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Abstract
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lation in the presence of Doppler shift. The constituent waveforms are Golay complementary pairs which
have perfect autocorrelation at zero Doppler but are sensitive to nonzero Doppler shifts. We extend this
construction to multiple dimensions, in particular to radar polarimetry, where the two dimensions are
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I. INTRODUCTION

The value of perfect autocorrelation sequences in radar imaging is that their impulse-like autocorre-
lation function can enable enhanced range resolution (e.g. see [1]-[6]). An important class of perfect
autocorrelation sequences are complementary sequences introduced by Golay [6]. Golay complementary
sequences have the property that the sum of their autocorrelation functions vanishes at all (integer) delays
other than zero. This means that the sum of the ambiguity functions (composite ambiguity function) of
Golay complementary sequences is sidelobe free along the zero-Doppler axis, making them ideal for
range imaging.

The concept of complementary sequences was generalized to multiphase (or polyphase) sequences by
Heimiller [7], Frank et al. [8]-[10], and Sivaswami [11], and to multiple complementary codes by Tseng
and Liu [12]. Over the past five decades, the use of complementary and polyphase sequences (and related
codes) have been widely explored for radar imaging, e.g. see [1]-[18]. Recently, Deng [19] and Khan
et al. [20] extended the use of polyphase sequences to orthogonal netted radar (a special case of MIMO
radar), and Howard ef al. [21] and Calderbank et al. [22] combined Golay complementary sequences
with Alamouti signal processing to enable pulse compression for multi-channel and fully polarimetric
radar systems. Golay complementary sequences have also been advocated for the next generation guided
radar (GUIDAR) systems [23].

Despite the attention they received from the radar engineering community, complementary and polyphase
sequences were somewhat ignored by communication engineers for many years, although their auto-
correlation functions have as low sidelobes as the popular pseudo noise (PN) sequences. In fact, up
until 1990, there were only a few articles on the use of complementary and polyphase sequences in
communications, among which are the early work by Reed and Zetterberg [24] and the introduction of
orthogonal complementary codes for synchronous spread spectrum multiuser communications by Suehiro
and Hatori [25]. In 1990’s, some researchers including Wilkinson and Jones [26], van Nee [27], and Ochiai
and Imai [28] explored the use of Golay complementary sequences as codewords for OFDM, due to their
small peak-to-mean envelope power ratio (PMEPR). However, the major advances in this context are
due to Davis and Jedwab [29] and Paterson [30], who derived tight bounds for the PMEPR of Golay
complementary sequences and related codes from cosets of the generalized first-order Reed-Muller code.
Construction of low PMEPR codes from cosets of the generalized first-order Reed-Muller code has also
been considered by Schmidt [31] and Schmidt and Finger [32]. Complementary codes have also been

employed as pilot signals for channel estimation in OFDM systems [33].
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Recently, complementary and polyphase codes (in particular orthogonal complementary codes) have
been advocated by Chen er al. [34],[35] and Tseng and Bell [36] for enabling interference-free (both
multipath and multi-access) multicarrier CDMA. Other work in this context include the extension of
complementary codes using the Zadoff-Chu sequence by Lu and Dubey [37] and cyclic shifted orthogonal
complementary codes by Park and Jim [38]. In [39], orthogonal complementary codes have been used
in the design of access-request packets for contention resolution in random-access wireless networks.

Despite their many intriguing properties and recent theoretical advances, in practice a major barrier
exists in adoption of complementary sequences for radar and communications; the perfect auto-correlation
property of these sequences is extremely sensitive to Doppler shift. Although the shape of the composite
ambiguity function of complementary sequences is ideal along the zero-Doppler axis, off the zero-Doppler
axis it has large sidelobes in delay, which prevent unambiguous range imaging in radar or reliable detection
in communications. Most generalizations of complementary sequences, including multiple complementary
sequences and polyphase sequences suffer from the same problem to some degree. Examples of polyphase
sequences that exhibit some tolerance to Doppler are Frank sequences [9], P1, P2, P3, and P4 sequences
[18], PX sequences [40], and P(n,k) sequences [41],[42]. Sivaswami [43] has also proposed a class
of near complementary codes, called subcomplementary codes, which exhibit some tolerance to Doppler
shift. Subcomplementary codes consist of a set of N length-N sequences that are phase-modulated
by a binary Hadamard matrix. The necessary and sufficient conditions for a set of phase-modulated
sequences to be subcomplementary have been derived by Guey and Bell in [44]. The design of Doppler
tolerant polyphase sequences has also been considered for MIMO radar. In [20], Khan et al. have used
a harmonic phase structural constraint along with a numerical optimization method to design a set of
polyphase sequences with resilience to Doppler shifts for orthogonal netted radar.

In this paper, we present a novel and systematic way of designing a Doppler resilient sequence of
Golay complementary waveforms for radar, for which the composite ambiguity function maintains ideal
shape at small Doppler shifts. The idea is to determine a sequence of Golay pairs that annihilates the
low-order terms of the Taylor expansion (around zero Doppler) of the composite ambiguity function. It
turns out that the Prouhet-Thue-Morse sequence [45]-[48] plays a key role in determining the sequence of
Doppler resilient Golay pairs. We then extend our analysis to the design of a Doppler resilient sequence of
-Alamouti waveform matrices of Golay pairs, for which the sum of the matrix-valued ambiguity functions
vanishes at small Doppler shifts. Alamouti matrices of Golay waveforms have recently been shown
[21],[22] to be useful for instantaneous radar polarimetry, which has the potential to significantly increase

the performance of fully polarimetric radar systems, without increasing the receiver signal processing
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complexity beyond that of single channel matched filtering. Again, the Prouhet-Thue-Morse sequence
plays a key role in determining the Doppler resilient sequence of Golay pairs. Finally, numerical examples
are presented to demonstrate the perfect autocorrelation properties of Doppler resilient Golay pairs at

small Doppler shifts.

