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1 Introduction

In this chapter, we depart from the usual family of time-frequency
distributions singled out by L. Cohen in the context of quantum
mechanics [1] and recalled in this book [2]. In fact, although most
available representations have been shown to belong to Cohen’s class
[3], the existence of outer solutions in signal analysis cannot be ruled
out by theoretical arguments as we shall see below. Affine time-
frequency distributions occur in the framework of this extension.
Formally, the Cohen class [4] can be written as:

o0 oo o) . ,
,Ds(t, f) = / / / 6—327rt(v —v)g(vl -, T)
—00 J =00 J —0O0 ’

e_jz’”'(f_ ) S(v)S* (W")drdvdv'

(1)

where S(f) is a general complex signal. Essential properties of pg
include its transformation as:

pS(t7f)_)pS’(taf)sz_(t—tmf—fO) (2)

when the signal is shifted in time and frequency according to:

S(f) = 8'(f) = e 7™ S(f — fo) (3)
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and its invariance under a constant phase change ¢ of the form:

S(f) — €?S(f) (4)

Conversely, the above properties are sufficient to construct form
(1) which can be proved to be the most general sesquilinear functional
satisfying (2)-(3). A specific feature of signal theory lies in the
formulation of phase invariance which is not based on the quantum
like relation (4) but on the transformation:

S(f) = e Z_(f) + €2 Z,(f) (5)

where Z_(f) and Z(f) stand for the negative and positive frequency
parts of S. This notion of phase invariance is needed to preserve the
real character of any physical signal. Expression (1) is not invariant
under transformations (5) of the signal unless it contains only positive
(or negative) frequencies. This remark leads to characterize the Cohen
class of signal theory by formula (1) in which the signal of interest is
represented by its analytic form Z(f) [5][6].

An important effect of the restriction of (1) to analytic signals is
to suppress its justification by covariance arguments since frequency
translations occuring in (2)-(3) then fail to preserve the space of
signals. Such a lack of theoretical foundation would not be significant
if the obtained distributions were above reproach. The reality
is somewhat different and it is well known for example that the
interest of Wigner-Ville representations is manifest only in narrow-
band situations. This latter point is illustrated on figure 5.1 which
gives the Wigner-Ville representation of a time-localized real signal
8(t ~ to) whose analytic form is given by:

Y (f)er2mit

with Y(f) equal to the Heaviside unit step function. Clearly the
localized character of the signal is not correctly displayed by the
representation, especially at low frequencies.

As a matter of fact, motivations exist for improving the theoretical
formulation of the subject. This can be done by introducing from the
start the group A of affine transformations:

t—at+b (6)

which represents the effects of clock changes. This group is basic
in signal analysis and has already received much attention in the
context of wide-band ambiguity functions [7][8], as recalled in the
chapter by J.Speiser, H.-Whitehouse and J. Allen of this book [9].
Transformations (6) commute with the phase changes of type (5) and
thus the two constraints of affine covariance and phase invariance
can work together. Their exploitation allows to exhibit a class of
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Figure 5.1. Wigner-Ville function of a sharp pulse signal.

representations which is the analogue of Cohen’s class relative to the
affine group (section 2). In the following, two different methods relying
heavily on group theory will be used to derive explicit expressions of
joint time-frequency distributions adapted to the analysis of wide-
band signals (section 3 and 4). Affine smoothing is introduced in
section 5 as a means to get positive distributions. Finally some hints
for the implementation of the affine distribution are given in section 6.

2 The general affine covariant class

The affine group A consists of translations and dilations in time given
by:

t—at+b a>0,beR (7

and leads to frequency dilations of the form:

foalf (8)
The composition law of elements (a, b) belonging to A is:
(a,0)(d, V) = (ad’,b + ab') (9)

Analytic signals are elements of the space L2(R™) of square integrable
functions on the positive axis. When a transformation (a,b) is
performed, signal Z becomes Z,;, defined by:

Z(f) = Zap(f) = "t "2 Z (af) (10)

This transformation law on signals constitutes a representation of
group A since the following relation is satisfied:
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Zaa',b+ab’ = (Za'b’ )a.b

