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Abstract

Stochastic waveforms are constructed whose expected autocorrelation
can be made arbitrarily small outside the origin. These waveforms are
unimodular and complex-valued. Waveforms with such spike like auto-
correlation are desirable in waveform design and are particularly useful in
areas of radar and communications. Both discrete and continuous wave-
forms with low expected autocorrelation are constructed. Further, in the
discrete case, frames for Cd are constructed from these waveforms and the
frame properties of such frames are studied.
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1 Introduction

1.1 Motivation

Designing unimodular waveforms with an impulse-like autocorrelation is cen-
tral in the general area of waveform design, and it is particularly relevant in
several applications in the areas of radar and communications. In the former,
the waveforms can play a role in effective target recognition, e.g., [1], [2], [3],
[4], [5], [6], [7], [8]; and in the latter they are used to address synchronization
issues in cellular (phone) access technologies, especially code division multiple
access (CDMA), e.g., [9], [10]. The radar and communications methods com-
bine in recent advanced multifunction RF systems (AMRFS). In radar there
are two main reasons that the waveforms should be unimodular, that is, have
constant amplitude. First, a transmitter can operate at peak power if the signal
has constant peak amplitude - the system does not have to deal with the sur-
prise of greater than expected amplitudes. Second, amplitude variations during
transmission due to additive noise can be theoretically eliminated. The zero
autocorrelation property ensures minimum interference between signals sharing
the same channel.

*This work was supported by AFOSR Grant No. FA9550-10-1-0441
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Constructing unimodular waveforms with zero autocorrelation can be re-
lated to fundamental questions in harmonic analysis as follows. Let R be the
real numbers, Z the integers, C the complex numbers, and set T = R/Z. The
aperiodic autocorrelation AX : Z → C of a waveform X : Z → C is defined as

∀k ∈ Z, AX [k] = lim
N→∞

1

2N + 1

N∑
m=−N

X[k +m]X[m]. (1)

A general problem is to characterize the family of positive bounded Radon mea-
sures F, whose inverse Fourier transforms are the autocorrelations of bounded
waveformsX. A special case is when F ≡ 1 on T andX is unimodular on Z. This
is the same as when the autocorrelation of X vanishes except at 0, where it takes
the value 1. In this case X is said to have perfect autocorrelation. An extensive
discussion on the construction of different classes of deterministic waveforms
with perfect autocorrelation can be found in [11]. Instead of aperiodic wave-
forms that are defined on Z, in some applications, it might be useful to construct
periodic waveforms with similar vanishing properties of the autocorrelation func-
tion. Let n ≥ 1 be an integer and Zn be the finite group {0, 1, . . . , n− 1} with
addition modulo n. The periodic autocorrelation AX : Zn → C of a waveform
X : Zn → C is defined as

∀k = 0, 1, . . . , n− 1, AX [k] =
1

n

n−1∑
m=0

X[m+ k]X[m]. (2)

It is said that X : Zn → C is a constant amplitude zero autocorrelation
(CAZAC) waveform if each |X[k]| = 1 and

∀k = 1, . . . , n− 1, AX [k] =
1

n

n−1∑
m=0

X[m+ k]X[m] = 0.

The literature on CAZACs is overwhelming. A good reference on this topic is [3],
among many others. Literature on the general area of waveform design include
[12], [13], [14]. Comparison between periodic and aperiodic autocorrelation can
be found in [15].

Here the focus is on the construction of stochastic aperiodic waveforms.
Henceforth, the reference to waveforms shall imply aperiodic waveforms unless
stated otherwise. These waveforms are stochastic in nature and are constructed
from certain random variables. Due to the stochastic nature of the construction,
the expected value of the corresponding autocorrelation function is analyzed. It
is desired that everywhere away from zero, the expectation of the autocorrela-
tion can be made arbitrarily small. Such waveforms will be said to have almost
perfect autocorrelation and will be called zero autocorrelation stochastic wave-
forms. First discrete waveforms, X : Z → C, are constructed such that X has
almost perfect autocorrelation and for all n ∈ Z, |X[n]| = 1. This approach is
extended to the construction of continuous waveforms, x : R → C, with similar
spike like behavior of the expected autocorrelation and |x(t)| = 1 for all t ∈ R.
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Thus, these waveforms are unimodular. The stochastic and non-repetitive na-
ture of these waveforms means that they cannot be easily intercepted or detected
by an adversary. Previous work on the use of stochastic waveforms in radar can
be found in [16], [17], [18] where the waveforms are only real-valued and not
unimodular. In comparison, the waveforms constructed here are complex val-
ued and unimodular. In addition, frame properties of frames constructed from
these stochastic waveforms are discussed. This is motivated by the fact that
frames have become a standard tool in signal processing. Previously, a mathe-
matical characterization of CAZACs in terms of finite unit-normed tight frames
(FUNTFs) has been done in [2].

1.2 Notation and mathematical background

Let X be a random variable with probability density function f. Assuming X
to be absolutely continuous, the expectation of X, denoted by E(X), is

E(X) =

∫
R
xf(x) dx.

The Gaussian random variable has probability density function given by f(x) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )2 . The mean or expectation of this random variable is µ and the

variance, V (X), is σ2. In this case it is also said that X follows a normal dis-
tribution and is written as X ∼ N(µ, σ2). The characteristic function of X
at t, E(eitX), is denoted by ϕX(t). For further properties of expectation and
characteristic function of a random variable the reader is referred to [19].

Let H be a Hilbert space and let V = {vk, k ∈ K}, where K is some index
set, be a collection of vectors in H. Then V is said to be a frame for H if there
exist constants A and B, 0 < A ≤ B <∞, such that for any v ∈ H

A∥v∥2 ≤
∑
k∈K

|⟨v, vk⟩|2 ≤ B∥v∥2.