IT. GOLAY COMPLEMENTARY SEQUENCES
Definition 1: Two length L unimodular sequences of complex numbers z[l] and y[l] are Golay
complementary if the sum of their autocorrelation functions satisfies
corrg(z[l]) + corr(y[l]) = 2Lékp, fork=—(L—1),---,(L—1), 1
where corrg(z[l]) is the autocorrelation of z[l] at lag k and dj o is the Kronecker delta function.
Let X(z) = Z{z[l]} and Y (2) = Z{y[l]} be the z-transforms of z[l] and y[l] so that
X(2) =z[0) +z[1]z7t +... + z[L — 1]z~ 1)
Y(z) =y[0] +y[l)z7" +... + y[L — 1],
Then, z[l| and y[I] (or alternatively X (z) and Y (z)) are Golay complementary if X (z) and Y (2) satisfy

2

X(2)X(2) + Y (2)Y(2) = 2L 3)

or equivalently

1X ()1 + 1Y (2)]1* = 2L, @

where X (2) = X*(1/2*) and Y (z) = Y*(1/2*) are the z-transforms of Z[l] = z*[-1] and Y[l] = y*[-1],
the time reversed complex conjugates of z[l] and y[l].

Henceforth we drop the discrete time index ! from z[l] and y[l] and simply use z and y. We use the
notation (z,y) whenever = and y are Golay complementary and call (z,y) a Golay pair. From (3) it

follows that if (z,y) is a Golay pair then (+z, 1Y), (£%,+y), and (£Z, £¥) are also Golay pairs.

A. Golay PFairs for Radar Detection

Consider a single transmitter/single receiver radar system. Suppose Golay pairs (z¢, 1), (22, Z3),. . .,
(xn—2,zN—1) are transmitted over N pulse repetition intervals (PRIs) to interrogate a radar scene
containing a stationary (relative to the transmitter and receiver) point target. Let R,(z) = Z{r,[k]}
denote the z-transform of the radar return associated with the nth PRI, Then, the radar measurement

equation can be written (in z-domain) as

‘[RO(Z): . -:RN—I(z)l = hz_dOIXO(Z):* .. ,XN_l(Z)]"FIWg(z), Ty WN—I(Z)l (5)

r’(2) x"(2) w'(z)
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where the delay do in z~% depends on the target range 7o and is given by do = [2ro/(cto)], where
to is the “chip” interval (time interval between two consecutive values in z[l] or y[l]), ¢ is the speed
of light, and [a] denotes the integer part of a. Without loss of generality, from hereon we assume that
dp = 0, centering the delay axis at the target location. The scalar h is the target scattering coefficient,
which we assume to be proper complex normal with zero mean and variance 20%, but fixed over the N
RPIs. Elements of w”(z) are z-transforms of iid samples of proper complex white Gaussian noises with
variance 202,

If we process the radar return vector r’ (z) by a receiver vector of the form
X(2) = [Xo(2), ..., Xn-1(2)]T ©6)

then the receiver output will be

U(z) = rT(2)X(2) = hx" (2)Z(2) + w" (2)X(2)

0
= NLh 4+ w™(2)X(2),
where the second equality follows by replacing x7 (2)X(z) with
x"(2)Z(2) = (IXo()I? + 1X1(2)[?) + ... + (| Xn-2(2)|* + [ Xn-1(2)|?) = NL. ®)

The term x” (2)X(2) is the z-transform of the composite ambiguity function of Golay pairs (o, z1),. . . ,
(zN-2,zN-1) along the zero-Doppler axis. We notice that x” (z)X(z) is a constant, which means that
the composite ambiguity function of (x9,21),...,(ZN—2,2N-1) vanishes at all (integer) delays along
the zero-Doppler axis.

Transforming (7) back to the time domain, we have
ulk] = Z71{U(2)} = NLhéyo + n[k], ©)

where n[k] is a proper complex white Gaussian noise with variance 202 = (NL)202,. This shows that

detecting a stationary point in range amounts to the following Gaussian hypothesis test

n ~ CNJ[0,202] : Hp
ulk] = (10)
NLh+mn~CNI[0,(2N?L%02 +202)] :H;

where CN[0,202] denotes the proper complex normal distribution with mean zero and variance 202,
Remark 1: In the above analysis, the radar return associated with each PRI is processed separately

at the receiver, that is each radar return is correlated with its corresponding waveform and then all the
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correlator outputs are added together. Hence the receiver output (in time domain) is

N-1
ulk] = > xcorrg(ry[K'], zn[K'])

n=0

—h'SY corre(za[k]) + nlk] (11

n=0
= NLhéo + nlk],
where xcorry(ry[k'], zn [k']) is the cross-correlation between 7,[k] and z,[k’] at lag k. If we want to

process all the PRIs together then we must correlate the augmented radar return r,[k],
ralk] =ro[k] + r1[k — D]+ ...+ ry_1[k — (N — 1)D] (12)
with the augmented waveform z,[k],
To(k] = zo[k] + z1[k — D]+ ...+ zny_1[k — (N — 1)D], (13)

where D is the delay associated with a PRI. The receiver output in this case is

talk) = xcorny (ra k'], za[K')

N-1 N-1 N-1
=h ) corrg(zalk]) +h X0 > xcorrg(zn [k — 0/ D], zpu [k — 1’ D)) + nglk]
n=0 n'=0n"=0 (14)
n:sénu
N-1 N-1
= NLhégo+h >, > xcorry(zn [k’ — n'D], zp.[k' — n" D)) + nglk],
n'=0n"=0
nl#ﬂ!(

where 71, [k] is a noise term. The cross terms xcorr (. [k’ —n' D], z,» [k’ —n' D)) result in range sidelobes
whose peaks are offset by integer multiples of D from the origin k = 0. Thus, by processing each radar
return separately as in (11) we can avoid range sidelobes caused by cross-correlations between different
waveforms. However, the Doppler resolution will be limited by the time duration of a single waveform,
whereas in the case where all the returns are processed together the Doppler resolution is enhanced due

to having a longer transmit pulse.