In (10), the real scaling index r is left free as its choice depends on
the physical context in which the signal arises. The inner product of
signals Z and Z' is then defined by:

oo
(2.2) = [ 2(5)2" ()5 ip (1)
0
It is invariant by transformation (10). Namely:

(Zv Z’) = (Zab, chzb)

A joint time-frequency distribution will be defined here as a real
sesquilinear functional of the signal which can be written as:

P(t,£) = [ K(t, 550,0)2() 2" (' )dvav (12)
where the kernel X is such that:

’C*(t’ fiv, U,) = ’C(t, f; 'U,, 'U) (13)

The first task is to find out the most general form of the kernel
that is compatible with affine covariance. The transformation law of
P is chosen in accordance with (7), (8) to be:

P(t, f) — aqP(a_l(t —b),af) (14)

Here again, we allow a real free scaling factor g to be able to adapt the
dimension to the physical meaning intended for P. The requirement
of affine covariance can then be written in terms of Pz and Pz,
corresponding respectively to Z and Z,:

PZab(ta f) = aqPZ(a_l(t - b)? a’f) (15)

The most general form satisfying this constraint is easily seen to be:

PZ(t, f) — f2r—q+2 /00 /00 ej27rtf(v—y’)K(v,v/)
0 0

(16)
Z(fv)Z*(fv')dvdv'

where the kernel K is such that

K*(v,v") = K(v',v)

This expression has the same position wih respect to the affine group
as Cohen’s formula to the group of time and frequency translations.
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Formula (16) can be extended to the whole time-frequency plane
and will then represent arbitrary complex signals S according to :

Ps(t,f) = |f |2"'_‘I+2 /OO /oo e_7'2‘ll'tf('v——v’)
0 0
(17)
K(v,v)S(fv)S" (fv')dvd’

provided K(v,v") = K(v',v) which implies K real. In this way, real
signals which correspond to S such that:

S(f)=8(=1)
lead to P(t, f) satisfying:

P(t, f) = P(t,~f)

The construction founded on the affine group ensures that no spurious
interference occurs between positive and negative frequency parts. In
the following, we will work with the analytic signal but the results will
always be extendable in the form (17).

An interesting subclass of (16) is obtained when the kernel K is
chosen diagonal, thus leading to the expression [10]{11]:

P, f) = s | % i2mtf(\u)-A(-u)

-0

(18)
Z(fNw)Z" (fM—w))u(u)du

where y is such that p*(—u) = p(u) and A is any positive function
verifying the following conditions:
(i) A(0) =1

(ii) The correspondence u — VA% is a one-to-one mapping from R
to R*.

If in addition p is real, positive and even, P satisfies the time
reversal covariance; namely P(—t, f) corresponds to the time reversed
analytic signal Z*(f).

The affine time-frequency representation (18) has many properties;
we mention the following, assuming that p(0) = 2| A’(0) |.

Instantaneous spectrum interpretation

| Patt, pyat = 7 2(5) P (19)
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Probabilistic expression of the time delay
Computation of the conditional mean:

J2o tP(t, £)dt

using (18) leads to the formula:

T9(f) = ——— (20)

where ¢ is the argument of the analytic signal Z(f). Obtaining (20)
requires derivability of u at u = 0 and this implies 44/(0) = 0 since p
is even.

Usual narrow-band interpretation

If Z is different from zero only in a neighborhood of frequency f, its
contribution to (18) will occur around u = 0. Developing A about
u =0, we can write (18) as:

oo

Pt f) = fr0st [~ mmfug (114 22 (0~ By g (a1)

This coincides with the Wigner-Ville function provided g=2r+1.

In the following, two types of constraints are introduced directly on
the kernel K (equation 16); they both lead to form (18) with specific -
expressions of A and the above properties will always be satisfied.

3 The tomographic construction

In this approach, the emphasis is laid on the probabilistic aspect of
the description. To give a feeling for the method, we first recall the
situation in the case of the Wigner-Ville function W corresponding
to an arbitrary complex signal S(f) [5].