The constants A and B are called the frame bounds. Thus a frame can be
thought of as a redundant basis. In fact, for a finite dimensional vector space,
a frame is the same as a spanning set. If A = B, the frame is said to be tight.
Orthonormal bases are special cases of tight frames and for these, A = B = 1.

If V is a frame for H then the map F : H → ℓ2(K) given by F (v) = {⟨v, vk⟩ :
k ∈ K} is called the analysis operator. The synthesis operator is the adjoint
map F ∗ : ℓ2(K) → H, given by

F ∗({ak}) =
∑
k∈K

akvk.

The frame operator F : H → H is given by F = F ∗F. For a tight frame, the
frame operator is just a constant multiple of the identity, i.e., F = AI, where
I is the identity map. Every v ∈ H can be represented as

v =
∑
k∈K

⟨v,F−1vk⟩vk =
∑
k∈K

⟨v, vk⟩F−1vk.
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Here {F−1vk} is also a frame and is called the dual frame. For a tight frame,
F−1 is just 1

AF . Tight frames are thus highly desirable since they offer a com-
putationally simple reconstruction formula that does not involve inverting the
frame operator. The minimum and maximum eigenvalues of F are the optimal
lower and upper frame bounds respectively [20]. Thus, for a tight frame all the
eigenvalues of the frame operator are equal to each other. For the general theory
on frames one can refer to [20], [21].

1.3 Outline

The construction of discrete unimodular stochastic waveforms, X : Z → C,
with almost perfect autocorrelation is done in Section 2. This is first done
with the Gaussian random variable and then generalized to other random vari-
ables. The variance of the autocorrelation is also estimated. The section also
addresses the construction of stochastic waveforms in higher dimensions, i.e.,
construction of v : Z → Cd that have almost perfect autocorrelation and are
unit-normed, considering the usual norm in Cd. In Section 3 the construction of
unimodular continuous waveforms with almost perfect autocorrelation is done
using Brownian motion.

As mentioned in Section 1.2, frames are now a standard tool in signal process-
ing due to their effectiveness in robust signal transmission and reconstruction.
In Section 4, frames in Cd (d ≥ 2) are constructed from the discrete waveforms
of Section 2 and the nature of these frames is analyzed. In particular, the maxi-
mum and minimum eigenvalues of the frame operator are estimated. This helps
one to understand how close these frames are to being tight. Besides, it follows,
from the eigenvalue estimates, that the matrix of the analysis operator, F, for
such frames, can be used as a sensing matrix in compressed sensing.

2 Construction of discrete stochastic waveforms

In this section discrete unimodular waveforms, X : Z → C, are constructed from
random variables such that the expectation of the autocorrelation can be made
arbitrarily small everywhere except at the origin. First, such a construction is
done using the Gaussian random variable. Next, a general characterization of
all random variables that can be used for the purpose is given.

2.1 Construction from Gaussian random variables

Let {Yℓ}ℓ∈Z be independent identically distributed (i.i.d.) random variables
following a Gaussian or normal distribution with mean 0 and variance σ2, i.e.,
Yℓ ∼ N(0, σ2). Define X : Z → C by

∀n ∈ Z, X[n] = e
2πi
ϵ

∑n
ℓ=−n Yℓ (3)
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where i is
√
−1. Thus, for each n, |X[n]| = 1 and X is unimodular. The

autocorrelation of X at k ∈ Z is

AX [k] = lim
N→∞

1

2N + 1

N∑
n=−N

X[n+ k]X[n]

where the limit is in the sense of probability. Theorem 2.1 shows that the wave-
form given by (3) has autocorrelation whose expectation can be made arbitrarily
small for all integers k ̸= 0.

Theorem 2.1. Given ϵ > 0, the waveform X : Z → C defined in (3) has
autocorrelation AX such that

E(AX [k]) =

{
1 if k = 0

e−|k|σ2( 2π
ϵ )

2

if k ̸= 0.

Proof. (i) When k = 0,

AX [0] = lim
N→∞

1

2N + 1

N∑
n=−N

X[n]X[n] = 1.

and so E(AX [0]) = 1.
(ii) Let k > 0. One would like to calculate

E(AX [k]) = E

(
lim

N→∞

1

2N + 1

N∑
n=−N

X[n+ k]X[n]

)
.

Let gN (X) = 1
2N+1

∑N
n=−N X[n + k]X[n]. Then |gN (X)| ≤ 1. Let h(X) = 1.

Then for each N, |gN (X)| ≤ h(X) and E[h(X)] = 1. Thus, by the Dominated
Convergence Theorem [19], which justifies the interchange of limit and integra-
tion below, one obtains

E(AX [k]) = E

(
lim

N→∞

1

2N + 1

N∑
n=−N

X[n+ k]X[n]

)

= lim
N→∞

1

2N + 1

N∑
n=−N

E(X[n+ k]X[n])

= lim
N→∞

1

2N + 1

N∑
n=−N

E(e
2πi
ϵ

∑n+k
ℓ=−n−k Yℓe−

2πi
ϵ

∑n
m=−n Ym)

= lim
N→∞

1

2N + 1

N∑
n=−N

E(e
2πi
ϵ (

∑n+k
ℓ=n+1 Yℓ+

∑−n−1
m=−n−k Ym))

= lim
N→∞

1

2N + 1

N∑
n=−N

[
E
(
e

2πi
ϵ Y1

)]2k
=
[
E
(
e

2πi
ϵ Y1

)]2k
=

[
ϕY1

(
2π

ϵ

)]2k
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where the last line uses the fact that the Yℓs are i.i.d. random variables. Here
ϕY1

(
2π
ϵ

)
is the characteristic function at 2π

ϵ of Y1 which is the same as that for
any other Yℓ due to their identical distribution. The characteristic function at
2π
ϵ of a Gaussian random variable with mean 0 and variance σ2 is e−

σ2

2 ( 2π
ϵ )

2

.
Thus

E(AX [k]) =
[
e−

σ2

2 ( 2π
ϵ )

2]2k
= e−kσ2( 2π

ϵ )
2

.

