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ABSTRACT 

We present explicit expressions of the Cramer Rao 
Bounds (CRB) for estimating the velocity and the radial 
position of a target illuminated by a signal which does not 
satisfy Woodward's conditions (small relative bandwidth 
and reasonable time-bandwidth product). Classically, the 
variances lower bounds of estimates are obtained by invert- 
ing the Fisher Information Matrix (FIM) built according to  
the classical Maximum Likelihood (ML) estimation theory. 
The direct application of this procedure t o  broad-band sit- 
uations has so far not been performed for technical raisons. 
We show that the use of the Mellin Transform allows a 
simple computation of the FIM and leads to  a clear inter- 
pretation of its elements in the time-frequency plane. 

1. INTRODUCTION 

In radar or sonar, estimating the parameters such as the 
velocity or the position of a target is often a delicate prob- 
lem. Consider an analytic signal z ( t )  emitted on a moving 
target. The  received signal is 

z ( t ,  8) = AoTez(t) e'" + b ( t )  (1) 

where Te is a transformation acting on the signal ~ ( t )  with 
a vector 6' of unknown parameters (delay, Doppler shift, 
Doppler compression, etc..), where A0 is the amplitude, q5 
a phase change and b(t) a zero-mean white gaussian noise 
with u2 variance. When the probability density of the pa- 
rameters A0 and 4 is unknown, the ML ratio A to maximize, 
according to  the Maximum Likelihood estimation theory, is 
given by the square modulus of the cross-ambiguity func- 
tion: 

1.1 The Narrow-Band Case 
Under Woodward's conditions [2], the Doppler effect can 

be approximated by a shift in frequency of the signal z(t). 
Hence, the received signal z ( t ,  e) can be put in the form: 

z( t ,O)  = A0 z ( t  - r )  eZiaut ei4 + b ( t )  (4) 
where U = Pvfo/c  is the Doppler shift and r the delay 
(radial position c r / 2 ,  c propagation velocity, fo center fre- 
quency). In this case the FIM ( 3 )  can be easily calculated 
and leads to 

where the first order moments fo and t o  represent the mean 
frequency and the mean epoch, where the second order mo- 
ments uj and bt represent the bandwidth and the duration 
of the signal. The  parameter m is the modulation index 
of the signal. Each lower bound of the variance of esti- 
mates are obtained by inverting the matrix (5). These well 
known results prove that  the best signal in radar (good 
range and velocity resolutions) is characterized by a high 
time-bandwidth product. 

1.2 The Broad-Band Case 
In that case, the problem of estimating a velocity does 

not consist in estimating a Doppler shift but a Doppler 
compression factor. Thus, the echo z ( t )  can be put in the 
form: 

~ ( t )  = z(a,'t - b o )  e'+' + b ( t )  ( 6 )  
The statistic to maximize is given by the square mod- 

ulus of the broad-band cross-ambiguity function which is 
rewritten in the frequency domain: 

t o o  

1 I J : _ " 4 w ~ ; o z ( t ) d t  A = & 11 X ( f )  Z ' ( a f )  eZiaabf 

where the parameters a = ( c  + v)/(c - U) and b represent 
the Doppler compression and the delay parameters to es- 
timate. The direct calculation of the FIM (3) by classical 
methods is not very easy and does not lead to a simple 
interpretation as in the narrow-band case (5). In the next 
section and using the Mellin transform [3, 41 already used in 
Broad-Band signal analysis (Affine Time-Frequency Distri- 
butions [5], Wavelet Transform [6], Broad-Band Ambiguity 
Functions [i']), the FIM computation is, on the one hand, 
easily performed and leads, on the other hand, to a physical 
interpretation of its coefficients. 

A(6',6'0) = - 
2 6 2  J-'," ITeoz(t)12 d t  

The efficiency of a? estimator 6 is generally measured by 
its variance Var(6 '  - 6') .  For an unbiased estimator (E(6') = 
e), this variance has a lower value given by the CRB [l]. 
The CRB are obtained by inverting the FIM defined as: 

J ' J  = ( - E  [ -1) ' , J  
( 3 )  

where 8, denotes each component of the vector 0. 
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2. THE FISHER I N F O R M A T I O N  M A T R I X  I N  
B R O A D - B A N D  CASE 

2.1 The Mell in  Transform 
The Mellin transform which plays an important role 

in the computation and the physical interpretation of the 
FIM’s coefficients has been well defined in [3] and acts on 
the analytic signal Z(f) in frequency by: 

M‘[Z](P) = It- Z(f) e”xCf f2ixB+r df (8) 

This transform can be interpreted as the coefficient of the 
decomposition of the signal onto a hyperbolic signals basis 
with a group delay law given by the equation t = E + P/  f 
with the invariant scalar product given by: 