Function Wy can have negative values and hence is not a true
probability. However it retains some probabilistic features. In
particular, mean values of quantities Q(t, f) defined on the time-
frequency plane are computed using Wy as follows:

<q>=[" [ " Wslt D) Fdeap (22)

In addition, Wy satisfies the marginal condition:

f : Ws(t, f)dt =| 5(f) 2 (23)
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The r.h.s. of this equation is a positive density and this allows to
interpret mean values of functions Q invariant by time translations
(i.e. independent of t) as probabilistic averages:

<Q>=[" [~ wst.nQU)dds = IECRC

In fact the probability density occuring in this expression could as well
be directly introduced as the square modulus of the signal components
in a basis of functions invariant, up to a phase, by time translations.
This latter approach permits to generalize the marginal condition (23)
as:

/_o:o /_o:o W(t, f)8(y — tcosp + fsing)dtdf =| S(v,0) > (24)

where ¢ characterizes a given direction in the time-frequency plane.
The quantity S(7,¢) is the coefficient of S on a chirp-like basis and
is given, modulo a phase, by:

oo o 2ty ¢
IR

S(v,#) /_oo T
This basis is derived from the condition of invariance (up to a phase)
by time-frequency translations in the ¢-direction. From an analytic
point of view relation (24) has the form of a Radon transform [12] and
its inversion gives a way of constructing the Wigner function [13].

" Now, we will apply the same procedure to the affine group. We
refer to [14] for more details. Because of this affine covariance, the
instantaneous spectrum property becomes:

| Pott, pae= p 2D T (26)

Again, it is interpreted as a time marginal and yields a density for
functions @ on the time-frequency half-plane I't which are invariant
by time translations. The generalization of (26) is obtained by
considering arbitrary subgroups G¢ of the affine group A (equation 7)
labelled by a real number ¢ and defined by the following relation
connecting the parameters a,b of A:

b=¢£(1-a)

The trajectories of G¢ in I'" through the point (%o, fo) are hyperbolas
with equation:

_b
t="+¢ 27)
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where 3 = fo(to — £). For each ¢, the associated basis is obtained by
réquiring its invariance up to a phase by action of G¢. The generalized
marginal condition can then be written as:

[ 7 et pyste - ? — O dtdf = Me(B) 2 (28)

where M is the Mellin transform of Z defined by:

Me(8) = /0 ~ 2(f) TS g (29)

Considered for all values of 8 and &, the tomographic condition
(28) defines Pz by its Radon transform with respect to hyperbolas.
An analogous transformation has also been used by Maas [15] in a
different context. The inversion is easily performed using a Fourier
transformation and yields [14]:

Pot,f) = 0 [ g (3 w) 2 (Fho(—u)

(30)

(55b u ) e

ueu/Z

2sinh §
Thus, Py belongs to the family of diagonal forms (18) with:

where Ao(u) =

1(0) = 2X'(0) = 1

As such, it satisfies relations (19) ~ (21). Moreover, the following
important properties of this distribution together with its tomographic
construction lead to consider Py as the true analogue of Wigner’s
function for the affine group.

Unitarity or ‘Moyal’ property
Unitarity of P, is expressed by the relation:

/—c: /0°° Po(t,f)P(;(t, f)f2thdf =[(Z, Z/) |2 (31)

where Py, P} are the distributions corresponding to Z and Z’ respec-
tively.

In general, Py is not everywhere positive and this formula gives a
way of constructing a smoothed positive version of (30). This will be
developed in section 5.
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Localization

Signals Z;, localized at time to are defined so that their transformation
by the affine group yields a signal localized at time ato+b. Hence they
must satisfy the relation:

Zasors(f) = a" e 70 Z, (af)
Up to a constant factor, the solution of this equation is:
Ziy(f) = 7t 2] (32)
The P,-representation of such a signal is given by:

Pyo(t, £y = f79716(t — t0) (33)

This result is in agreement with both constraints of localization in %o
and of affine covariance defined by:

a9 Py (a7 (¢ — b),af) = Pato+b(t, f)
More generally, it can be verified that all signals of the form:
Z(f) — f—r—'le—j27rﬂ In fe—j21rtof (34)

are represented by localized distributions:

Po(t,f) = 76t —to— g) (35)

These states concentrated on hyperbolas in the time-frequency half-
plane can be viewed as explicit realizations of “Doppler invariant”
signals [16].