(iii) When k > 0, a similar calculation for AX [−k] gives

E(AX [−k]) =
[
e−

σ2

2 (− 2π
ϵ )

2]2k
= e−kσ2( 2π

ϵ )
2

.

Together, this shows that given ϵ and any k ̸= 0,

E(AX [k]) = e−|k|σ2( 2π
ϵ )2

which indicates that the expectation of the autocorrelation at any integer k ̸= 0
can be made arbitrarily small depending on the choice of ϵ.

As shown in Theorem 2.1 the expectation of the autocorrelation can be made
arbitrarily small but this is not useful unless one can estimate the variance of
the autocorrelation. Denoting the variance of AX [k] by V (AX [k]) one has

V (AX [k]) = E(|AX [k]|2)− |E(AX [k])|2 = E(|AX [k]|2)− e−2|k|σ2( 2π
ϵ )2 .

First consider k > 0;

|AX [k]|2 =

(
lim

N→∞

1

2N + 1

N∑
n=−N

X[n+ k]X[n]

)(
lim

M→∞

1

2M + 1

M∑
m=−M

X[m+ k]X[m]

)

= lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

X[n+ k]X[n] X[m+ k]X[m]

= lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

e
2π
ϵ i(

∑k
j=1 Y−n−j+

∑k
j=1 Yn+j−

∑k
j=1 Y−m−j−

∑k
j=1 Ym+j) .

By applying the Lebesgue Dominated Convergence Theorem one can bring the
expectation inside the double sum to get

E(|AX [k]|2) = lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

E
(
e

2π
ϵ i(

∑k
j=1 Y−n−j+

∑k
j=1 Yn+j−

∑k
j=1 Y−m−j−

∑k
j=1 Ym+j)

)
.
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The sum
k∑

j=1

Y−n−j +
k∑

j=1

Yn+j −
k∑

j=1

Y−m−j −
k∑

j=1

Ym+j (4)

may have cancelations among terms involving n with terms involving m. Sup-
pose that for a fixed n and m, there are k̃m,n indices that cancel in each of

the 4 sums in (4). Due to symmetry, the same number i.e., k̃mn, of terms will
cancel in each sum. Depending on n and m, k̃mn lies between 0 and k, i.e.,
0 ≤ k̃mn ≤ k. For the sake of making the notation less cumbersome, k̃mn will
from now on be written as k̃. When m = n, k̃ = k. If m > n+ k or n > m+ k
then k̃ = 0. Each sum in (4) has k terms and k̃ of these get cancelled leaving
(k − k̃) terms. One can re-index the variables in (4) and write it as

k∑
j=1

Y−n−j +

k∑
j=1

Yn+j −
k∑

j=1

Y−m−j −
k∑

j=1

Ym+j = ±Yℓ1 ± · · · ± Yℓ4(k−k̃)

where the sign depends on whether m is less than or greater than n. Thus

E(|AX [k]|2) = lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

E

(
e

2π
ϵ i

(
±Yℓ1

±···±Yℓ
4(k−k̃)

))

Due to the independence of the Yℓs, this means

E(|AX [k]|2) = lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

[
ϕY1

(
±2π

ϵ

)]4(k−k̃)

= lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

e−
σ2

2 ( 2π
ϵ )

2
4(k−k̃)

The minimum is attained for k̃ = 0 and the maximum at k̃ = k. Thus

E(|AX [k]|2) ≤ lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

1 = 1 and

E(|AX [k]|2) ≥ lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

e−
σ2

2 ( 2π
ϵ )

2
4k = e−

σ2

2 ( 2π
ϵ )

2
4k.

This gives

0 ≤ V (AX [k]) ≤ 1− e−2kσ2( 2π
ϵ )

2

.

A similar calculation can be done for k < 0. Thus for k ̸= 0,

0 ≤ V (AX [k]) ≤ 1− e−2|k|σ2( 2π
ϵ )

2

.
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2.2 Generalizing the construction to other random vari-
ables

So far the construction of discrete unimodular zero autocorrelation stochastic
waveforms has been based on Gaussian random variables. This construction
can be generalized to many other random variables. The unimodularity of the
waveforms is not affected by using a different random variable. The following
theorem characterizes the class of random variables that can be used to get the
desired autocorrelation.

Theorem 2.2. Let {Yℓ}ℓ∈Z be a sequence of i.i.d. random variables with char-
acteristic function ϕY . Suppose that the probability density function of the Yℓs is
even and that ϕY (t) goes to 0 as t goes to infinity. Then, given ϵ, the waveform
X : Z → C given by

X[n] = e
2π
ϵ i

∑n
ℓ=−n Yℓ

has almost perfect autocorrelation.

Proof. Since the density function of each Yℓ is even this means that the char-
acteristic function is real valued [19]. Following the calculation in the proof of
Theorem 2.1, the expected autocorrelation of X for k ̸= 0 is

E(AX [k]) =

[
ϕY

(
2π

ϵ

)]2|k|
and this goes to zero with ϵ by the hypothesis.