0 

t m  ltm Z~(f)Z,’(f)f’“’df = J_, MCIZ1 I(P)MC* [Z’l(P)dP 

(9) 
The dual Mellin variable /3 therefore characterizes the co- 

efficient of an hyperbola in the time-frequency half plane. 
The parameter 7 is free but is chosen here equal to -112 to 
preserve the classical scalar product. In the following, the 
E parameter will be equal to zero (signal centered around 
the mean epoch = 0) and the transform will be noted 
M[Z](P). Using an a priori knowledge of the localization of 
the signal in the time-frequency half plane (bandwidth, rel- 
ative bandwidth, duration), it is now possible to perfectly 
determine the spread of the signal in the Mellin space. 

The main property of the Mellin transform is the prop- 
erty of scale invariance: 

Z ( f )  - 2” = J;;Z(af) 
1 1 

M[Z](P) 4 M [ Z ’ ] ( P )  = a-’i“%4[z](p) (10) 

which is useful when rewriting (7): 

1 +- A = -  
2uZ IL 

with Zb(f) = Z(f )  exp(2inbf). Another important p r o p  
erty of the Mellin transform, useful for computation of the 
FIM coefficients, is the diagonalization of the operator B 
defined by 

(12) 

which is transformed as M[BZ](B) = PM[Z](P) 

2.2 Broad-Band  Expression of the F i she r  Infor- 
ma t ion  M a t r i x  

Proposi t ion:  The Fisher Information Matrix has the 
form [4] : 

where the parameters uf and fo define the bandwidth and 
the mean frequency of the signal and where the parameters 
P o ,  up are given by : 

t- 
Po = J _ ,  P IM[Zl(P)I’ dP 

U; = 1, ( P  - Po)’ Iwzl(P)I’ dP 

(14) 

(15) 
t o o  

The first and second order moments can be viewed re- 
spectively as  the mean p and the spread of the signal Z in 
Mellin space. The broad-band modulation index M defined 
bY 

plays the same role for the hyperbolic signals as the narrow- 
band modulation index m for the ’chirp’ signals. Finally, 
the ratio Ao/a is the Signal-to-Noise Ratio. 

To estimate the quality of the compression and delay pa- 
rameters, the FIM must be inverted. Each term of the in- 
verse matrix J - l  gives the variance lower ‘bound of each es- 
timator. As the estimators are unbiased and efficient (high 
SNR and measures), the CRB are reached and we obtain 
the following important new results: 

- The variance of the delay estimator b is given by: 

U2 4 E [ ( b - b ) ’ ]  = -- 
4nZA; .;U; - (A4 - Pofo)’ 
6’ 1 2 -- 

4r2A$ uzf 

This first result (17) shows that the delay (or range) res- 
olution is always related to the inverse of the signal spread 
in frequency as in the narrow-band case. 

- The variance of the compression estimator d is given 
by : 

U’ Uzf 
E[(a-&)’] = -- 

4*’A% U;U$ - (M - Pofo)’ 

- The variance of the velocity estimator is given by: 

C’ E [(v -e,’] = --E [(U -a,’] 
4 

These two results (18) and (19) are very important be- 
cause they prove that the compression (or velocity) reso- 
lution depends only on the inverse of the signal spread in 
the Mellin space instead of the signal duration as in the 
narrow-band case. 
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- The covariance of the cross-estimators is given by: 

(20) 
U’ M - Pofo E [ (a  - i ) ( b  - 6 ) ]  = - 

4x’A; - ( M  - flofo)’ 

Under Woodward’s assumptions (narrow-band case, 
u/c < I), the hyperbolas which delimit the signal in the 
time-frequency half plane, may be remplaced by straight 
lines parallel to the frequency axis. In that case, the param- 
eter P ,  PO,  u p ,  M and a = ( c + v ) / ( c - v )  can be respectively 
approximated by f o t ,  foto, fout, fom and 1 + 2v/c. Sub- 
stituting these approximations in (18) and (19), we obtain 
the classical narrow-band results: 

2.2 Proof of the Proposition 
The main idea for FIM derivation is to compute the FIM 

coefficients from the statistics A (11) rewritten in Mellin 
space rather than a direct computation. To simplify the 
demonstration, all the partial derivatives of the statistic A 
with respect to parameters a and b will be evaluated at the 
point O(a = a0 = 1 ,  b = bo = 0). 