Extended covariance

It turns out that the joint distribution Pp given by (30) is in fact
covariant by a larger group Go of transformations g = (a,b,c) where
(a,b) is an element of A and c is real. This group acts on the signal
Z as:

2(f) - 29(f) = a" e eI N Z(af) (36)
The resulting change on Po is:

Pz — Pgolt, f) = a?Pz(a”}(t — b — §>,af> (37)

Conversely the requirement of covariance by this three-parameter
group Go would allow the construction of (30) up to an arbitrary
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function. This hints to a new method for constructing affine time-
frequency distributions that will be presented in the next section.

4 Two special families of affine
distributions

4.1 Extension of the affine covariance

Affine distributions are now constructed by requiring an extended
covariance with respect to three-parameter groups which, like Gy
above, contain the affine group [17]. All such groups are well known
from mathematical studies [18]. The most familiar one is probably
SL(2, R) which has been studied from a phase space viewpoint by A.
and J. Unterberger [19]. It leads to a Wigner function which is not of
the diagonal form (18). All other groups form a family G}, labelled by
a real number k and defined as follows. For k # 1, G}, is the group of
elements g = (a, b, ¢) with multiplication law:

99’ = (ad’,b+ ab',c + a¥¢))

Group G has the same elements (a, b, ¢) but its composition law is:

99' = (ad,b+ ab’ + a(lna)c, c + ac')

Consider now the action of these groups G within the set of
analytic signals Z belonging to L?(R*) and denote by Z9 the signal
transformed by g. Three different formulas are obtained according to
the value of &:

Z9(f) = a™e OIS Z(af) k £ 0,1 (38)
Z9(f) = a"tle 2 bf el N 7 f) k=0 (39)
Z9(f) = amHe 92 Cfrefnf) 7(af) k=1 (40)

These can be shown to be the only admissible transformations. In
particular, other representations of G_; involving frequency transla-
tions are not allowed because they would drive Z out of the class of
analytic signals. The action of Gy in the time-frequency half-plane
can be rigorously derived by identifying phase space with the Kirillov
orbit corresponding to each of the above representations [20]. This
action, denoted as follows:

&, f) = g.(t, f)

induces a transformation law on P according to:
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P(t,f) = P4(t, f) = a*P(g7".(t, f)) (41)
The computation of P9 for each value of k yields:

PI(t, f) = a?P(a™ (t — b — kef*!),af),k #0,1 (42)

PIt, f) = aqP(a_l(t —b— %),af), k=0 (43)
PI(t, f) =a?Pla }(t—b—c—clnf),af), k=1 (44)

The constraint of covariance by Gy is:
Pzs(t, f) = a?Pz(g~.(t, f)) (45)

and can be written down using (38)—(40) and (42)—(44). The time-
frequency distributions satisfying (45) and time reversal invariance are
found to be of the general form (18) and are given explicitely by [21]:

Pult,f) = fr-et? /°° 32Tt f Ok ()~ Mk (— )

(46)
Z(fM(u)Z" (f e(— ) pr(w)du
where
() = (kf__,:;——_li)ﬁ (47)

and pi is a real, positive and even function. Graphs of Ak(u) are

given in figure 5.2. The cases of G,k # 0,1,Go and G had to be

considered individually but the final result (46) is valid for any real k

provided function (47) is defined by continuity for k =0 and k = 1.
For any k the functions Ag(u) verify the properties:

Ak(u) = e*Ag(—u)

and

— N =

As a result, whenever pu is such that p(0) =
satisfies the general relations (19)—(21).

, the distribution Py

Remarks

e The action of G, on P given in formulas (42)-(44) becomes
natural when related to the time delay property (20). Indeed
the derivative of the phase in (4.1) gives the time translation in
(42)(44). |
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Figure 5.2. Graph of the A,-functions (4.5).

e Another interpretation of (46) is obtained by performing a
Fourier transformation on time:

Puvf) = [ emmpg, pa
= £ 7 s = D) + ()

Z(F () 27 (f Ne(—w) ) (w)da

This operation shows that P (v, f) is related to Z (f1)Z*(f2) by a mere
reparametrization of the first quadrant (f1, f2) — (v, f ) defined by:

J1= fAr(u) J2 = fa(—u) v=fi—-fa

and illustrated in figure 5.3. For comparison, one may recall that the
change of variables:

fi= (v Jfo=fA_i(—u)

followed by a Fourier transformation on f leads to the symmetrized
wide-band ambiguity function [22).