Example 2.3. Suppose the Yℓs follow a bilateral distribution that has density
e−|x| with x ∈ (−∞,∞) and characteristic function ϕY (t) = 1

1+t2 . Then for
k ̸= 0,

E(AX [k]) =

[
1

1 +
(
2π
ϵ

)2
]2|k|

and this can be made arbitrarily small with ϵ.
In the same way as was done in the Gaussian case, for k > 0,

E(|AX [k]|2) = lim
N→∞

lim
M→∞

1

(2N + 1)

1

(2M + 1)

N∑
n=−N

M∑
m=−M

[
ϕY1

(
±2π

ϵ

)]4(k−k̃)

≤ 1 and

E(|AX [k]|2) ≥

[
1

1 +
(
2π
ϵ

)2
]4k

.

Thus

0 ≤ V (AX [k]) ≤ 1−

(
1

1 +
(
2π
ϵ

)2
)4|k|

.
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Example 2.4. Suppose that the Yℓs follow the Cauchy distribution with density
function 1

π(1+x2) . Note that, disregarding the constant π, this is the character-

istic function of the random variable considered in Example 2.3. The charac-
teristic function of the Yℓs is now e−|t|, the same as the distribution function in
Example 2.3. For k ̸= 0,

E(AX [k]) =

[
ϕY1

(
2π

ϵ

)]2|k|
= e−

4π|k|
ϵ

which can be made arbitrarily small with ϵ. Also,

0 ≤ V (AX [k]) ≤ 1− e−
8π|k|

ϵ .

2.3 Higher dimensional case

Here one is interested in constructing waveforms v : Z → Cd, d ≥ 2. It is desired
that v has unit norm and the expectation of its autocorrelation can be made
arbitrarily small. One way to construct v is based on the construction of the
one dimensional example given in Section 2.1. This is motivated by the higher
dimensional construction in the deterministic case [2]. As before, {Yℓ}ℓ∈Z is
a sequence of i.i.d. Gaussian random variables with mean zero and variance

σ2. Next, one defines X[n] = e
2π
ϵ i

∑n
ℓ=−n Yℓ . The waveform v : Z → Cd is then

defined as

∀m ∈ Z, v[m] =
1√
d


X[m]

X[m+ 1]
...

X[m+ d− 1]

 . (5)

In this case, the autocorrelation is given by

Av[k] = lim
N→∞

1

2N + 1

N∑
n=−N

⟨v[n+ k], v[n]⟩ (6)

where ⟨., .⟩ is the usual inner product in Cd. The length or norm of any v[m] is
thus given by

∥v[m]∥2 = ⟨v[m], v[m]⟩.

From (5),

∥v[m]∥2 =
1

d

d−1∑
n=0

X[m+ n]X[m+ n] =
d

d
= 1.

Thus the v[m]s are unit-normed. The following Theorem 2.5 shows that the
expected autocorrelation of v can be made arbitrarily small everywhere except
at the origin.
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Theorem 2.5. Given ϵ > 0, the waveform v : Z → Cd defined in (5) has
autocorrelation Av such that

E(Av[k]) =

{
1 if k = 0

e−|k|σ2( 2π
ϵ )

2

if k ̸= 0.

Proof. As defined in (6),

Av[k] = lim
N→∞

1

2N + 1

N∑
n=−N

⟨v[n+ k], v[n]⟩.

When k = 0,

Av[0] = lim
N→∞

1

2N + 1

N∑
n=−N

∥v[n]∥2 = 1.

Thus,
E(Av[0]) = 1.

For k ̸= 0, due to (5),

⟨v[n+ k], v[n]⟩ =
1

d

⟨
X[n+ k]

X[n+ k + 1]
...

X[n+ k + d− 1]

 ,


X[n]
X[n+ 1]

...
X[n+ d− 1]


⟩

=
1

d

(
X[n+ k]X[n] +X[n+ k + 1]X[n+ 1] + . . .+

X[n+ k + d− 1]X[n+ d− 1]
)
.

Consider k > 0.

E(Av[k]) = lim
N→∞

1

2N + 1

N∑
n=−N

E(⟨v[n+ k], v[n]⟩)

= lim
N→∞

1

2N + 1

N∑
n=−N

E

(
1

d

d−1∑
m=0

X[n+ k +m]X[n+m]

)

= lim
N→∞

1

2N + 1

N∑
n=−N

1

d

d−1∑
m=0

E
(
X[n+ k +m]X[n+m]

)

= lim
N→∞

1

2N + 1

N∑
n=−N

1

d

d−1∑
m=0

E
(
e

2π
ϵ i(Y−(n+m+k)+...+Y−(n+m+1)+Yn+m+1+...+Yn+m+k)

)

= lim
N→∞

1

2N + 1

N∑
n=−N

1

d

d−1∑
m=0

E(e
2π
ϵ iY1)2k = e−σ2k( 2π

ϵ )2 .
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Similarly, for k < 0 one gets

E(Av[k]) = eσ
2k( 2π

ϵ )2 .

Thus the waveform v as defined in this section is unit-normed and has autocor-
relation that can be made arbitrarily small.

Remark 2.6. As in the one dimensional construction, it is easy to see that
here too the construction can be done with random variables other than the
Gaussian. In fact, all random variables that can be used in the one dimensional
case, i.e., ones satisfying the properties of Theorem 2.2, can also be used for the
higher dimensional construction.

2.4 Remark on the periodic case

It can be shown that the periodic case follows the same nature as the aperiodic
case. The sequence X : Zn → C is defined in the same way as in Section 2.1,
i.e.,

∀m ∈ {0, 1, . . . , n− 1}, X[m] = e
2π
ϵ i

∑m
ℓ=−m Yℓ

where Yℓ ∼ N(0, σ2). Following the definition given in (2), when k = 0,

AX [0] =
1

n

n−1∑
m=0

X[m]X[m] = 1.

