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ABSTRACT 

In signal analysis, the joint estimation of the time-scale parame- 
ters which can affect a known signal (Doppler effect or scale ef- 
fect, delay.. . ) may be a problem of interest. An important result 
has shown that, even if the quality of the time delay estimation is 
classically given by the inverse spread of the signal spectral den- 
sity, the quality of the scale estimation only depends on the inverse 
of the signal spread in Mellin space. This spread has a direct in- 
terpretation in the time-frequency plane and can be precisely es- 
timated when duration, bandwidth and relative bandwidth of the 
signal are known. We propose here to develop two methods of 
optimum signal synthesis which minimize the variance of the esti- 
mates given by the Cramer-Rao lower bounds. The first method is 
based on the stationary phase principle, applied on frequency and 
Mellin spaces, which allows to construct signals with given auto- 
correlation functions in scale and time spaces. The second method 
is devoted to the construction of a frequency phase law depending 
on the mellin variable with the spreads in frequency and Mellin 
spaces related to the expected scale and time-delay resolutions. 

1. FORMULATION OF THE PROBLEM 

We are dealing with the problem of the joint estimation of the time- 
scale parameters of a known signal embedded in gaussian white 
noise. This is, for example, the case encountered in broad-band 
radar or sonar theory, when looking for parameters such as the ve- 
locity (related to scale parameter) or the position (related to time- 
shift parameter) of a target. In this case, the questions we are trying 
to answer are : which is the best signal to use for minimizing the 
variances of the estimates ? Can we develop synthesis methods 
which allow to construct such a signal ? The answer to the first 
question has already been developed in [6] and is briefly recalled 
here in order to develop the synthesis. 

Let z ( t )  be the transmitted and analytic signal. Its Fourier 
transform Z( f )  has therefore no negative frequency. The general 
transformation z ( t )  of the signal z ( t )  can be expressed as : 

z( t ,  60)  = AoTeoz(t) ei40 + b( t )  (1) 

where Too is a time-scale action of the affine group which trans- 
forms the signal z ( t )  with a set 80 = (ao, bo) of unknown param- 
eters (time scale a0 and time shift bo). The parameter A0 is the 
amplitude, 40 a phase change and b( t )  a zero-mean white gaus- 
sian noise with a2 variance. When the probability density of the 
parameters A0 and 60 is unknown, the Maximum Likelihood ratio 
A to maximize, according to the Maximum Likelihood estimation 

theory, is given by the square modulus of the broad-band cross- 
ambiguity function : 

The efficiency of an estimate 60 is generally measured by its 
variance var(60). For an unbiased estimate (E(&) = eo), this 
variance has a lower value given by the Cramer Rao Bounds (CRB) 
[8]. The CRB are obtained by inverting the Fisher Information 
Matrix (FIM) defined as : 

(3) 

where 6i denotes each component of the vector 6. The time-scaled 
and time shifted signal ~ ( t )  can be put in the form : 

c(t)  = AO z(aolt - bo) eibo + b ( t )  (4) 
The statistic to maximize is given by the square modulus of 

the broad-band cross-ambiguity function which is rewritten in the 
frequency domain : 

+m 

A = 11 X(f) Z*(af) eaixabf 41' (5) 

where the parameters a and b represent the scale factor and the 
time shift parameters to estimate. In the next section and using the 
Mellin transform [2, 51, the FIM computation is easily performed 
and leads to a perfect physical interpretation of its coefficients in 
the time-frequency half plane. 

2. TIME SCALE ESTIMATION 

2.1. The Mellin Transform 

The Mellin transform which plays an important part in the com- 
putation and the physical interpretation of the FIM's coefficients 
have been well defined in [2] and acts on the analytic signal Z( f )  
in frequency by : 

M<[Z](@)  = I'" Z( f )  e2inCf f PiaP+r df (6) 

This transform can be interpreted as the coefficient of the de- 
composition of the signal onto a hyperbolic signals basis with a 
group delay law given in the time-frequency half plane by the 
equation t = 5 + /?/ f with the invariant scalar product given by : 
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which is useful when rewriting (5) : 

/ 
frequency 

Figure 1: Localization in the time-frequency half plane of a signal Z(f) 
having a time-frequency energy distribution Po(t, f). The two hyperbolas 
defined by equations t = 6 + P I /  f and t = 6 + P 2 /  f delimit the support 
[PI, a21 of its Mellin transform. 