B. Effect of Doppler on Golay Pairs

We now consider the case where the target moves at a constant speed, causing a Doppler shift of 6
[rad] between two consecutive PRIs. We assume that the radar PRI is short enough that during the N
PRIs where the Golay pairs are transmitted the target range remains approximately the same. Then the

composite radar measurement is given by
r'(2,6) = hx" (2)D(6) + w' (), (15)
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where D(#@) is the following diagonal Doppler modulation matrix:
D(9) = diag(1,€/,...,e/N-1)0), (16)

If we now process the radar measurement vector r” (2, #) using the receiver vector X(2) the receiver

output will be

U(z,0) =" (2,0)X(2) = hG(2,0) + w” (2)X(2), 17)
where G(z,0) is the z-transform of the composite ambiguity function of (2o, 1), ..., (ZN—2,ZN_1),

and is given by
G(z,0) = x"(2)D(0)X(2) = || Xo(2)|]> + | X1(2) [ + ... + &NV Xy 1 (2)|2.  (18)

We notice that off the zero-Doppler axis (§ # 0) the composite ambiguity function G(z,6) is not
sidelobe-free at integer delays. In fact, even small Doppler shifts can result in large sidelobes at integer
delays.

One way to solve this problem is to use a bank of Doppler filters to estimate the unknown Doppler
shift 6 and then compensate for the Doppler effect by post-multiplying (15) by D () (where H denotes
Hermitian transpose) prior to applying X(z). However, since even a slight mismatch in Doppler can result
in large sidelobes, we have to cover the possible Doppler range at a fine resolution, which requires the
use of many Doppler filters. This motivates the question of whether it is possible to design Doppler
resilient Golay pairs (o, 1), ..., (ZN—2,2N-1) s0 that G(z,0) = SV "1 e X, (2)|2 =~ az®, where
« is constant, for a reasonable range of Doppler shifts . We are looking to construct the Golay pairs
(x0,21),...,(®N—2,ZN-1) so that G(z,0) (which is a two-sided polynomial of degree L — 1 in z~1)

vanishes at every delay but zero.

III. DOPPLER RESILIENT GOLAY PAIRS

In this section we consider the design of Doppler resilient sequences of Golay pairs. More precisely,
we describe how to select Golay pairs (zg,21),...,(ZN—2,Zn-1) so that in the Taylor expansion of

G(2,0) around 6 = 0 the coefficients of all terms up to a certain order, say M, vanish at all nonzero

delays.
Consider the Taylor expansion of G(z,6) around 6 = 0, i.e.,
oo
G(z,60) = ) Cu(2)6™, (19)
m=0
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where

N-1
Cm(z) = > n™||Xn(2)[?, for m=0,1,2,3,... (20)

n=0

In general, the coefficients Cy,(2), m = 1,2,3,... are two-sided polynomials in z~! of the form

L-1
Cm(2) = Z Cm.zz_l, m=1,2,3,... 1)
I=—(L-1)

For instance, the first coefficient C(z2) is

C1(2) = 0l Xo(2)[|* + LI X (2)* + 20 X2(2) > + ... + (N = 1) Xn-1(2)|>. (22)
Noting that (z9,z1),...,(zN—2,2N-1) are Golay pairs we can simplify C;(z) as
Ci(z) = N(N = 2)L/2 + | X1(2)I” + | X3() | + - .. + [| Xn-1(2) % (23)

Each term of the form || Xox41(2)||? = Xog41(2) X3y, (1/2%) is a two-sided polynomial of degree L — 1
in the delay operator z~!, which can not be matched with any of the other terms, as we have already
taken into account all the Golay pairs. Consequently, C;(2) is a two-sided polynomial in z™~! of the form
Ci(z) = ZEL;..I(L_I) ezt

We wish to design the Golay pairs (2o, 21),...,(ZN-2,Zn-1) so that ¢;; vanish for all nonzero /.
More generally, we wish to design (zo, 1), ..., (zn—2,ZN—1) so that in the Taylor expansion in (19) the
coefficients of all the terms up to a given order M vanish at all nonzero delays, i.e. ¢, = 0, for all m
(1 £m < M) and for all nonzero I. Although not necessary, we continue to carry the term 0™|| Xo(2)||?
in writing Cy,(2) for reasons that will become clear. We note that there is no need to consider the

zero-order term, as Co(z) = NL.

A. The Requirement that Cy(z) Vanish at All Nonzero Delays

To provide intuition, we first consider the case N = 22 = 4, where Golay pairs (zo, 1) and (z2,z3)
are transmitted over four PRIs. Then, as the following calculation shows, C(z) will vanish at all nonzero

delays if the Golay pairs (zg, ;) and (x2,23) are selected such that (z1,z3) is also a Golay pair:

Ci(2) = 01 Xo(2)1* + [IX1(2) > + 21 X2(2) |1? + 3| X3(2) |2

1)|X: ()| 2 x 2L + 1]\ X3(2)[* @4

N

3x2L

The trick is to break 3 into 2+ 1, and then pair the extra || X3(2)||? with || X1 (2)||%. Note that it is easy to

choose the pairs (2o, 1) and (x2,23) such that (1, z3) is also a Golay pair. For example, let (z,y) be
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an arbitrary Golay pair, then (zo = z,21 = y), (22 = 7,23 = I), and (z; = y,23 = T) are all Golay
pairs. Other combinations of +z, +%, +y, and +¥ are also possible. The calculation in (24) shows that
it is possible to make Ci(z) (M = 1) vanish at all nonzero delays with N = 2!*! Golay sequences

L0y ,L3.

B. The Requirement that C1(z) and Cs(z) Vanish at All Nonzero Delays

It is easy to see that when N = 4 it is not possible to force Ca(z) (M = 2) to zero at all nonzero
delays. However, this is possible when N = 22+1 = 8. As the following calculations show, we can make
both C1(z) and Ca(z) vanish at all nonzero [ if we select the Golay pairs (o, 21), ..., (z6, 27) such that
(x1,23), (x5,27), and (z3,27) are also Golay pairs.!

Making C1(z) vanish:

Ci(2) =
01Xl + 11X |7 + 20 X2l + 31 Xsl? + 41Xl + 51 X512 + 6lXel? + 7)1 X7

2 x 2L + 4 x 2L + 6 x 2L+ (25)
(-0 =1IX1]* [8-2)=1]IX5]> [(5-4)=1|Xs|]> [(7—6)=1]|X7|?

v

3 x2L 11 x 2L
Making C5(z) vanish:

Ca(z) =
01Xl + 12 X1 ||? + 221X + 8%| X5|> + 47| Xa|® + 5°|| Xs|* + 67| Xel)® + 72| X7||

4x20+ 16 x 2L + 36 x 2L+
(12 = 0%) = 1]IX1|* [(3% —2%) = 5] X5>  [(5° — 4%) = 9] Xs)® ((7° - 6%) = 13][| X7|

v v

5x 2L+ 61 x 2L+
18 =2 124 0%) = 4] X5 (72 — 62 — 5% + 4%) = 4[| X7
[(02+12+22+...v+72) =170} x 2L
(26)
Note that it is easy to select the Golay pairs (zo,z1),..., (zs,27) such that (z1,z3), (zs,27), and
(x3,27) are also Golay pairs. For example, (2o = z,21 = y), (22 = —¥,23 = T), (z4 = —, 25 = T),

and (z¢ = z,27 = y), where (z,y) is an arbitrary Golay pair, satisfy all the extra Golay pair conditions.