When k ̸= 0, the expectation of the autocorrelation is

E(AX [k]) =
1

n

n−1∑
m=0

E(X[m+ k]X[m])

For k > 0,

E(AX [k]) =
1

n

n−1∑
m=0

E(e
2πi
ϵ

∑m+k
ℓ=−m−k Yℓe−

2πi
ϵ

∑m
j=−m Yj )

=
1

n

n−1∑
m=0

E(e
2πi
ϵ (

∑m+k
ℓ=m+1 Yℓ+

∑−m−1
j=−m−k Yj))

=
1

n

n−1∑
m=0

[
E
(
e

2πi
ϵ Y1

)]2k
=

[
E
(
e

2πi
ϵ Y1

)]2k
=

[
ϕY1

(
2π

ϵ

)]2k
= e−kσ2( 2π

ϵ )
2

where one uses the fact that the Yℓs are i.i.d.. A similar calculation for negative
values of k suggests that the autocorrelation can be made arbitrarily small,
depending on ϵ, for all non-zero values of k. Also, as in the aperiodic case, this
result can be obtained for random variables other than the Gaussian.
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3 Construction of continuous stochastic wave-
forms

In this section continuous waveforms with almost perfect autocorrelation are
constructed from a one dimensional Brownian motion.

For a continuous waveform x : R → C, the autocorrelation Ax : R → C can
be defined as

Ax(s) = lim
T→∞

1

2T

∫ T

−T

x(t+ s)x(t) dt. (7)

Let {W (t); t > 0} be a one dimensional Brownian motion. Then W (t) satisfies

(i) W (0) = 0

(ii) W (t+ s)−W (s) ∼ N(0, σ2t)

(iii) 0 < t1 < · · · < tk, W (ti+1)−W (ti) are independent random variables.

Theorem 3.1. Let W (t) be the one dimensional Brownian motion and ϵ > 0
be given. Define x : R → C by

x(t) = e
2π
ϵ iW (t) for t ≥ 0,

and x(−t) = x(t). Then the autocorrelation of x, Ax, satisfies

E(Ax(s)) =

{
1 if s = 0

e−
σ2

2 |s|( 2π
ϵ )

2

if s ̸= 0.

Proof. We would like to evaluate

E(Ax(s)) = E

(
lim

T→∞

1

2T

∫ T

−T

x(t+ s)x(t) dt

)
.

Let s > 0 and let gT (s) =
1
2T

∫ T

−T
x(t+ s)x(t) dt.

E(gT ) =
1

2T

∫ T

−T

E(x(t+ s)x(t)) dt

=
1

2T

∫ T

−T

E
(
e

2π
ϵ i(W (t+s)−W (t))

)
dt

=
1

2T

∫ T

−T

ϕW (t+s)−W (t)

(
2π

ϵ

)
= e−

σ2

2 s( 2π
ϵ )

2

<∞.

Thus each gT is integrable and further |gT | ≤ 1. Let h(t) = 1; t ∈ R. Then
E(h) = 1. Therefore, by the Dominated Convergence Theorem, and properties

12



of Brownian motion and characteristic functions, one gets

E(Ax(s)) = E

(
lim

T→∞

1

2T

∫ T

−T

x(t+ s)x(t) dt

)

= lim
T→∞

1

2T

∫ T

−T

E
(
e

2π
ϵ i(W (t+s)−W (t))

)
dt

= lim
T→∞

1

2T

∫ T

−T

ϕW (t+s)−W (t)

(
2π

ϵ

)
= e−

σ2

2 s( 2π
ϵ )

2

which can be made arbitrarily small based on ϵ. Similarly,

E(A(−s)) = lim
T→∞

1

2T

∫ T

−T

ϕW (t)−W (t−s)

(
−2π

ϵ

)
= e−

σ2

2 s(− 2π
ϵ )

2

= e−
σ2

2 s( 2π
ϵ )

2

.

4 Connection to frames

Consider the mapping v : Z → Cd given by

v(k) =
1√
d


X[k]

X[k + 1]
...

X[k + d− 1]

 (8)

where X[k] = e
2π
ϵ i

∑k
ℓ=−k Yℓ , as defined in Section 2.1.

Let M ≥ d and consider the set V = {v(1), v(2), . . . , v(M)} of M unit
vectors in Cd. The matrix

F =
1√
d


X[1] X[2] · · · X[d]

X[2] X[3] · · · X[d+ 1]
...

... · · ·
...

X[M ] X[M + 1] · · · X[M + d− 1]

 .
is the matrix of the analysis operator corresponding to V. The frame operator
of V is F = F ∗F, i.e.,

F =
1

d


X[1] X[2] · · · X[M ]
X[2] X[3] · · · X[M + 1]
...

... · · ·
...

X[d] X[d+ 1] · · · X[M + d− 1]




X[1] X[2] · · · X[d]

X[2] X[3] · · · X[d+ 1]
...

... · · ·
...

X[M ] X[M + 1] · · · X[M + d− 1]

 .

13



The entries of F are given by Fm,m = M
d and for m ̸= n, m > n,

Fm,n =
1

d

(
X[m] X[m+ 1] · · · X[M +m− 1]

)


X[n]

X[n+ 1]
...

X[M + n− 1]


=

M

d

1

M

M−1∑
ℓ=0

X[m+ ℓ]X[n+ ℓ]

=
M

d

(
1

M

M−1∑
ℓ=0

e
2π
ϵ i(Y−m−ℓ+···+Y−n−ℓ−1+Yn+ℓ+1+···+Ym+ℓ)

)
.