+" 
~+"Z1(f)Z;cr,f2..'df = J_, M'[ZlI(P)M'*[Z?l(P)dP 

(7) 
The dual Mellin variable /3 therefore characterizes the coeffi- 

cient of an hyperbola in the time-frequency half plane. The pa- 
rameter T is free but is chosen here equal to -1/2 to preserve the 
classical scalar product. The study of the tomographic construc- 
tion of the unitary affine time-frequency distribution Po(t, f) [ 11 
has shown that a signal localized in the time-frequency half plane 
has a Mellin transform suppoit bounded in Mellin space (cf. fig- 
ure 1). The connection between the PO distribution : 

+CO 

w, f) = f J__(X(u)X(u))'/2 z (X(u)f) 

2' (A(-u)f) e--2i.rrftu du (8) 

where X(u) = uexp (-u/2)/2sinh ( 4 2 )  and the Mellin trans- 
form is nothing but a hyperbolic Radon transform : 

Using an a priori knowledge of the localization of the signal in 
the time-frequency half plane (bandwidth, relative bandwidth, du- 
ration), it is now possible to perfectly determine the spread aa = 
p 2  - p1 of the signal in the Mellin space (cf. figure 1). In the fol- 
lowing, the 6 parameter will be chosen equal to zero and the trans- 
form will be noted M [ Z ] ( P ) .  The main property of the Mellin 
transform is the property of scale invariance : 

with Zb(f) = Z ( f )  exp ( 2 i d f ) .  Another important property of 
the Mellin transform, useful for computation of the FIM coeffi- 
cients, is the diagonalization of the operator U defined by : 

which is transformed as M[BZ](P) = P M [ Z ] ( p ) .  

2.2. The Fisher Information Matrix 

The Fisher Information Matrix has the following form [6] : 

where the parameters uf, fo and A i / a 2  define respectively the 
spectrum bandwidth, the mean frequency of the signal, the ratio 
is the Signal-to-Noise Ratio and where the parameters PO, o p  are 
given by : 

Po = /'" P IM[ZI(P)l2 dP (14) 
--m 

4 = - P o l 2  I ~ [ ~ I ( P ) l 2  dP (15) 

The first and second order moments can be viewed respec- 
tively as the mean ,B and the spread of the signal Z in Mellin 
space. Cohen has called them respectively the mean scale and 
the scale bandwidth [3]. Suppose the spectrum be in the form 
Z(f) = A ( f )  exp (iq5(f)). Using the B operator defined in (12), 
the two quantities (14) and (15) can be transformed in the fre- 
quency domain : 

(16) 

The two previous equations show that, in the frequency or time 
domains, the physical interpretation of such quantities is very dif- 
ficult and this is for example the main problem encountered in an 
interesting paper [4] which deals with a similar subject. The geo- 
metrical help of the Mellin transform allows to easily understand 
the quantities 14 and 15. 

By analogy with the narrow-band modulation index, the pa- 
rameter M defined in (13) is called the broad-band modulation 
index and represents the rate of hyperbolic modulation. It has the 
expression : 
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Figure 2: Localization in the time-frequency half plane of a hyperbolic 
signal Z(f)  labeled by its parameter Po and its Mellin transform. Any 
pair of hyperbolas with equation t = 5 + Pl/f and t = + /32/ f (with 
P1 < 00 < P2) can delimit the signal. Such a signal, although it has a 
infinite duration, has a zero-spread in Mellin space and therefore no scale 
resolution. 

To estimate the quality of the compression and delay param- 
eters, the FIM must be inverted. Each term of the inverse matrix 
J-' gives the variance lower bound of each estimate. As the esti- 
mates are unbiased and efficient (high SNR), the CRB are reached 
and the variance of the time delay estimate & and the scale estimate 
6 are defined by : 

The first result (20) shows that the time delay resolution is al- 
ways related to the inverse of the signal spread in frequency. The 
result (21) is very important because it proves that the scale resolu- 
tion depends only on the inverse of the signal spread in the Mellin 
space. As an example, let us consider the so-called Doppler invari- 
ant signals as hyperbolic signals (cf. figure 2) which are charac- 
terized by a no spread in Mellin space (up = 0) : this kind of sig- 
nals does not lead to a good scale resolution. The figure 3 shows, 
unlike the previous figure, there is no contradiction between very 
short time duration and high scale resolution. 

3. OPTIMAL SIGNALS SYNTHESIS 

The first method minimizing the Cramer-Rao lower bounds is de- 
voted to the construction of optimal signals with given autocorre- 
lation functions in scale and delay spaces with control of the side- 
lobes. The second one determines a phase law which allows the 
signal to reach the desired spreads and resolutions in the Mellin 
and frequency spaces. 

3.1. The Stationary Phase Method 

The Stationary Phase Principle method already used for design- 
ing high time bandwidth product signals [7] is applied here but is 

I ,  
I !  

'\+. . . 