We will now investigate special cases of tx leading to distributions
satisfying unitarity and/or localization properties.

|
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Figure 5.3. f,/f as a function of f}/f for various k.

4.2 A family of unitary distributions

The unitary or Moyal property (31) will be satisfied by distributions
Py, provided py is given by:

d 1
W = e (o Or@) = M=w)* (49)
From the properties of A, it results that:
i (0) =1

Some special cases of unitary distributions will now be exhibited.
— When k = 2, formulas (46) and (48) lead to:

2f . 2 1
Pt f) = £ [, PR = 2+ P R (49

Taking into account the fact that Z(f) = 0 when f < 0, we recognize
the Wigner-Ville function restricted to the analytic signal provided
g=0and r= —%. Here it must be stressed that the extension of
expression (49) to the whole time-frequency plane performed according
to formula (17) would not yield the usual Wigner-Ville function.

— When k = 0, the unitary distribution PY coincides with the
tomographic solution (30).

— When k tends to 00, the limits Ay of Ax and the corresponding
distributions Pg can be written down. Taking the arithmetic mean

of Pg and PY, we get:

LPY + PY) = provip{e iz () [ St zi) (50
0

et i 2
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Far r =

—1 ¢ = 0, this is exactly the Margenau-Hill-Rihaczek
distribution T 3.

4.3 A family of distributions with localization
properties

We now require that localized signals Z;, given by (32) be represented
by distributions Py, confined to the line t = o (equation 33). This is
possible provided the following two conditions are satisfied:

(i) the correspondence u — (Ag(u) — Ax(—u)) is a one-to-one
mapping from R to R.

(ii) p is equal to:

W) = (2 Ohe(a) = M) QM) ™ 6D

Condition (i) implies that k is necessarily negative or zero for
localizable distributions. This excludes, in particular, the case k=2
which has been shown to correspond to functions of the Wigner type.
Condition (ii) ensures that:

pe(0) =1

The case k=0 stands out since the corresponding distribution can
cumulate both properties of unitarity and localization. In fact, the
only localized distribution PkL such that:

pt=pPY

is given by (30).
Another known example of localized distribution PkL is obtained
for k = —1. This case is characterized by the functions:

A(u) = e? p—1(u) = coshg

and the corresponding time-frequency distribution is the “active
Wigner function” of A. Unterberger [24]. Its main interest lies in
the fact that it allows some analytic computations. Distribution PL
can also be seen as the only translation covariant member in a class
introduced by R. Altes [25].

For general negative k, the extended covariance (45) can be applied
to localized signals Z;, and their representations P, The operation
shows that the family of signals:

Z(f) — f—r—le-j21rcf’° e—j21rtof (52)

is represented by:

PL(t, f) = f7926(t — to — kef* ™) (53)



182  Time-Frequency Signal Analysis

This result is reminiscent of an analogous property of the Wigner-Ville
function with respect to chirps. However it must be stressed that all
signals arising here are analytic.

Distributions P,f’ are non-unitary for k # 0. Yet they can be paired
with distributions P,f’[ defined by the duality relation:

/_":o /000 PE(t, £)PPM (¢, ) fPdtdf =| (2,2") |?

where PF and P{M correspond to Z and Z' respectively. The
expressions of P,?’I are given by (46) with

p = () Ae(—w))

The dual function P,g” , k <0, has a tomographic property, i.e. its
integrals along curves t = tg + kc %=1 yield a positive density:

/°° /0°°P,§4(t, £)6(t = to — kef* 1) f9Ndtdf =| N(cto) 2 (54)
where

N(c, to) = /(;oo Z(f)ej27"cfkej27ftoffrdf

It can be shown that the Radon transform in (54) is invertible and
this gives a means of constructing P,?/[ directly.

