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e Concept of Hyperimage in Wide-Band 
Radar Imaging 

J. Bertrand and P. Bertrand 

Abstract-A method is proposed to construct radar (or sonar) 
hyperimages from the knowledge of a backscattering function. 
Compared to usual imaging, the new feature is to treat on equal 
footing all parameters characterizing the image: frequency, di- 
rectivity and position of the bright points in the two-dimensional 
static case; frequency, velocity, position, and date of existence in 
the one-dimensional imaging of nonstationary targets. The main 
interest of such a formulation is to allow the control of the re- 
ciprocal relations that are always present in microwave imaging. 
This possibility can be useful for processing data obtained by 
today's wide-band radars. 

I. INTRODUCTION 
SUAL radar imaging associates distributions of bright 
points with the electromagnetic response of a target and 

the result generally takes the form of a bidimensional image 
with optical features. Due to the wavelengths that are used, 
the spatial resolution of the scatterers is often lower than 
in optics, but it can be argued that this negative result can 
always be compensated by processing a broader band and 
a larger aperture. However, it must be noticed that such an 
operation can only be carried out at the expense of information 
concerning the behavior of the scatterers in frequency and 
directivity. In fact, there is a tradeoff between the resolutions 
in the two types of variables, and this suggests the placement 
of all variables on an equal footing when constructing an 
image in order to properly describe the reflecting behavior 
of the target. This step is essential when dealing with data 
obtained by wide-band and wide-aperture radars. Taking into 
account the whole set of variables leads, in fact, to giving the 
concept of hyperimage a central role in the inverse problem 
under consideration. In the static case, for example, such a 
formulation consists in describing the target in terms of points 
labeled by frequency and directivity as well as space variables. 
The resulting representation can effectively be considered as 
a generalization since the classical images can be recovered 
as special sections of the hyperimage. An illustration of the 
practical interest of this approach has previously been given in 
the case of monostatic bidimensional radar imaging [I]. The 
object of the present study is to apply the method in other 
situations and, thus, illustrate its value in general coherent 
imaging. 

The analytical expression of the hyperimages is partly 
determined by the physical principle of invariance under 
changes of the reference system: all imaging techniques have 
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to be equivalently formulated whatever the system used. In 
particular, two images of the same target, obtained with two 
distinct reference systems, must be related by a well-defined 
geometric transformation. To take advantage of this fact, the 
first task in any situation is to identify the relevant group 
of transformations associated with the changes of reference 
systems and to write down their effects on the microwave 
response of the target. This allows one to establish a natural 
constraint on the imaging procedure by requiring compatibility 
between the transformation of the observed data and the 
transformation of the constructed hyperimages. However, this 
condition is not sufficient to determine the exact form of the 
hyperimages and specifications relative to their interpretation 
have to be added. In the following, a general procedure is given 
whi'ch is founded mainly on the use of a continuous wavelet 
analysis, and for which hyperimages are always positive [2]. 

In Section 11, the notion of hyperimage is exemplified in 
the special case of one-dimensional (1-D) radar imaging. The 
adapted wavelet analysis is described and shown to lead to 
an image given as a distance-frequency representation of the 
target. In other sections, more complex situations are handled 
from the same point of view. In Section 111, two-dimensional 
(2-D) static radar targets are considered and hyperimages are 
constructed from bistatic data. The case of nonstatic targets 
is taken up in Section IV where the technique is applied with 
elementary scatterers which may be in motion and ephemeral. 

11. DISTANCE-FREQUENCY DIAGRAM 
AS EXAMPLE OF HYPERIMAGE 

The essential aspects of the technique are now described 
by applying it to the particular case of 1-D static target 
imaging. We suppose that a transmitter sends out an acoustic 
or electromagnetic wave on a target and that a receiver, 
located at the same spot,-records the scattered wave. The 
observation is supposed to take place in the far-field region 
and possible polarizations are fixed at emission and reception 
so that the field can be considered as scalar. The numerical 
outcome of the experiment consists of the values of a complex 
backscattering function H ( f )  for frequencies in a band that 
may be arbitrarily large. Under the hypothesis that the target 
is made of independent point reflectors, the problem of its 
description will be solved by associating with H ,  a function 
J(z ,  f) that represents a repartition of bright points located at 
x and reflecting at frequency f .  