'In writing (25) and (26) we have dropped the argument z for simplicity.
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We notice that what allows us to make both C(2) and Cs(2) vanish at all nonzero [ is the identity
J_2M 1ML O =TT — 6" -5+ 4™ for m=1,2 27)
or alternatively
O™ +3"+5m+6M)— (1" +2" 44+ 7") =0, for m=1,2, (28)

where m = 1 and m = 2 correspond to the calculations for C(2) and C5(z), respectively. In other words,
the reason C;(2) and Cs(z) can be forced to zero at all nonzero delays is that the set S = {0,1,...,7}
can be partitioned into two disjoint subsets Sy = {0,3,5,6} and S; = {1,2,4, 7} whose elements satisfy
(28). This is a special case of the Prouhet (or Prouhet-Tarry-Escott) problem [48],[49] which we will
discuss in more detail later in this section. But for now we just note that Sg is the set of all numbers in

S that correspond to the zeros in the length-8 Prouhet-Thue-Morse sequence (PTM) [45]-[48]
(sk)feo = 01101001, (29)

and §; is the set of all numbers in S that correspond to the ones in (sg)]_,.

A key observation here is that the extra Golay pair conditions we had to introduce to make Ci(z) and
Ca(z) vanish at all nonzero [ are all associated with pairs of the form (z,,z,) where p and g are odd,
and p € Sp and ¢ € S;. This suggests a close connection between the Prouhet-Thue-Morse sequence and

the way Golay sequences zg, z1,...,ZN—1 must be paired.

C. The Requirement that C1(z) Through Cys(z) Vanish

We now address the general problem of selecting the Golay pairs (zo,21),. .., (ZN—_2,Zn—-1) to make
Cm(2), m =1,2,..., M vanish at all nonzero delays. We begin with some definitions and results related
to the Prouhet-Thue-Morse sequence.

Definition 2.[45]-[48] The Prouhet-Thue-Morse (PTM) sequence S = (s;)x>0 over {0,1} is defined
by the following recursions:

1) s0=0

2) Sop = Sg

3) sop+1 =Sk =1—s;
for all k£ > 0, where § = 1 — s denotes the binary complement of s € {0,1}.

For example, the PTM sequence of length 32 is

S=(sk)jp =01101001100101101001011001101001. (30)
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Prouhet’s problem.[48],[49] Let S = {0,1,..., N —1} be the set of all integers between 0 and N — 1.
The Prouhet’s problem (or Prouhet-Tarry-Escott problem) is the following. Given M, is it possible to

partition S into two disjoint subsets Sg and S; such that Y p™ = > ¢™ for all 0 < m < M? Prouhet’s
pESy qES,
proved that this is possible when N = 2M+1 and that the partitions are identified by the PTM sequence.

Theorem 1 (Prouhet).[48],[49] Let S = (si)r>0 be the PTM sequence. Define

So ={pesS=1{0,1,2,...,2"+1 _1}| 5, = 0}
€)Y
S1 ={gesS=A{0,1,2,...,2M+1 —1}| 5, =1}

Then, for any m with 0 < m < M we have

dom=> ™ 32)

pESo q€S,

Lemma 1. Let (29, 21),...,(zN-2,2N-1), N = 2M+1 be Golay pairs. Let Xo = {zplp € So} and
X1 = {z4|q € S¢}. Then, neither X nor X; contains any of the Golay pairs (zg, z1), - .., (Zn_2, ZN_1).

Proof: The Golay pairs (2o, 1), ..., (ZN-2,Zn—1) are of the form (zog, Tok41), Where k£ = 0,1, ...,
N/2—1. From the definition of the PTM sequence we have sok+1 = Sj = So. Therefore, zox and gy 1
cannot be in the same set.[]

Lemma 2. Assume that the Golay pairs (2o, 21), - .., (Zn—2,2n—-1), N = 2M+1 are such that all pairs
of the form (zop41 € Xo,zoxv41 € Xy), i.e., all pairs of the form (zog 41, Topr41) with 25" +1 € S

and 2k"” + 1 € S;, are also Golay complementary. Then,
IXp(2)* = [ Xp(2)]* and [ Xq(2)|* = | Xq ()| (33)

for all p,p’ € g (i.e. for all zp, z, € Xp) and for all ¢,¢ € S; (ie. for all Zg,Tq € X1), and all pairs of

the form (z, € Xo,z4 € X)), i.e. all pairs (z,,,z,) with p € Sp and g € S;, are Golay complementary.
Proof: Assume p = 2k is even and p € Sp. Then ¢ = 2k + 1 is odd and ¢ € S;. We know

that the pair (zp—2r € Xo,Zg=2k+1 € Xi) is Golay complementary, as all the original Golay pairs

(z0, 1)+ -, (TN-2,ZN-1) are of the form (z2x, Zok11), hence
IX5(2)[I? + [ Xq(2)II* = 2L. (34)

Let p' € Sp and assume p’ is odd. Then, since ¢ = 2k + 1 € S; and all pairs of the form (zopy; €

Xo, Zogn41 € X1) are Golay complementary (from our assumption), we have
1% (2)|* + 11 Xq(2)[|* = 2L. (35)

Subtracting (35) from (34) gives
1X(2) 1 = 1| X, (2)]1%. (36)
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Since (36) is true for any even p € Sp and any odd p’ € Sy it must be true for any p,p’ € Sp, or
equivalently any z,, 2, € Xo. Similarly, we can prove that || Xy (2)||? = || Xy (2)]? for all 2,2, € X;.
Since at least one element from X forms a pair with one element in X; (e.g. (2o, z1)) then all pairs of
the form (z, € Xo, x4 € X;) must be Golay complementary.[]

Remark 2: We note that to construct Golay pairs (zg, z1),.. ., (Zn_2,Zn_1), N = 2M+1 that satisfy
the conditions of Lemma 2 we can consider an arbitrary Golay pair (z,y) and then arbitrarily choose
zp € Xp from the set {z, —z,%, -7} and 2, € X; from the set {y, —y, 7, —7}, for any p € Sg and any
q € Sy.