5 Affine smoothing

The construction of positive time-frequency representations can be
performed through an affine smoothing. One way to proceed is to
use Moyal’s formula (31) with a special choice of P’ as will now
be discussed. If Z s, is a reference signal attached to the point
t =0, f = fo, the signal Z ) is defined by affine transport as follows:

— f —r-1 —i2nf’ fO
Zap(f) = (%) e’ ftZ(O,fo)("f"fI) (55)
Consider now distributions P(g 7,y and P, corresponding respec-
tively to signals Z(g z,) and Z(; y) by formula (30). The expression of
P(s,f) is constrained by affine covariance to be equal to:

Puns )= (2 Pog (£ -0.07) 69
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A smoothed affine distribution P(t, f) of P(t, f) with respect to signal
Z(0,f,) is then defined by:

Pty =170 [~ [T P, fyposy e, py ey (s7)
—00 JO .

The factor f~7 ensures that P transforms under scaling like P.
Moreover, P is positive by Moyal’s formula (31) and equal to:

P(t, f) =| (2, Zup) 12 70 (58)

Using a recent terminology, we can say that the smoothed affine
function P(t, f) is, up to factor J 79, the square modulus of the wavelet
coefficient relative to the wavelet Z0,5,) [26].

An important property of an adequate smoothing is to perturb
as little as possible the original distribution. This will be realized if
Pis,f) is highly localized as was the Gaussian in the case of Wigner’s
function. To find the analogue for the affine case, we have to consider
the specific uncertainty relations. They now occur between the spreads
in the f and 8 variables where B is introduced by (29). Let os denote
the standard deviation of f defined by:

or=[[ -1 2) P preg) (59)

where fo =< f > is the mean value of f. In the same way the standard
deviation of 3 is defined by:

1
2

o= [ (8- 507 | Me(8) 2 d] (60)

where o = [ Zﬂ | Me(B) |2 dB

The operator—B corresponding to multiplication by 3 in the Mellin
space is defined by:

M¢[BZ] = M¢[Z]

and found equal to:

1 d .
B= —m(fﬂ+r+1+y27r§f)

Using this result and the isometry property of Mellin’s transform
which reads:

[ 12 P g | 1 M) 2 ap (61)
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we can write og as:

wo= [ 1B -2 0]}

An efficient way of obtaining the uncertainty relations is to consider
the following quadratic expression in the real variable A:

h(X) =|| [B = Bo + 27A(f — fo)lZ |2 0

where || Z ||2= (Z,Z) has been defined in (11). Minimizing h with
respect to A yields the inequality:

18

2.2
> _J0
op0f = 1672

(62)

The equality holds only if [B — o i 32mA(f — fo)]Z = 0 and this leads
to the analytic minimal states [27] defined by:

Z(f)=N F2m fo—r—1—j2mfo ,~2m(j€+ ) f (63)

Here, N is a normalization factor and A > O is an adjustable parameter
which characterizes the trade-off between the two spreadings along
curves f = fo and tf = fp in the time-frequency plane. For
Bo = & = 0, states (63) are localized in a neighborhood of the
curves t = 0 and f = fo; they are good candidates for states Z(q )
occuring in (55). The localized character of these states is illustrated
in figure 5.4 which gives an example of their Py-representation.

Figure 5.4. P,representation of the minimal signal (63).



Affine Time-Frequency Distributions 135

6 Implementation

The task of computing expressions like (46) may look forbidding.
In fact, the implementation is greatly simplified by using the Mellin
transform (29) which converts dilation operations into multiplications
by a phase factor. Computation can then be carried out with the help
of a fast Mellin transform technique. As we shall see, the efficiency of
the method is related to the time-frequency intepretation of the Mellin

variable given by P,.
/ t=C’B"‘lax/f

\‘ t=C'Bmin/ f

Figure 5.5. Hyperbolic boundaries of a signal.

Technically, the main step is a consistent discretization of the
Mellin transform along the same lines as the discrete Fourier case (28].
Start from a signal Z(f) whose Py-representation can be considered
as limited to a bounded domain of the time-frequency half-plane
(figure 5.5). It results from the general property (19) that the support
of Z(f) is itself bounded. More generally, the integrals of Py(t, f) along
hyperbolas t = B/ f + ¢, ¢ given, must vanish outside some (B-interval
and it results from (28) that the Mellin transform M¢[Z] must also
vanish outside the same interval. This observation is at the starting
point of the discretization of the transform. It will be developed for
€ = 0 but the general case can be easily obtained. Let f;, fo and 5,
P2 be the extreme points of the supports of Z and My[Z] respectively.
The following operations are carried out successively (see table 5.1):

— Dilato-cycling of Z with ratio Q > f, /f1 defines a signal ZP
given by:

()= 3 QUrtizgrp) (64)

n=-—oo

— Mellin transform of Z2. The result Mimp(B) is, up to a constant
factor, the sampled form of M|Z]:

Ming(8) = s 3 805 M) (65)
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— Periodizing M;pn,;,(3) with period Txﬂlﬁ >| B1 — B2 | leads to a
function denoted by Mf (8).

