

above-described exponentially increasing search. Similar tests

were done for lengths 44 and 48. At each of these sizes the

probabilities of finding individual codes followed a similar

pattern, and we found no further codes beyond those found in

the exponentially increasing search. This does not show that

there are no more polyphase Barkers at that length. In fact a

careful examination of Figure 2 suggests the possibility ofa

relatively small number of further polyphase Barkers at length

52. We do believe however that our search was relatively

thorough at those lengths. It is the authors opinion that the

numbers of poly-phase Barker codes not found during this

search are not sufficient in number to effect the trend shown

in Figure 1.

The shape of graph in Figure 1 appears to show that the

number of polyphase Barker codes is rapidly decreasing after

its peak at 38 chips. We believe that if we have made the case
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Fig. 2. Frequency of occurrence of polyphase Barkers of length 52

for having found most of the polyphase Barker codes in the

10 to 52 chip region, it is not unreasonable to believe that

the polyphase Barker codes could run out at lengths not far

beyond those found in this paper.

IV. SENSITIVITY TO DOPPLER ANDPRECISION

Any pulse compression code will exhibit some sensitivity

to Doppler and to the number of bits used to represent

elements of the sequence. This section will show results from

computations aimed at assessing each of these issues.

To assess sensitivity to quantization, all the Barker se-

quences found for lengths10 to 52 were examined. For each of

these lengths, each code was subjected to 6000 Monte Carlo

trials in which two independent random phases were drawn

from a uniform distribution. One phase was used to generate

a unit-amplitude complex multiple for the sequence, and the

second phase was used to generate a progressive ramp in phase

across the sequence. Both of these operations preserve sidelobe

level. However, the binary bit representation for the sequence
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Fig. 3. Percentage of Sequences Remaining Barker for RandomPhase Ramp,
6000 Trials

generated was then truncated. Figure 3 shows the logarithm of

the fraction of trials for which the sidelobes of these sequences

obey the Barker constraint, as a function of length for 4-bit

and 8-bit binary representation.

Figure 3 shows that the fraction decreases more slowly

for the 8-bit representation than for the 4-bit representation,

to about one quarter by length52. The fraction with 4-bit

representation drops below one out of every ten thousand cases

by length40. In each case the trend is for the proportion of

polyphase Barkers to decrease log-linearly with length. This

is in line with the authors’ expectation that longer polyphase

Barker codes can in general be expected to require larger

alphabets. A more exhaustive study of this phenomenon is

given in [9] and [11].

Doppler sensitivity was examined by applying a progressive

phase ramp across each Barker sequences for length10 to

length 52. Phase ramps using increments of0.25 and 0.5

degrees per chip were applied. Figure 4 shows the minimum,
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Fig. 4. Side-lobe levels of polyphase Barker codes after injecting 0.25 deg.
of phase per chip
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Fig. 5. Side-lobe levels of polyphase Barker codes after injecting 0.50 deg.
of phase per chip

maximum and mean PSL observed for the sequences of each

length with a phase ramp using an increment of0.25 degrees.

Figure 5 does the same for an increment of0.50 degrees.

It should be noted that there is significant variability in the

performance degradation due to Doppler effects, and in many

of the cases exhibited the degraded sidelobes are better than

can be expected for even the best of the match-filtered biphase

codes.

V. SUMMARY

In this paper we have extended the length for which

polyphase Barker codes are known to exist to length 70.

Further polyphase Barker codes were found at lengths 72, 76,

and 77. In addition we extended the length for which globally

minimum ISL codes are likely to have been found to length

80. We also exhibited evidence that the numbers of polyphase

Barkers reach a peak in the late 30’s and start decreasing at

a fairly rapid rate. We do not claim that we have found all

lengths for which there are polyphase Barkers. We do however

believe that sometime in the near future, all the lengths for

which polyphase Barkers exist will be found.
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