We now present the main result of this section by stating the following theorem.

Theorem 2. The coefficients Ci(z),...,Ch(2) in the Taylor expansion (19) will vanish at all nonzero
delays if the Golay pairs (2o, 21), ..., (Zn—2,zn-1), N = 2M+1 are selected such that all pairs (zp, 24)
where p and ¢ are odd and p € Sy and ¢ € S; are also Golay complementary.

Proof: From Lemma 2, we have || X,(2)|* = || Xp (2)||? for all p,p’ € Sp and || X,(2)||2 = || Xy (2)]|2
for all ¢,q" € S1. Therefore, we can write Cy,(2) (1 <m < M) as

N-1
= " Xa(2)P = X o™X + (O g™ X1 ()12 (37)
n=0

pESy qES
From the Prouhet theorem (Theorem 1), we have > p™ Z ¢™ = 3, where (3 is constant. Therefore,
peS geS,
we have ’
Cm(2) = B([I Xo(2)|* + | X1(2)[|*) = 2BL. (38)

IV. DOPPLER RESILIENT GOLAY PAIRS FOR FULLY POLARIMETRIC RADAR SYSTEMS

Fully polarimetric radar systems are capable of simultaneously transmitting and receiving on two
orthogonal polarizations. The use of two orthogonal polarizations increases the degrees of freedom and
can result in significant improvement in detection performance. Recently, Howard et al. [21] (also see
[22]) proposed a novel approach to radar polarimetry that uses orthogonal polarization modes to provide
essentially independent channels for viewing a target, and achieve diversity gain. Unlike conventional
radar polarimetry, where polarized waveforms are transmitted sequentially and processed non-coherently,
the approach in [21] allows for instantaneous radar polarimetry, where polarization modes are combined
coherently on a pulse by pulse basis. Instantaneous radar polarimetry enables detection based on full
polarimetric properties of the target and hence can provide better discrimination against clutter. When
compared to a radar system with a singly-polarized transmitter and a singly-polarized receiver the

instantaneous radar polarimetry can achieve the same detection performance (same false alarm and
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detection probabilities) with a substantially smaller transmit energy, or alternatively it can detect at
substantially greater ranges for a given transmit energy [21].

A key ingredient of the approach in [21] is a unitary Alamouti matrix of Golay waveforms that has
a perfect matrix-valued ambiguity function along the zero-Doppler axis. The unitary property of the
waveform matrix allows for detection in range based on the full polarimetric properties of the target,
without increasing the receiver signal processing complexity beyond that of single channel matched
filtering. We show in this section that it is possible to design a sequence of Alamouti matrices of Golay
waveforms, for which the sum of the matrix-valued ambiguity functions vanishes at all nonzero (integer)
delays for small Doppler shifts.

Figure 1 shows the scattering model of the fully polarimetric radar system considered in [21], where
hy g denotes the scattering coefficient into the vertical polarization channel from a horizontally polarized
incident field. Howard et al. employ Alamouti signal processing [50] to coordinate the transmission of
(N/2) Golay pairs (zo,21),...,(ZN-2,ZN_1) over vertical and horizontal polarizations during N PRIs.
The waveform matrix is of the form
Xo(z) —Xi(2) ... Xop(2) —Xorn(2) ... Xn-o(z) —Xn_1(2)

Xi(2) Xo(2) ... Xapa(z)  Xm(e) ... Xnoi(z) Xyoo(2)

where different rows in X(z) correspond to vertical and horizontal polarizations, and different columns

X(z) = . (39)

correspond to different time slots (PRIs).

The radar measurement matrix R(z) for this transmission scheme is given by
R(2) = HX(2)D(6) + W (2), (40)

where H is the 2 by 2 target scattering matrix, with entries hyy, hvy, hav, and hgg, W(z) is a 2 by
N noise matrix with entries that are iid proper complex normal with zero mean and variance 202, and
D(#) is the diagonal Doppler modulation matrix introduced in (16).

If we process R(z) with a receiver matrix i(z) of the form

R(2) = X:O(z) -Xi(2) ... H}?%(z) —Xok+1(2) ... }E'N-z(z) —Xn-1(2) ' 41
Xi1(z) Xo(2) ... Xoks1(2) Xop(2) coo Xn-1(2)  Xn_2(2)
then the receiver output will be
U(z,6) = R(2)X(z) = HG(z,0) + W(2)X(2), (42)

where the term G(z, 6) = X(z)D(B)i(z) can be viewed as the z-transform of a matrix-valued ambiguity

function for X(z). Along the zero-Doppler axis, where D(f = 0) = I, due to the interplay between
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Fig. 1. Scattering model for a fully polarimetric radar system, with a dually-polarized transmit and a dually-polarized receive

antenna.

Alamouti signal processing and the Golay property, the term G(z, §) reduces to

N-1 Nj2-1 N
_ ﬂZ:JO | Xn(2)||> = NL Eﬁ (1 — 1) Xop(2) Xops1(2) = 0

G(z.0) = X(z)X(x) = N/2-1 : N-1
= (1= 1) Xar(2) Xakra (2) = 0 2 | Xa()I? = NL

“43)
This shows that X(z) has a perfect matrix-valued ambiguity function along the zero-Doppler axis; that is
along the zero-Doppler axis G(z,6) vanishes at all nonzero (integer) delays, and is unitary at zero-delay.
A consequence of (43) is that detecting a point target in range reduces to a simple Gaussian hypothesis
test, for which the likelihood ratio detector is the same as an energy detector. However, off the zero-
Doppler axis the property in (43) no longer holds, and the elements of the matrix-valued ambiguity

function G(z, ) can have large sidelobes, even at small Doppler shifts.