— Inverse Mellin transform of M{:np.
sampling of ZP denoted by Zil,)np.

The last two transformations will be consistent with the previous

ones provided @ = ¢V with N a positive integer. In that case, Mf,)np

will be a regularly sampled periodic function and Zi?np will be both
dilato-cyclic and geometrically sampled.

Computation then yields the direct and inverse formulas for the
discrete Mellin transform

This yields the geomet;ic

M+N-1

In@ ok E
MP D — k('r+1)e]27rkN ZD k 66
o) =N X ¢ @) (66)
—k(r+1) K+N-1
D ky _ 9 —j2npk P, P
zP(q o ,,;( e N M (~—111 Q) (67)

The integers K and M are determined by the supports of M(B)
and Z(f) respectively. The practical exploitation of these discretized
formulas can be carried out using any FFT algorithm.

The application of formulas (66), (67) to the computation of
functionals such as (46) makes use of general results concerning
the correspondence between multiplication and convolution in the
two dual spaces [28]. For an illustration we give a scheme for the
implementation of (30) in the case ¢ = 2r + 1. The value of the
parameter £ in the Mellin transform has to be chosen in accordance
with the time interval of the computation. However, in practice, a
time translation of the signal is always possible in order to be able to
work with the special form ¢ = 0. In a first step, the Mellin transform
Mo [Py] of (30) with respect to f is expressed in terms of the transform
Mo(B) of the function Z(f) = f3Z(¥). Setting tf = 1 and using
properties of M, we obtain: "

MIRJ(8) = [~ e (\wA(~u)?

[ 0wy sy an s -

— 00

()25 | au

This latter form clearly shows that the final result can be obtained by
a succession of FFT operations.
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Analogous techniques have also been used for the computation of
wide-band ambiguity functions [29] and wavelet coefficients. Whatever
the application, it is interesting to note that the exact expression of
the Mellin transform and the interpretation of the dual 3 variable have
emerged from the construction of the distribution Fp. This result is
one more example of the interest of time-frequency methods in signal
analysis.

7 Summary

The constraint of affine covariance is shown to be relevant for the
derivation of time-frequency representations. It works on the space of
analytic signals and leads to a class of “affine” distributions which is
the counterpart of the Cohen class associated with time and frequency
translations. A subclass is exhibited with the property, among others,
of approaching Wigner-Ville’s function when bandwidth goes to zero.
In this subclass two families of distributions are selected by a principle
of extended covariance. The first one consists of distributions which
verify unitarity also called Moyal’s property. The second family
is composed of distributions ensuring accurate representation for
time localized signals. Only one distribution, labelled Py, belongs
simultaneously to the two families. This distribution, which is also
obtained by the tomographic approach, plays the same role in the
affine class as the Wigner-Ville distribution in Cohen’s class. In
particular, it associates delta functions on hyperbolas with analytic
Doppler-invariant signals, thus exhibiting a property analogous to
Wigner-Ville’s with respect to chirps.

Extended forms of the various affine distributions are also intro-
duced to obtain representations of complex signals on the whole time-
frequency plane. The use of the real signal in these forms has just
the effect of producing a symmetrization of the result obtained with
the analytic signal. In any case, the construction based on the affine
group guarantees that no spurious interference will ever occur between
positive and negative frequencies.

A practical result of the study concerns the use of the Mellin
transform in signal theory. Indeed distribution P gives a time-
frequency interpretation of the dual Mellin variable and thus allows to
develop discretization of the transform with correct use of sampling
theorems. This leads to a fast procedure for the computation of
broad-band functionals containing stretched forms of the signal such
as broad-band ambiguity functions, wavelet coefficients and affine
distributions.
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