The form of the correspondence between the response H (  f )  
and the hyperimage I ( z , f )  has to be independent of the 
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this constraint, the first task is to identify the transformations 
connecting the possible reference frames. These transforma- 
tions consist of a change of origin and a change of units of 
length and time. Their effect on the coordinates is expressed 
by the translation b and the dilation a > 0 on L G .  The same 
dilation will also be applied to the time in order to preserve 
the constancy of the light velocity c. The corresponding 
transformation law of the coefficient H ( f )  is found to be 

( a , b )  : ~ ( f )  + ~ ( , , ~ ) ( f )  = ae-4z.rrb(f/c) H ( u ~ ) .  (1) 

The factor a ensures that H transforms as a length in a dilation. 
A further change of frame defined by (a’,b’) will transform 
H(a,b) into the function given by 

a e - - 4 z ~ b ’ ( f l c )  H (a ,b )  ( a / f )  = e-4zn(* ’+a’b)( f lc)  ~ ( ~ ’ ~ f ) .  
( 2 )  

Thus, two successive transformations ( a ,  b ) ,  (a’, b’) act as a 
single one defined by (a’a, b’ + a’b). Their composition law, 
written symbolically as 

(3) 

is in fact a group law and the set of transformations ( a ,  b ) ,  a > 
0, b real, is called the affine group. The group structure 
ensures that no reference frame is privileged and that the 
transformations connecting any two of them depend only on 
those frames characteristics. 

It results from (1) that the scalar product of scattering 
functions defined by 

( a / ,  b’)(a, b )  = (a’a, b’ + a’b) 

The compatibility of transformations (1) and (7) is expressed 
by the covariance requirement of the theory. This constraint 
is analytically represented by the commutative diagram 

where the horizontal arrows represent a change of reference 
frame and the vertical arrows symbolize the imaging proce- 
dure. To go a step further in the definition of 1(z, f ) ,  we now 
turn to wavelet analysis [4]. 

Ideally, one would like to decompose H ( f )  into elementary 
coefficients each pertaining to a reflector that is perfectly 
localized in space ( z , f ) .  But, this is impossible because of 
the reciprocity relations that prevent the variables z and f 
from being simultaneously defined with arbitrary precision. 
Instead, it will be shown how to construct a reference family 
of backscattering functions which correspond to elementary 
reflectors represented by “blobs” in image space. In practice, 
a basic function q5( f )  is chosen and associated with a reflector 
located about the point x0 = 0 and reflecting mainly frequency 
f0  = 1. Point(z0,fo) can be moved to any arbitrary point 
(2, f )  by a transformation ( a ,  b )  acting as follows: 

z = azo + b,  f = a-lfo (9) 

i.e., since ( 2 0 ,  f 0 )  = (0,1) 

(4) In this manner, the image parameters are in one-to-one cor- 
respondence with the elements of the affine group. Applying 
transformation (1) to function q5 with the values a = f-’ 
and b = 2, we obtain a family { q 5 z f }  of so-called wavelets 
defined by 

is invariant under the group action. Namely, we have 
00 

( H ( a , b ) ~  H { a , b ) )  = a2 1 H ( a f )  H‘* (a f )  f df 
0 

(1 1) 1 f’ 
f = (H ,H’ ) .  q5 .f ( f ’ )  = - e-4z.rrf’(z/c) q 5 ( f ) .  

The associated norm of a backscattering function given by 

llH1I2 = ( H ,  H )  ( 5 )  

is thus also invariant and transformation (1) constitutes a 
unitary representation of the affine group with respect to that 
norm. 