We consider how the Golay pairs (zg, 1), ..., (Zn-2, Zy—1) must be selected so that for small Doppler
shifts we have
B Gi(z,0) Gaz,0 NL 0
G(x0) = X(DEX () = [ S0 GBI , (@)
Gz(z,Q) Gl(z, 9) 0 NL
where ;)
G1(2,0) = 3 ™| X, (2)|?
n=0 45)
= || Xo(2) |1 + ]| X1 (2)|1> + ... . + FN D0 X y_y (2)]|?
and
Nj2-1 _ _
Ga(z2,0) = 3 (e12k0 — eI(k+1)0) X0, (2) Xop11(2)
k=0 (46)

= (1- e Xo(2)X1(2) + ...+ (V=20 — dW=-D0Y X\ () Xn_1(2).
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The diagonal term of G(z,6), i.e., G1(z, 8), is equal to the single channel composite ambiguity function
G(z,6) in (18). Therefore, we can use Theorem 2 to design the Golay pairs (29, 21), ..., (TN_2, TN_1),
N = 2M+1 guch that in the Taylor expansion (19) the coefficients Cp,(2), m = 1,2,..., M vanish at all
nonzero delays. Thus, from now on we only discuss how the off-diagonal term G(z,8) can be forced
to zero for small Doppler shifts.

Consider the Taylor expansion of G3(z,6) around 6 =0, i.e.,

o0
G2(2,0) = ) Bm(2)0™, @7
m=0
where
N/2-1
Bm(2) = Y ((2k)™— (2k +1)™) Xon(2) Xops1(2), for m=0,1,2,.... (48)
k=0
In general, the coefficients Bp,(z), m = 1,2,3,... are two-sided polynomials in z~! of the form
Bpn(z) = Z bz, m=1,2,3,... (49)
I=—(L-1)

For instance, the first coefficient B (z) is
Bi(2) = (0— 1)Xo(2)X1(2) + ... + (N = 2) = (N — 1)) Xn—-2(2) Xn-1(2). (50)

Each term of the form ng(z))?gk+1 (z) in (50) is a two-sided polynomial of degree L — 1 in z~!, and

since in general the terms Xo (z))z’gk_..l (z) for different values of k do not cancel each other, B (z) is

also a two-sided polynomial of degree L — 1 in z~1.

Suppose that the Golay pairs (29, 21), ..., (zn—-2,Zn_1), N = 2M+1 satisfy the conditions of Theo-
rem 2 so that C1(z),...,Cnp(2) vanish at all nonzero delays. We wish to determine the extra conditions
required for (zg,z1),...,(zN—2,2Nn—1) to force Bi(z),...,Bum(2) to zero at all delays. As we show,

again the PTM sequence is the key to finding the zero-forcing conditions. The zero-order term By(z) is

always zero and hence we do not consider it in our discussion.

A. The Requirement that Bi(z) Vanish

Again, to gain intuition, we first consider the case N = 22 = 4. Then, as the following calculation
shows, Bi(z) will vanish if the Golay pairs (zg,z1) and (z9,23) are selected so that Xo(2)X;(2) =
—X5(2) Xs(2):

B] (z) = (U - 1)X0(Z}X1(Z) +\(2 - 3)X2(Z)X3(Zl

—(2 = 3)Xo(2) X1 (2) (S1)
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In summary, to make Ci(z) vanish at all nonzero delays and to force By(z) to zero at the same
time, the Golay pairs (2o, 1) and (22, 3) must be selected such that (x1,23) is also a Golay pair and
Xo(2)X1(2) = —Xa(2)X3(2). If we let (z,y) be an arbitrary Golay pair then it is easy to see that
(zo = z,21 = ¥), (2 = —¥Y,z3 = T) satisfy these conditions (other choices are also possible). The
Alamouti waveform matrix X(z) for this choice of Golay pairs is given by

X [PE =X K@ =TFE) 0@=-F6) KE=-X@)
Xi(2)=Y(2) Xo®)=X() Xa(2)=X(2) Xa(z)=-Y(2)

B. The Requirement that B:(z) and By(z) Vanish:

Let us now consider the case N = 23 = 8. Then, as the following calculations show, both Bj(z2)
and Ba(z) will vanish if we select (zo,21),..., (26, 27) such that Xo(2)X)(2) = —Xo(2)Xs(2) =
—X4(2)X5(2) = Xo(2) Xr(2).

Making Bi(z) vanish:

By (z) =

O0-1)XeX: + (2-3)XoXz + (A-5)XXs + (6—7)XeXs
~ - v v v ~ (53)
[(0-1)=-1]XX; [-(2-3)= 1])(0)(1 [-(4-5) =1]XoX; [(6-7)=-1]XX;

0
Making By (z) vanish:

Bs(z) =
02 -1)XeX; + (22— 32)X2X3 + (42— 52)X4X5 + (6% - 7)) XeXy
| A——— [ ——

[N

(02 —1%) = —1]XoX; [(2 - 3%) = 5]XoX; -4 - 52) = 9)Xo X, [(62 - 7%) = —13] XX,

~

02 — 12 — 22 + 3% = 4] X X, [—4% + 5% + 6% — 7% = —4] X, X,

<

(54)

In writing (53) and (54) we have dropped the argument z for simplicity.
In summary, to make Cj(z) and C3(z) vanish at all nonzero delays and to force By (z) and Ba(z) to
zero at the same time, the Golay pairs (zo,z1), ..., (zs, z7) must satisfy the conditions of Theorem 2,

and the within-pair cross-spectral densities must satisfy

Xo(2)X1(2) = —X2(2) Xs(2) = — Xa(2) X5(2) = Xo(2) Xr(2). (55)
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It is easy to see that the Golay pairs in the following waveform matrix X(z) satisfy all these conditions:

X(2) = (Xoz) X1() Xa() Xo(2))., (56)
where X(2) and X;(z) are given by
Xo(2) = X(2) —E’(Z) and Xi(z) = —3’(3) —X(2) ’ 57
Y(z) X(z2) X(z) -Y(2)

and (z,y) is an arbitrary Golay pair.