Note that since F is self-adjoint, Fm,n = Fn,m. It is desired that V emulates
a tight frame, i.e, F is close to a constant times the identity, in this case, M

d
times the identity. Alternatively, it is desirable that the eigenvalues of F are all
close to each other and close to M

d . In this case, due to the stochastic nature of
the frame operator, one studies the expectation of the eigenvalues of F .

4.1 Frames in C2

This section discusses the construction of sets of vectors in C2 as given by (8).
The frame properties of such sets are analyzed. In fact, it is shown that the
expectation of the eigenvalues of the frame operator are close to each other, the
closeness increasing with the size of the set. The bounds on the probability of
deviation of the eigenvalues from the expected value is also derived. The related
inequalities arise from an application of Theorem 4.1 [22] below.

Theorem 4.1 (Azuma’s Inequality [22]). Suppose that {Xk : k = 0, 1, 2, . . .}
is a martingale and

|Xk −Xk−1| < ck,

almost surely. Then for all positive integers N and all positive reals t,

P (|XN −X0| ≥ t) ≤ 2e

(
−t2

2
∑N

k=1
c2
k

)
.

Consider M ≥ 3 vectors in C2, i.e., d = 2 in (8). Then v : Z → C2 and

v(1) =
1√
2

(
X[1]
X[2]

)
, v(2) =

1√
2

(
X[2]
X[3]

)
, . . . , v(M) =

1√
2

(
X[M ]

X[M + 1]

)
.

(9)
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Considering the set V = {v(1), v(2), . . . , v(M)}, the frame operator of V is

F =
1

2

[
X[1] X[2] X[3] · · · X[M ]
X[2] X[3] X[4] · · · X[M + 1]

]


X[1] X[2]

X[2] X[3]

X[3] X[4]
...

...

X[M ] X[M + 1]


or, F =

M

2

[
1 1

M

∑M
m=1X[m]X[m+ 1]

1
M

∑M
m=1X[m]X[m+ 1] 1

]
. (10)

Theorem 4.2. (a) Consider the set V = {v(1), v(2), . . . , v(M)} ⊆ C2, M ≥ 3,
where the vectors v(n) are given by (9). The minimum eigenvalue, λmin(F),
and the maximum eigenvalue, λmax(F), of the frame operator of V satisfy

M

2
(1− δ) ≤ E(λmin(F)) ≤ E(λmax(F)) ≤ M

2
(1 + δ) (11)

where δ =

√
1
M + M−1

M e−2σ2( 2π
ϵ )

2

.
(b) The deviation of the minimum and maximum eigenvalue of F from their
expected value is given, for all positive reals r, by

P (|λmin(F)− E(λmin(F))| > r) ≤ 2e−
4r2

8M3 ,

P (|λmax(F)− E(λmax(F))| > r) ≤ 2e−
4r2

8M3 .

Proof. (a) The frame operator of V = {v(1), v(2), . . . , v(M)} is given in (10).
The eigenvalues of 2

MF are λ1 = 1− |α| and λ2 = 1 + |α| where

α =
1

M

M∑
m=1

X[m]X[m+ 1].

Let

γ1 = X[1]X[2] = e−
2π
ϵ i(Y−2+Y2),

γ2 = X[2]X[3] = e−
2π
ϵ i(Y−3+Y3),

...

γM = X[M ]X[M + 1] = e−
2π
ϵ i(Y−(M+1)+Y(M+1)),

so that

α =
γ1 + γ2 + · · ·+ γM

M
.

Note that form ̸= n, γm and γn are independent and soE(γmγn) = E(γm)E(γn).
Also, since the Yℓs are i.i.d. and the characteristic function of the Yℓs is sym-
metric,

∀ 1 ≤ m ≤M, E(γm) = E(e
2π
ϵ i(Y−(m+1)+Ym+1)) = {E(e

2π
ϵ iY1)}2 = e−σ2( 2π

ϵ )2 = E(γm)

15



and therefore
E(γmγn) = e−2σ2( 2π

ϵ )2 .

Thus

E(|α|2) = E(αα) =
1

M2
E((γ1 + γ2 + · · ·+ γM )(γ1 + γ2 + · · ·+ γM ))

=
1

M2
E(|γ1|2 + |γ2|2 + · · ·+ |γM |2 +

∑
m̸=n

γmγn)

=
1

M
+

1

M2
E

∑
m̸=n

γmγn


=

1

M
+

1

M2

∑
m̸=n

E(γmγn)

=
1

M
+
M − 1

M
e−2σ2( 2π

ϵ )2 .

The above estimate on E(|α|2) implies that

E(|α|) ≤
√
E(|α|2) =

√
1

M
+
M − 1

M
e−2σ2( 2π

ϵ )2 . (12)

Since E(λ1) = 1− E(|α|) and E(λ2) = 1 + E(|α|), (12) implies

1−
√

1

M
+
M − 1

M
e−2σ2( 2π

ϵ )
2

≤ E(λ1) ≤ E(λ2) ≤ 1+

√
1

M
+
M − 1

M
e−2σ2( 2π

ϵ )
2

.

Noting that λmin(F) = M
2 λ1 and λmax(F) = M

2 λ2, one finally gets, after setting

δ =

√
1
M + M−1

M e−2σ2( 2π
ϵ )

2

,

M

2
(1− δ) ≤ E(λmin(F)) ≤ E(λmax(F)) ≤ M

2
(1 + δ) .