The action of a change of reference frame defined by ( a ,  b )  
on the image coordinates ( z , f )  is 

( a ,  b )  : n: - an: + b, f - a- l f .  (6) 

To obtain a description of the target that could be considered 
as universal, we require the image function to transform as 

q x ,  f )  - a I ( a - l ( z  - b ) ,  a f )  (7) 

Each wavelet dzf is uniquely associated with a point ( z , f )  
of the image space. It can be interpreted as the backscattering 
function of an elementary reflector having a small extension 
around x and reflecting mainly in the vicinity of frequency f .  
Remark that this system of wavelets is common to all observers 
in that a change of reference frame performs only a relabeling 
of the elements. A development of the backscattering function 
H (  f )  on this set of functions is possible. The coefficients of 
the decomposition are defined by 

or, explicitly (cf (4)) as 

This coefficient is a function of the variables z and f and 

relation 

in the same change of reference frame. The factor a in this 

This is necessary for the subsequent interpretation of I as 
a space distribution of radar cross section. In that way, the 
integral /(z, f )  dz on any interval yields a quantity which 
transforms as a surface, exactly like IH( f ) l z  [3]. 

expression that the quantity behaves as a length. a straightforward computation yields the following isometry 
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where 6 4  is a constant depending only on the basic function 
4 and given by 

00 

6 4  = .io l4(Y) IZ dY. (15) 

In practice, H can always be normalized so that the norm IlHll 
defined by ( 5 )  is equal to one. If the function 4 is such that 
6 4  < 00, a reconstruction formula does exist and expresses 
the function H in terms of the coefficients C as follows: 

(16) 

Property (14) is essential as it allows to regard 
( 2 / c ~ ) I C ( x ,  f ) l z  as a probability density on space (z, f ) .  
This probability gives a dimensionless representation of 
the target. To obtain an expression which transforms in 
accordance with (7) and (8), we are led to attribute a physical 
dimension to the pixels and define the hyperimage by 

In this way, the integral of the function 1(x, f )  over the space 
variable x transforms as a surface and can be interpreted as 
a smoothed form of the cross section IH( f ) l z .  The nature of 
the smoothing depends on the choice of the function $. It is 
given explicitly by 

This introduces the problem of the choice of 4. In fact, 
there is a tradeoff between sharp smoothing and precise space 
localization. 

Studies relative to the time-frequency representation of 
signals [5] have underscored the interest of basic functions 
of the form [6] 

4 x ( f )  = K ( X )  fZTX-- l  e-z.rrxf (19) 

where K(X) is a normalization constant. The function is 
best localized either in ~ 1 :  or in f according to the values 
of the parameter A. Fig. 1 shows the graph of #A in 2- 

space for different values of A. Notice the increasing number 
of oscillations of the function as the parameter X becomes 
larger. Any function 4~ can be used to construct a wavelet set 
provided expression (15) is finite, i.e., X > (1/27r). Actually, 
since the backscattering functions are always band-limited, 
it is possible to let this limitation aside by introducing an 
appropriate cutoff for small values of the variable f .  

111. EXTENSION TO BIDIMENSIONAL STATIC SITUATIONS 

The above method of adapted wavelet analysis is, in fact, 
general and allows one to tackle different imaging situa- 
tions. It has been applied in particular to the construction of 
four-dimensional (4-D) radar hyperimages from a monostatic 
scattering coefficient H (  f ,  8) obtained in the laboratory [ 11. It 
will now be used in the reformulation of bistatic radar imaging 
[71 PI. 

A-dependence of the Klauder minimal wavelet 

5\ 

0 . 3 ~  h <12 

x-axis 
\ \ \ \ \ \ 

-4 -3 -2 -1 0 1 2 3 4 
o \  \ \ 

\ 

Fig. 1. 
in 2-space. 

Graph displaying the X-dependence of the Klauder minimal wavelet 

The measures are performed in the far-field region and the 
polarizations are fixed at emission and reception so that the 
electromagnetic field can be considered a scalar. The data will 
consist of the scattering coefficient H(k , ,  k,) obtained as a 
function of incident and reflected wave vectors k, = (k,B,) 
and k, (k ,8 , ) .  The frequency f fi ck/2 is not changed 
since the target is at rest. The angles (0%, e,) are measured 
from the x-axis as shown on Fig. 2. It is convenient to define 
the bistatic angle /3 as 

and the mid-angle 

Q (1/2)(Oz + 8,). (21) 

We will consider separately the two situations where either the 
bistatic or the incident angle is fixed [9]. In the case of constant 
bistatic angle, the treatment parallels that of the monostatic 
case [l]. 