I 

Figure 3: Localization in the time-frequency half plane of a sholt signal 
centered around t = to with a bandwidth B = f2 - f1 aound fo = 
(I1 +f2)/2 and its Mellin transform. Such a signal, although of very short 
duration, has a spread op = (f2 - f1)to in Mellin space and therefore a 
finite scale resolution. 

extended to the Mellin and frequency spaces. The main idea is 
to construct high ofbp product signals (asymptotic signals) in the 
same way. The inverse Mellin transform is defined by : 

Z(f) = e-2irref f-1'2 1: M c [ Z ] ( p )  f-'a*' dp (22) 

Following the stationary phase principle method and applying 
it on (22), we have up to a constant phase : 

where we note M < [ Z ] ( P )  = l M t [ Z ] ( p ) \  exp ( i+(p))  and where 
X is the stationary point defined by the following equation : 

(24) 
d 

dB 
- M P )  - 2nPlog f l+x = 0 

We found that the set of points ( p ,  F ( P ) )  for which the phase 
is stationary is defined by a relation which will be independently 
fixed in the second method of construction : 

If we note q5r-1 the reciprocal function of 4', the stationary 
point X verifying (24) is defined by X = 4'-' (2w log f) .  The 
spectrum phase law has therefore the form *(f) = -2nEf + 
+(A) - 27rX log f and is thus defined by its group delay : 

X 
= E + 7 

Acting on the shape of lZ(f)l and IMc[Z](/?)I by judiciously 
choosing the time-shift autocorrelation function R(b) and scale au- 
tocorrelation function S(a) defined according to : 

(27) 
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pE[Z](P)12 = /'" S(a)a-2i=P-l da (28) 

we thus define the phase law +(A) given by the differential equa- 
tion : 

0 

1 
27T 

Choosing $(A) = -+'(A) = log f, the last equation can be 
integrated with respect to A and leads to : 

exptl(X) 1 lZ(f)l2 df = /* IME[Zl(B)12 dP (30) 

By fixing a given A, it is now possible by (30) to find $(A) and 

- W  

to determine the phase law +(P) by : 

P 
+(PI = 27r s_, $(U)  du (31) 

As an example, let us consider the problem of signal synthe- 
sis having an unit amplitude over a chosen bounds in frequency 
and Mellin spaces (the autocorrelation functions have thus both a 
sin x/x shape). The differential equation (29) to solve takes the 
following form : 

which, when A and B are constants fixed by initial conditions, 
gives the Mellin phase : 

3.2. Phase Law Construction 

Consider a monochromatic and analytic signal given by its equa- 
tion Z ( f )  = S(f - fo). This signal has a Mellin transform given 
by M 5 [ 2 ] ( P )  = fiinP-1/2 eZire fo .  We can therefore perfectly 
determine the frequency law of the signal Z(f) as the function of 
the Mellin variable : 

(34) 

where $(p) is the phase of the Mellin transform of 2. Extend- 
ing this relation, we obtain, independently of the first method, the 
expression of the frequency in terms of the p variable : 

(35) 

Given a frequency law F(P)  in Mellin space, we can obtain 
by solving (35) the derivative of the Mellin phase and finally the 
expression of the signal in Mellin space Me[Z](,B) = As 
an example, consider a linear phase law F ( P )  = A,B + B where 
A and B are parameters which control the frequency spread and 
the Mellin spread. Solving the differential equation (35), we found 
the Mellin phase already given by (33) : 

$(B) = 2 [(AB + B )  log (AB + B )  - (AB + B ) ]  + C (36) 

Using the inverse Mellin transform of the signal exp (+(p)), 
we can obtain the spectrum Z( f ) .  If the signal is supposed asymp- 
totic (high a f a ~  product), we can apply the previous result given 
by the stationary phase method and deduce by (26) the hyperbolic 
group delay of the spectrum Z( f )  : 

F-'(f) f - B  T ( f )  = E + - = 6 + - f A f  
(37) 

This procedure is the analogous construction of a signal from 
time to frequency space using the definition of the instantaneous 
frequency. It only ensures that the signal will have, at one and the 
same time, a given bandwidth of and a given spread ag in Mellin 
space but does not ensure, unlike the first method, the sidelobes 
quality of the two autocorrelation functions in range and velocity 
spaces. 

4. CONCLUSION 

The analytical expression of the Cramer Rao bounds for the joint 
time-scale estimation has been established using the Mellin trans- 
form. An important result concerns the scale resolution which is 
related to the inverse of the spread of the signal in Mellin space. 
This spread has a direct geometrical interpretation in the time- 
frequency half plane and can be easily estimated when duration, 
bandwidth and relative bandwidth are known. Thanks to this inter- 
pretation, two interesting procedures have been proposed to con- 
struct optimal broad-band signals which minimize the Cramer-Rao 
lower bounds. These methods can be of interest for example for 
designing powerful radar or sonar broad-band waveforms. 
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