The trick in forcing Bi(z) and Bs(z) to zero is to cleverly select the signs of the cross-correlation
functions (cross-spectral densities) between the two sequences in every Golay pair relative to the cross-
correlation function (cross-spectral density) for zp and z1. If we let 0 and 1 correspond to the positive
and negative signs respectively, we observe that the sequence of signs in (55) corresponds to the length-4
PTM sequence. In the next section, we show that the PTM sequence is in fact the right sequence for
specifying the relative signs of the cross-correlation functions between the Golay sequences in each Golay
pair.

Remark 3: Representing Xo(z) and X;(z) by 0 and 1 respectively, we notice that the placements of
Xo(z) and X;(z) in X(z) are also determined by the length-4 PTM sequence.

C. The Requirement that By(z) Through By (z) Vanish

We now consider the general case N = 2M+1 where Golay pairs (zo,21), ... (ZN-2,2ZN-1) are used
to construct a Doppler resilient waveform matrix X(z). We have the following theorem.
Theorem 3: Let N = 2M+1 and let (z0,21), -+ (ZN—2,ZNn-1) be Golay pairs. Then, for any m

between 1 and M, B,,(z) will vanish at all delays if
Xop(2)Xopy1(2) = (—1)*Xo(2)X1(2), forallk, 0< k< N/2—1, (58)

where sy, is the kth element in the PTM sequence.

Proof: For any m (1 < m < M), B,,(z) may be written as

Nj2-1 ~
Bm(z) = EU ((2k)™ = (2k + 1)™) Xk (2) Xok+1(2)
Nj2-1 - (59)
= :Eo (=1)*((2k)™ = (2k + 1)™) | Xo(2)X1(2),
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where the second equality in (59) follows by replacing Xox(z) Xok+1(2) with (—1)% Xo(2) X, (z). Since

in the PTM sequence sy = 8o = S2p11, We can rewrite (59) as

[N/2-1 _ ~
Br(2) = | 3 (=1)%%(2k)™ — (=1)%+: (2k + 1)”‘] Xo(2)X1(2)
k=0
[N/2—1 ~
=| > (=1)%2%(2k)™ + (=1)%*+1(2k + 1)™ | Xo(2)X:1(2) (60)
k=0
[N—1 -
= | 22 (=1)%E™| Xo(2)X1(2).
L k=0
N-1
However, from the Prouhet theorem (Theorem 1), it is easy to see that Y (—1)%k™ = 0, and therefore
k=0
Bm(z) = 0.0
Finally, we note that it is always possible to find Golay pairs (2, #1), ..., (zN—2,ZN—1) that satisfy
the conditions of both Theorem 2 and Theorem 3. Suppose (2o, z1),. .., (ZN—2,ZN_1) are built from

an arbitrary Golay pair (z,y) (as explained in Section III) to satisfy the conditions of Theorem 2. Then,
we can apply the time reverse operator and change the sign of the elements within the pairs to satisfy
the conditions of Theorem 3, as the Golay property is invariant to time reversal and changes in the signs

of the Golay sequences within a pair.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples to verify the results of Sections III and IV and compare

our Doppler resilient design to a conventional scheme, where the same Golay pair is repeated.

A. Single Channel Radar System

We first consider the case of a single channel radar system. In this case, the composite ambiguity
function G(z, 6) is given by (18) and has a Taylor expansion of the form (19). Following Theorem 2, we
coordinate the transmission of eight Golay pairs (zo,Z1),..., (14, 215) over N = 16 PRIs to make the
Taylor expansion coefficients C1(z),...,Cs(z) (M = 3) vanish at all nonzero delays. Starting from a
Golay pair (z,y), it is easy to verify that the eight Golay pairs in the following waveform vector x”'(2)

satisfy the conditions of Theorem 2:

(@) = (@) @) F6) @) L6 L@ £ L) 61)
where xJ (2) = [X(2) Y(2)] and xT(2) = [-¥(2) X(2)].
Remark 4: Representing x2'(2) and x7'(2) by 0 and 1 respectively, we notice that the placements of

x7'(z) and x7 (z) in x7(2) are determined by the length-8 PTM sequence.
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We compare the Doppler resilient transmission scheme in (61) with a conventional transmission scheme,
where the same Golay pair (zo = «,z1 = y) is transmitted during all PRIs, resulting in a waveform

vector x! (z) of the form

@)= (Fe) £e) £ £E@) L6 e L6 £e), (62
with the composite ambiguity function

Ge(2,0) = x{ (2)D(0)Z.(2)
(63)
= [1Xo(2)[* + ? [ X1 ()]* + ... + # N2 Xo(2) |2 + SN -1° X, (2)|2.

The pair (z,y) used in constructing x” () and xZ(z) can be any Golay pair. Here, we choose (z,9)
to be the following length-8 (L = 8) Golay pair:

z[l] ={1,1,-1,1,1,1,1,-1} = X(z)=1+4+21—224 28 44254267
yll] ={-1,-1,1,-1,1,1,1,-1} <= Y(2)=-1—-z2 42228 47744 254 26 _ 7
(64)

Referring to the Taylor expansion of G(z,6) in (19), the coefficients C;(2), C(2), and C3(2) are each
two-sided polynomials of degree L — 1 = 7 in 2~ ! of the form (21). Figures 2(a)-(c) show the plots of
the magnitudes of the coefficients ¢, 1, m = 1,2, 3 of these polynomials versus delay index I. The plots
show that C1(z), C2(z), and C3(z) indeed vanish at all nonzero delays.

Figures 3(a),(b) show the plots of the composite ambiguity functions G(z,0) and G.(z,6) versus
delay index [ and Doppler shift §. Comparison of G(z,0) and G.(z,6) at Doppler shifts § = 0.025
rad, 6 = 0.05 rad, and 6 = 0.075 rad is provided in Figs. 4(a)-(c), where the solid lines correspond to
G(z,6) (Doppler resilient scheme) and the dashed lines correspond to G¢(z,6) (conventional scheme).
We notice that the peaks of the range sidelobes of G(z, #) are at least 24 dB (for § = 0.025 rad), 28 dB
(for & = 0.05 rad), and 29 dB (for # = 0.075 rad) smaller than those of G.(z,8). These plots clearly
show the Doppler resilience of the waveform vector in (61).