A. Constant Bistatic Angle 
In that case, the changes of reference systems consist of 

changes of origin, units, and orientation of the axes. On space 
coordinates x, they induce translations by b, dilations by a > 0 
and rotations by an angle $. The coordinates d in the new 
reference frame are given in terms of z by 

Y 

x‘ = aR6x + b (22) 

where R+ denotes the action of the $-rotation explicitly written 
as 

R ~ x  = (XI cos 4 - x2 sin 4,  z1 sin 4 + x2 cos 4 ) .  (23) 

When two successive transformations of type (22) are per- 
formed on the coordinates, the result is equivalent to a single 
transformation written symbolically as 

( a ,  4, b)(a’, $’, b’) = ( a d ,  4 + 4 ’ , b  + aR4b’). (24) 
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Fig. 2. Definition of parameters in a bistatic setting. 

To be insensitive to the choice of frame, the construction of 
the hyperimage I in terms of H must satisfy a consistency 
requirement expressed by the commutativity of the following 
diagram 

H ( k ,  8;  P o )  + H ' ( k  8;  Po) 

I(x, k ,  0; P o )  - I' (x,  k ,  8; P o )  
1 I  (29) 

where H' and I' are given by (26) and (28), respectively, 
and the vertical arrows represent the imaging construction. In 
addition, the norm of H must be recovered from the image 
according to 

J' I (%,  k ,  0; kdkd0  =/ I  H . (30) 

The hyperimage I is constructed explicitly using a wavelet 
analysis adapted to the representation (26) of the similar- 
ity group transformations. First, we choose a basic function 
@ ( k ,  0; on) that may be associated with the scattering coef- - 

ficient of a target located around IC = 0, reflecting mainly 
at a frequency corresponding to k = 2 f / c  = 1 and in the 
direction 8, = @0/2 when illuminated at the same frequency 
in direction Oz = -Po/2. Function @ is naturally assigned to 

In the transformation defined by ( a ,  4,  b) ,  (kz, k,) will go to 
(kt , k:) defined by 

(25) k: = (a-lk, 0, + $), k: = (a- lk ,  0, + d). 
The set of all those transformations labeled by ( a ,  4, b)  forms 
the similarity group, which is identical to the group occurring 
in the monostatic case. The difference with that case will show 
when considering the mode of action of the group on the data. 

The scattering coefficient will be written in the form 
H ( k ,  0 ; P o )  where the bistatic angle p0 is a constant. A 
change of reference frame characterized by ( a ,  4, b) induces a 
transformation on H which is found to be 

( a ,  4,b) : H ( k ,  0; Po)  - 
H'(k,O;po)  = ae"@-R,) .bB(ak,B - 4.p , 0 )  

ak ,  I9 - & P o )  
(26) 

where u (cosI9,sinO) is the unit vector in the 19 direction. 
When Po = 0, this transformation is the same as in the 
monostatic case. The factor a in front of (26) ensures that 
the radar cross section given by [HI2 transforms as a surface. 
The invariant norm of H is given by 

- - ae2z7rk/ C O S ( P 0 / 2 ) l  WbH( 

E m  r27r 

The description of the target will be performed in terms 
of independent scatterers that are able to have a directivity 
and a frequency dependence in addition to their position 2. 
This is necessary to handle at once the bulk of data coming 
from the values of H on a wide band and angle. Thus, the 
hyperimage will be a function I of parameters (IC, k ,  19) at the 
fixed biscattering angle Po. The action of a change of reference 
system on these parameters is obtained from (22), (25) and the 
image must therefore transform as 

the image point (2, k ,  0) = (0,1,0). In a change of reference 
system labeled by (a ,  4, b) ,  point (z, k ,  0) = (0,1,0) goes 
over to (IC, k ,  0) = (b ,  a-', 4). The transformed function @' 
obtained from (26) is a wavelet that is associated with the 
transformed image point and will be denoted by QX,k. It is 
given explicitly by 

where k = ( k ,  B )  and k' = (k ' ,  0'). Thus a basis of scattering 
coefficients has been constructed, each of which is associated 
with an image point. It is the same for all observers and a 
change of reference system will only lead to a relabeling of 
its elements. The wavelet coefficient of a scattering function 
H(k,6';po) on this basis is defined by 

This coefficient satisfies the isometry relation given by 

where the constant yi+ is defined by 

If the constant KQ is finite, the basic function @ is said to be 
admissible and a reconstruction formula for the function H 
can be established. In that case, the hyperimage is defined by 

(35) +, k; P o )  = 6 2  cos2(P0/2) lC(z,  k; Po)12. 