(b) To prove (b) we use the Doob martingale and Azuma’s inequality [22]. For
n = 2, . . . ,M+1, let Zn−1 = Y−n+Yn. Here the Doob martingale is the sequence
{U0, U1, . . . , UM−1} where

for k = 1, . . . ,M − 1, Uk = E

 1

M

∣∣∣∣∣∣
M∑
j=1

e−
2π
ϵ iZj

∣∣∣∣∣∣ |Z1, Z2, . . . , Zk


and

U0 = E

 1

M

∣∣∣∣∣∣
M∑
j=1

e−
2π
ϵ iZj

∣∣∣∣∣∣
 .

Note that U0 = E(|α|) and UM−1 = |α|. Also,

|Uk − Uk−1| ≤ |Uk|+ |Uk−1| ≤ 2.
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So by Azuma’s Inequality (see Theorem 4.1)

P (|UM−1 − U0| ≥ r) = P (||α| − E(|α|)| ≥ r) ≤ 2e
− r2

2
∑M

k=1
22 = 2e−

r2

8M .

Since |λ1 − E(λ1)| = |λ2 − E(λ2)| = ||α| − E(|α|)|, this means

P (|λ1 − E(λ1)| > r) ≤ 2e−
r2

8M

and

P (|λ2 − E(λ2)| > r) ≤ 2e−
r2

8M .

Going back to the actual frame operator F , whose eigenvalues are M
2 λ1 and

M
2 λ2, the following estimates hold.

P (|λmax(F)− E(λmax(F))| > r) = P

(
M

2
||α| − E(|α|)| > r

)
= P

(
||α| − E(|α|)| > 2

M
r

)
≤ 2e−

4r2

8M3

and

P (|λmin(F)− E(λmin(F))| > r) = P

(
M

2
||α| − E(|α|)| > r

)
= P

(
||α| − E(|α|)| > 2

M
r

)
≤ 2e−

4r2

8M3 .

Corollary 4.3. The eigenvalues of the frame operator considered in Theorem
4.2 satisfy, for all positive reals r,

P

(
λmin(F) <

M

2
(1− δ)− r

)
≤ e−4r2/8M3

,

P

(
λmax(F) >

M

2
(1 + δ) + r

)
≤ e−4r2/8M3

where δ =

√
1
M + M−1

M e−2σ2( 2π
ϵ )

2

.

Proof. Due to part (a) of Theorem 4.2

λmin(F) <
M

2
(1− δ)− r =⇒ λmin(F) < E(λmin(F))− r.

This implies, as a consequence of part (b) of Theorem 4.2, that

P

(
λmin(F) <

M

2
(1− δ)− r

)
≤ P (λmin(F) < E(λmin(F))− r) ≤ e−4r2/8M3

.
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In a similar way, from part (a) of Theorem 4.2

λmax(F) >
M

2
(1 + δ) + r =⇒ λmax(F) > E(λmax(F)) + r

which implies, as a consequence of part (b) of Theorem 4.2, that

P

(
λmax(F) >

M

2
(1 + δ) + r

)
≤ P (λmax(F) > E(λmax(F)) + r) ≤ e−4r2/8M3

.

Remark 4.4. In Theorem 4.2, as M tends to infinity, the value of δ in (11)
can be made arbitrarily small based on the choice of ϵ. This in turn implies that
the two eigenvalues can be made arbitrarily close to each other with ϵ. On the
other hand, for a fixed M, as ϵ tends to zero, (11) becomes

M

2

(
1−

√
1

M

)
≤ E(λmin(F)) ≤ E(λmax(F)) ≤ M

2

(
1 +

√
1

M

)
.

4.2 Frames in Cd; d > 2

For general d and M, in order to use existing results on the concentration of
eigenvalues of random matrices [23, 24], a slightly different construction of the
frame needs to be considered. Let {Ymn}m,n∈Z be i.i.d. random variables
following a Gaussian distribution with mean zero and variance σ2. It can be
shown that

E(e
2π
ϵ iYmn) = e−

σ2

2 ( 2π
ϵ )

2

and the variance
V (e

2π
ϵ iYmn) = 1− e−σ2( 2π

ϵ )
2

.

One can define the following two dimensional sequence. For m,n ∈ Z,

Xmn = e
2π
ϵ iYmn − e−

σ2

2 ( 2π
ϵ )

2

.

Consider the mapping v : Z → Cd given by

v(ℓ) =
1√
d


X1ℓ

X2ℓ

...
Xdℓ

 . (13)

As before, letM ≥ d and consider the set ofM unit vectors V = {v(1), v(2), . . . , v(M)}
in Cd. The frame operator of this set is

F =
1

d


X11 X12 · · · X1M

X21 X22 · · · X2M

...
... · · ·

...
Xd1 Xd2 · · · XdM




X11 X21 · · · Xd1

X12 X22 · · · Xd2

...
... · · ·

...
X1M X2M · · · XdM

 .
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Let

A =
1√
d


X11 X12 · · · X1M

X21 X22 · · · X2M

...
... · · ·

...
Xd1 Xd2 · · · XdM

 (14)

so that F = AA∗. The matrix A has entries with mean zero and variance
σ̂2 = 1

d (1−e
−σ2( 2π

ϵ )
2

). According to results in [23], if d
M → c as d,M → ∞, then

the smallest and largest eigenvalues of F converge almost surely to σ̂2(1−
√
c)2

and σ̂2(1 +
√
c)2 respectively.

Theorem 4.5. Let s1(A) ≤ s2(A) ≤ . . . ≤ sd(A) be the singular values of the
matrix A given by (14). Then the following hold.
(a) Given ϵ0, there is a large enough d such that

P

(
sd(A) ≥ σ̂

(
1 +

√
d

M

)
+ ϵ0 + r

)
≤ 2e−r2d/16. (15)

(b)
P (s1(A) ≤ c1) ≤ e−c2M (16)

where c1 and c2 are universal positive constants.