If we note A(a, b ) ,  the classical cross-ambiguity function 
rewritten in Mellin space: 

+ W  

A(a, b )  = 1, WXI(P) M’[Zbl(P) aZirrp dP (22) 

all the partial derivatives of A with respect to parameters 
a and b and evaluated at the point O(a  = 1, b = O), when 
using the property of unitarity of the Mellin transform (9), 

+ w  
-- a2A - 2i* Iw P(2i.P - 1) M [ X ] ( P )  M * [ Z ] ( P )  d p  
aa2 

r + w  

+ W  a2A 
- a b z  = - 4 ~ ’  1 f 2  x(f) Z*(f) df (28) 

The first coefficient Jl1 of the FIM takes the form: 

Using relations (23) and (24), Jl1 becomes: 

+ m  +CO 

~11= - $ ~ e  J 1, E[M[XI(P~)M*[XI(P~)I 
-05 

X [2i*P1(2ixP1 - 1) + 4SZ@iP2] dP1 dP2 (30) 
The noise b ( t )  is a zero mean white gaussian noise. If we 

note C(P1 - P 2 )  the covariance of the Mellin transform of 
X ,  it is easy to show that: 

c(P1 - P z )  = E[M[X](PI)M*[X](P~)] (31) 

(32) = A i  M[Z](PI)M’[Z](PZ) + U’ 6(P1 - P 2 )  

while the covariance C(f1 - f z )  of the Fourier transform of 
the signal is given by: 

C(f1 - f 2 )  = E[X(fi)X*(fz)l (33) 
= A; Z(f1) Z*(fz) + u2 6(fi - f 2 )  (34) 

When substituting the relation (32) in (30), we obtain 
the expression of the J l l  coefficient: 

The computation of the Jzz coefficient of the FIM is easily 
performed by: 

and, using relations (26) and (28), leads to: 

X Z*(fi) Z(fz) (fi” - fif2) dfi df2 (38) 

Substituting in (38) the covariance given by (34), we ob- 
tain the JZZ coefficient proposed in (13). 

Finally, the last symmetrical coefficient J12 or JZI com- 
putation is given by: 
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which, using relations (23), (26) and (27), leads to: 

+a) +CO 

J12 = -5 Re 1_ 1, ( P I  - P z )  C(P1 - P z )  

x M ' [ f Z ( f ) I ( P l )  M[ZI(PZ)dPldP2 (40 )  

Substituting in (40 )  the covariance given in (32), the re- 
lation (40 )  becomes: 

+m 

x 1, l j z  lMt~l(P2)1' 4% (41) 

This last expression can be easily transformed in the 
frequency domain using the unitarity property (9) of the 
Mellin transform and using the operator B defined by equa- 
tion (12). Hence, J12 is rewritten as: 

J12 = -- 47r2t02 U [ R e L i i D B Z ( f )  f Z ' ( f ) d f  

dZ - - -- ":ti R e L + - i f z  v Z ' ( f ) d f  

47r2Ai + -  Po fo 
6 2  

With the definition of the broad-band modulation index 
M defined by (16), the coefficient J12 is finally derived. 

3. C O N S T R U C T I O N  OF O P T I M A L  S I G N A L  

Consider a monochromatic and analytic signal given by 
its equation Z ( f )  = 6(f - f o ) .  This signal has a Mellin 
transform given by MC[Z] (P)  = ft irp+r exp (2i7rEfo). We 
can therefore perfectly determine the frequency law of the 
signal Z(f) as the function of the Mellin variable: 

(43 )  

where $(a) is the phase of the Mellin transform of Z .  Ex- 
tending this relation, we obtain the expression of the fie- 
quency in terms of the P variable: 

(44 )  

Given a frequency law, we can obtain the derivative of 
the Mellin phase and hence the expression of the signal in 
Mellin space M ' [ Z ] ( P )  = exp (id(/?)). This procedure is the 
analogous construction of a signal from time to frequency 

(and frequency to time) space using the definition of the 
instantaneous frequency (and the group delay). It only en- 
sures that the signal will have, a t  one and the same time, 
a given bandwidth and spread in Mellin space but does not 
ensure the quality of the two autocorrelation functions in 
range and velocity spaces. For doing that,  an interessant 
way is t o  extend the method of the stationary phase pro- 
posed in [8] on the relation (8) which allows to find a signal 
with given autocorrelation functions. 

4. C O N C L U S I O N  

The analytical expression of the Cramer Rao bounds for 
velocity estimation in the broad-band case has been estab- 
lished using t.he Mellin transform. The most impressive 
result concerns the velocity resolution of active radar (and 
particularly sonar) which is not related to the inverse of the 
signal duration as in narrow-band case but to the inverse 
of the spread of the signal in Mellin space. This spread 
has a direct interpretation in the time-frequency half plane 
and can be easily estimated when duration, bandwidth and 
relative bandwidth are known. A interesting procedure to 
construct a signal with a given frequency law as a function 
of the Mellin variable has been proposed. 
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