1148 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34, NO. 5, SEPTEMBER 1996 

According to (33), this expression satisfies (30). Moreover, in- 
tegrated over x, the hyperimage I(x, k; P o )  yields a smoothing 
of IHI2 given explicitly by 

B. Constant Incident Angle 
In that case, a fixed direction of reference does exist and 

the only admissible changes of reference systems consist in 
translations by the vector b and dilations by the positive 
number a. This is a subset, in fact, a subgroup, of the 
transformations considered in Section III-A. 

The scattering coefficient is now written in terms of the 
constant incidence angle 0, and of the bistatic angle P (cf. 
Fig. 2) and denoted by H ( k , P ; Q , ) .  Its transformation law 
under a change of frame characterized by ( a , b )  is obtained 
from (26), setting 4 = 0 and performing the adequate change 
of variables. The result is 

(a, b )  : H ( k ,  P;  Q,) --+ 

H ( a k  P ;  0 2 )  (37) 

(38)  

H’(k,  p; Q,) = a e-2z.rrk C O S ( P l 2 ) ’ u  b 

where w is the unit vector defined by 

w = (cos(P/:! + 8,),sin(P/2 + &)). 
The invariant norm is 

( I  H Il;%= /yZT IH(~,P;Qz)l2 kdkdP.  (39) 
0 0  

The parameters describing the elementary scatterers must be 
the position x, wavenumber k and directivity P. However, not 
all of them can be attained by a wavelet analysis associated 
with transformation (37) and we have to proceed in two steps. 
First, we set up the wavelet analysis for a given bistatic angle 
P = 00. Choose a function @’pa ( k ,  8; e,) and associate it with 
the image point (x = 0, k = 1, PO). A transformation labeled 
by ( a , b )  moves the point to (x = 6 , k  = upl,Po) and the 
function @pa to @z,~,po defined by 

@X,lc,Po (k’, P’; 8 2 )  

pa ( k ’ / k ,  P’; Q z ) .  (40) - - (1//qep22T1 cos(P”)lk”U‘ z cp 

A wavelet coefficient could be defined as usual but it would 
fail to satisfy an isometry relation. So, we proceed with the 
second step which sets a way of linking together the wavelets 
@x,k,po for all possible values of PO. A natural choice is to 
define 

(41) 
and to associate function @ with the image point (x = 0, k = 
1, PO = 0). A generalized wavelet coefficient is then defined 

@Po ( k ,  P ;  0 2 )  3 @(k P - Po;  Q z )  

by 

C(x, k ,  Po; Q z )  = lmL2̂  H(k’ ,  P’; Q , ) p ^ l  cos (P ‘ /2 ) l k ’ t IU ’  x 

x @(k’ /k ,  P’-Po, e,)( ~0~(@’/2)1(k’/k) dk’db’ 
(42) 

where w’ = (cos(P’ /2+Qi) ,  sin(p’/Z+Qi)). It has been tailored 
to lead to an isometry relation that reads 

where 

With this definition, a reconstruction formula for H can be 
written down in terms of the coefficients C provided KQ < 00 

and the hyperimage is defined by 

Iv. IMAGING OF NONSTATIONARY TARGETS 
This section concerns composite targets whose parts may 

be moving relative to each other and scintillating. In the 
approximation of high radar frequency and low velocity of 
scatterers, a range-Doppler analysis of such a target has been 
proposed in [ 101 and [ 1 11. But a complete description, valid for 
any frequency band and any velocity, requires the introduction 
of hyperimages. Their construction by the wavelet method will 
now be given [ 121. 

In a l-D situation, suppose a radar experiment has been 
performed and the backscattering coefficient H( f l ,  f 2 )  has 
been obtained as a function of incident (fl) and returning ( f 2 )  

frequencies. Applying the above ideas, we find that the group 
W of transformations linking two observers using coordinates 
( z , t )  and ( d t ’ )  is made of space-time translations ( ( , T ) ,  
dilations Q! and Lorentz boosts characterized by a velocity u. 
Group W is usually referred to as the Weyl-PoincarC group. 
Explicitly, the effect on coordinates ( z , t )  of a change of 
reference system Characterized by g = ( ( , ~ , a , v )  may be 
written as 

where 

(47) 

with c the velocity of light. 