Proof. Let sd be the mapping that associates to a matrix A it largest singular
value. Equip CdM with the Frobenius norm

∥A∥2 := Tr(AA∗) =
∑
m,n

|Amn|2.

Then the mapping sd is convex and 1-Lipschitz in the sense that

|sd(A)− sd(A
′)| ≤ ∥A−A′∥

for all pairs (A,A′) of d by M matrices [24].
We think of A as a random vector in R2dM . The real and imaginary parts of

the entries of 1√
d
A are supported in [− 1√

d
, 1√

d
]. Let P be a product measure on

[− 1√
d
, 1√

d
]2dM Then as consequence of concentration inequality (Corollary 4.10,

[24]) we have

P (|sd(A)−m(sd)| ≥ r) ≤ 4e−r2d/16

where m(sd) is the median of sd(A). It is known that the minimum and maxi-
mum singular values of A converge almost surely to σ̂(1 −

√
c) and σ̂(1 +

√
c)

respectively as d,M tend to infinity and d
M → c. As a consequence, for each

ϵ0 and M sufficiently large, one can show that the medians belong to the fixed

interval [σ̂(1−
√

d
M )− ϵ0, σ̂(1 +

√
d
M ) + ϵ0] which gives

P

(
sd(A) ≥ σ̂

(
1 +

√
d

M

)
+ ϵ0 + r

)
≤ 2e−r2d/16.
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For the smallest singular value we cannot use the concentration inequality as
used for sd since the smallest singular value is not convex. However, following
results in [25] (Theorem 3.1) that have been used in [26] in a similar situation
as here, one can say that wheneverM > (1+δ)d where δ is greater than a small
constant,

P (s1(A) ≤ c1) ≤ e−c2M

where c1 and c2 are positive universal constants.

Remark 4.6. Note that the square of the singular values of A are the eigen-
values of F and so the estimates given in (15)-(16) give insight into the corre-
sponding deviation of the eigenvalues of the frame operator F .

Remark 4.7 (Connection to compressed sensing). The theory of compressed
sensing [27, 28, 29] states that it is possible to recover a sparse signal from a small
number of measurements. A signal x ∈ CM is k-sparse in a basis Ψ = {ψj}Mj=1

if x is a weighted superposition of at most k elements of Ψ. Compressed sensing
broadly refers to the inverse problem of reconstructing such a signal x from
linear measurements {yℓ = ⟨x, ϕℓ⟩ | ℓ = 1, . . . , d} with d < M , ideally with
d ≪ M . In the general setting, one has Φ∗x = y, where Φ is a d ×M sensing
matrix having the measurement vectors ϕℓ as its columns, x is a length-M signal
and y is a length-d measurement.

The standard compressed sensing technique guarantees exact recovery of
the original signal with very high probability if the sensing matrix satisfies the
Restricted Isometry Property (RIP). This means that for a fixed k, there exists
a small number δk, such that

(1− δk)∥x∥2ℓ2 ≤ ∥Φx∥2ℓ2 ≤ (1 + δk)∥x∥2ℓ2 ,

for any k-sparse signal x. By imitating the work done in [26] (Lemmas 4.1 and
4.2), it can be shown, due to Theorem 4.5, that matrices A of the type given
in (14) satisfy the RIP condition and can therefore be used as measurement
matrices in compressed sensing. These matrices are different from the traditional
random matrices used in compressed sensing in that their entries are complex-
valued unimodular instead of being real-valued and not unimodular.

Example 4.8. This example illustrates the ideas in this subsection. First
consider M = 5 and d = 3 so that there are 5 vectors in C3. Taking from a
normal distribution with mean 0 and variance σ = 1, a realization of the matrix
[Ymn]1≤m≤3,1≤n≤5 is −0.0353 0.5004 −0.6299 −0.1472 0.4003

−0.4804 −0.9344 0.4220 −0.9509 0.2783
−0.8609 −0.4822 −0.4680 −0.0913 1.2284

 .
Then taking ϵ = 0.001, A = 1√

3
[e

2π
ϵ iYmn ] is

A =
1√
3

 −0.27− 0.96i −0.89 + 0.44i 0.85 + 0.52i 0.33− 0.94i −0.24 + 0.97i
−0.92− 0.39i −0.89− 0.46i 0.99 + 0.05i 0.93 + 0.37i −0.47 + 0.88i
0.74 + 0.68i 0.16− 0.99i 0.99 + 0.09i −0.30− 0.95i −0.74 + 0.67i

 .
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Figure 1: Behavior of the condition number of the frame operator with increas-
ing size of the frame; ϵ = 0.0001, d = 3, σ = 1

The condition number, ratio of the maximum and minimum eigenvalues, of
F = 4.8667. As the number of vectors M is increased, the condition number
gets closer to 1. Figure 1 shows the behavior of the condition number with the
increase in the number of vectors.

5 Conclusions

The construction of discrete unimodular stochastic waveforms with arbitrarily
small expected autocorrelation has been proposed. This is motivated by the
usefulness of such waveforms in the areas of radar and communications. The
family of random variables that can be used for this purpose has been character-
ized. Such construction been done in one dimension and generalized to higher
dimensions. Further, such waveforms have been used to construct frames in Cd

and the frame properties of such frames have been studied. Using Brownian
motion, this idea is also extended to the construction of continuous unimodular
stochastic waveforms whose autocorrelation can be made arbitrarily small in
expectation.
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