Remark 5: For a radar with carrier frequency fo = 2.5 GHz and PRI= 100 usec, the Doppler shift
range of 0 to 0.05 rad (0.075 rad) corresponds to a maximum target speed of V a 35 kmph (50 kmph).
To cover a larger speed range we can use our design with a bank of Doppler filters to provide Doppler

resilience within an interval around the Doppler frequency associated with each filter.
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Fig. 3. (a) The plot of the composite ambiguity function G(z, ) (corresponding to the Doppler resilient transmission scheme)
versus delay index ! and Doppler shift 8, (b) the plot of the composite ambiguity function Ge(z,8) (corresponding to the

conventional transmission scheme) versus delay index ! and Doppler shift 6.
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Fig. 4. Comparison of the composite ambiguity functions G(z,8) and Ge(z,0) at Doppler shifts (a) # = 0.025 rad, (b)
€ = 0.05 rad, and (c) # = 0.075 rad.
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B. Fully Polarimetric Radar System

We now consider the matrix-valued composite ambiguity function G(z,6) in (44), corresponding to
the fully polarimetric radar system described in Section IV. Following Theorems 2 and 3, we coordinate
the transmission of eight Golay pairs (g, 1), ..., (214, Z15) across vertical and horizontal polarizations
and over N = 16 PRISs, so that in the Taylor expansions of G1(z,6) (the diagonal element of G(z,6))
and Gz(z,0) (the off-diagonal element of G(z,6)) the coefficients C(z), Ca(z), and C3(z) vanish at
all nonzero delays and B1(z), B2(z), and B3(z) vanish at all delays. Letting Xo(z) and X;(z) be the
Alamouti matrices in (57), then it is easy to check that the Golay pairs in the following waveform matrix

X (z) satisfy all the conditions of Theorems 2 and 3:

X(2) = (Xo(2) Xi(e) Xile) Xo(2) Xa(2) Xo(2) Xo(2) Xi(2))- 65)

Remark 6: Representing Xo(z) and X;(z) by 0 and 1 respectively, we notice that the placements of
Xo(z) and X;(2) in X(z) are determined by the length-8 PTM sequence.

We compare the Doppler resilient transmission scheme in (65) with a conventional transmission scheme,
where the Alamouti waveform matrix built from a single Golay pair (z9 = z, 27 = y) is repeated and

the waveform matrix is of the form

Xo(z) = (Xo() Xo(z) Xol(z) Xo(z) Xo(2) Xo(2) Xo(z) Xo())- (66)

The matrix-valued composite ambiguity function of X.(z) is given by

Gel(56) = XD O (2) = | T2 G50} )
Gea(2,0) Ge(z,0)
where
Gei(2,6) = [ Xo(2)|* + e X1(2)[* + ... + N =2 X0 (2)||2 + /N1 X, (2) |2 (68)
and
Gea(2,0) = (1 — €90 + ... + I IN-20 _ oI(N-1)0) X () X (2). (69)

The Golay pair (z,y) used in building both X(2) and X.(z) is the length-8 Golay pair in (64).

We notice that the diagonal elements of G(z,0) and G¢(z,0), i.e., Gi(z,0) and G (z,8), are equal
to the single channel composite ambiguity functions G(z,6) and G.(z,6), respectively. Therefore, the
plots in Fig. 2 through Fig. 4 also apply for comparing G1(z, ) and G (z,6). Thus in this example, we
only need to consider the off-diagonal elements of G(z,0) and G.(z,8), i.e., G2(z,0) and G2(z,6).
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Referring to the Taylor expansion of G2(z,6) in (47), the coefficients B;(z), Ba(z), and Bs3(z) are
each two-sided polynomials of degree L —1 = 7 in z~! of the form (49). Figures 5(a)-(c) show the plots
of the magnitudes of the coefficients by,;, m = 1,2,3 of these polynomials versus delay index I. We
notice that B;(z), Ba(z), and Bs(z) indeed vanish at all delays.

Figures 6(a),(b) show the plots of the off-diagonal elements Ga(2,0) and G(z,0) versus delay index
! and Doppler shift §. Comparison of G3(z,8) and G.2(z,8) at Doppler shifts § = 0.025 rad, § = 0.05
rad, and 6 = 0.075 rad is provided in Figs. 7(a)-(c), where the solid lines correspond to G2(z, ) (Doppler
resilient scheme) and the dashed lines correspond to G.2(z,6) (conventional scheme). We notice that the
peaks of the range sidelobes of Ga(z,6) are at least 24 dB (for § = 0.025 rad), 12 dB (for § = 0.05 rad),
and 5 dB (for & = 0.075 rad) smaller than those of Gca(z, ). These plots together with the plots in Figs.
4(a)-(c) (corresponding to the diagonal elements of G(z,60) and G.(z,8)) show the Doppler resilience

of the waveform matrix in (65).
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Fig. 5. The plots of the magnitudes of the coefficients bmm,; of two-sided polynomials By (2) = %Y.  bmuz t,m=1,2,3
I=—(L~—1)
versus delay index I: (a) |bi,i], (b) |b2,|, and (c) b,

VI. CONCLUSIONS

We have constructed a Doppler resilient sequence of Golay complementary waveforms with perfect
autocorrelation at small Doppler shifts, and extended our results to the design of Doppler resilient
Alamouti waveform matrices of Golay pairs for instantaneous radar polarimetry. The main contribution
is a method for selecting Golay complementary sequences to force the low-order terms of the Taylor
expansion of a composite ambiguity function (or Doppler modulated autocorrelation sum) to zero. The
Prouhet-Thue-Morse sequence was found to be the key to selecting the Doppler resilient Golay pairs.
Numerical examples were presented, demonstrating the perfect correlation properties of Doppler resilient

Golay pairs at small Doppler shifts.
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Fig. 6. (a) The plot of the off-diagonal element G2(z,8) (corresponding to the Doppler resilient transmission scheme)
versus delay index [ and Doppler shift 8, (b) the plot of the off-diagonal element G.2(z, #) (corresponding to the conventional

transmission scheme) versus delay index [ and Doppler shift 6.
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Fig. 7. Comparison of the off-diagonal elements Gz(z,6) and Gez(z,0) of the matrix-valued ambiguity functions for the
conventional and Doppler resilient schemes at Doppler shifts (a) # = 0.025 rad, (b) ¢ = 0.05 rad, and (c) § = 0.075 rad.
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