H ( f i ,  f i )  in such a change of reference system gives 
Computation of the transformation law of the function 

H ( f 1 ,  f 2 )  - H’( f l  f 2 )  = ,,-22T[(fi-f1).+(fi+fl)(~/~)] i 

This transformation preserves the natural scalar product 
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The isometry property is f l  \ 

where 

\ 
Fig. 3. 
is such that tan4 E y .  

Geometrical interpretation of the change of variables (5 1). Angle 4 
C 

dp(z, t ,  w ,  f )  c-2(1- w 2 / e 2 ) - l f  dxdtdvdf  (57) 

The target is described in terms of elementary scatterers 
having an instant of existence t and a velocity v in addition 
to their position x and frequency f .  Variables ( w ,  f )  are 
connected to the transmitted and reflected radar frequencies 
( f l  , f i )  by the classical formulas 

fl - f 2  

fl + f2 f=m, v / c = - - -  

which imply f > 0, JvI < e. The relation between the two 
types of variables is illustrated in Fig. 3. In fact, f represents 
the frequency observed in the scatterer referential and v is 
the radar Doppler velocity associated with frequencies f~ , f 2 .  

The transformation law of variable v in a boost characterized 
by a velocity v is given by the relativistic composition of 
velocities while the frequency f is changed only by a dilation 
a. Thus, a general change of reference system characterized 
by (I ,  T,  v, a )  acts upon (IJ, f )  as follows: 

w - v  
w + w ' =  f + f '  = a- l f .  (52) 

1 - ( u v / c 2 )  

The hyperimage is a function I of coordinates (x, t ,  w ,  f )  
transforming as 

I (  x 1 0 ,  f )  -sr, 1 7 1 ,  f )  

In fact, all subsequent computations are greatly simplified by 
noticing that the group W is isomorphic to the direct product 
of two affine groups A = { ( a , b ) }  of the type described in 
Section 11. 

To perform the wavelet construction of the hyperimage I, 
choose a function d ( f 1 ,  f 2 )  corresponding to the response of 
a target labeled by the point (ICO = t o  = wo = 0 , f o  = 
1). In a change of reference system labeled by (t, 7, v, a ) ,  

(I ,  7, -v, a-'). The transformed function 4' obtained from 
point ( ~ O , t O , ~ O , f O )  = (0,0,0,1) goes to ( x , t , v , f )  = 

and the range of integration D is given by the intervals 
(-CC < z , t  < CC,o < f < 00,-c < v < e) .  

The constant w4 is defined by 
0 0 0 0  

w4 = (1/4) 14(fl,f2)12(flf2)-1 d f l d f 2 .  (58)  

As usual, a reconstruction formula giving H ( f 1 ,  f 2 )  in terms 
of the wavelet coefficients can be obtained provided w& < 00. 
In that case, the hyperimage for this nonstatic situation is 
defined by 

I ( x ,  t ,  w ,  f >  = W f # l C ( Z ,  t ,  v ,  f)I2. (59) 

Practically, only 2-D sections of the hyperimage 1 will be 
displayed, and it is essential to use a function 4 adapted to 
relevant variables in order to keep control of the uncertainties. 
Theoretical considerations lead to choose 

where A' arc parameters controlling independently the spread- 
ings of 4 in IJ and f .  

Among other applications, it is interesting to notice that the 
present treatment is able to give an interpretation of range- 
Doppler analysis based on a simulated rotation for the imaging 
of static 2-D targets [13]. 

V. CONCLUSION 
The great variety of data that can be obtained in microwave 

scattering experiments require one to enlarge the concept 
of image and to introduce new target representations called 
hyperimages. We have shown that these hyperimages can be 
constructed using a continuous wavelet analysis adapted to 
the situation at hand. Actually, the group of transformations 
generating the basis of wavelets proceeds directly from the 
transformations connecting the possible reference frames. In 
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that way, the construction of the hyperimage is well defined 
independently of the reference system, and depends only 
on a numerical function monitoring the tradeoff between 
resolutions. 
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