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Abstruct-Target  position  estimation  in radar  and  sonar  means pint  
estimation of range  and  angle in  the  presence of noise and clutter.  The 
global  behavior of a  maximum likelihood (ML) position  estimator,  and 
the  clutter  suppression  capability of the  system, can be written in 
terms of a  range-angle  ambiguity function.  This  function  depends 
upon  signal  waveform  and  array configuration, i.e., upon  both  tem- 
poral  and  spatial  characteristics of the  system. 

Ambiguity  and Mliance bound  analysis  indicates  that  system  band- 
width can often be  traded  for array size, and direction-dependent 
signals can be used to obtain  better  angle  resolution  without  increasing 
the  size of the array.  Wide-band direction-dependent  signals  (tem- 
poral diversity) can be  traded  for  large  real  or  synthetic  arrays  (spatial 
diversity). This tradeoff is apparently  exploited  by  some  animal 
echolocation  systems. 

The  above  insights are obtained  mostly from the  properties of the 
rangeangle  ambiguity  function. In general, an  appropriate  ambiguity 
function  should be very  useful  for  the  design  and  evaluation of uny 
ML parameter  estimator.  System  identification  methods  and  radio 
navigation  systems,  for  example, can be optimized  by  minimizing  the 
volume of a  multiparameter  ambiguity  function. 

s INTRODUCTION 
YSTEM requirements for radar, sonar,  or diagnostic 
ultrasound include parameters  such as array size, signal 
bandwidth, and  processor complexity (measured  by the 

time-bandwidth product of the signal, data storage capacity, 
and processing time). System performance involves quantities 
such as estimator variance, resolution, and  clutter rejection ca- 
pability. Performance can be measured in terms of Cram&-Rao 
(CR) bounds,  ambiguity function  properties,  and signal-to- 
clutter  ratio. If these performance measures can be written  in 
terms of array size, signal bandwidth, and  processor com- 
plexity (system  requirements), then  tradeoffs  between require- 
ments  such as array size and  bandwidth can be assessed. 

CR bounds [ 1 1, [ 21 provide  a  local measure of estimator 
accuracy for particular values of the estimated  parameters. In 
terms of a hypothesis  test, CR bounds are  useful when the 
hypothesized parameters  are nearly equal to their  true values, 
i.e., when there is good prior  information  about  the param- 
eters  that are to be  estimated. CR bounds are often  obtained 
by assuming that  the  data consists of a signal that  depends 
upon  the  unknown parameters,  added to white Gaussian 
noise (WGN).  If the  data actually consists of additional, 
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spurious signals (clutter),  then  the WGN assumption is invalid, 
and meaningful CR bounds can  be obtained only after a more 
general probability  distribution has been  worked out. 

The ambiguity function  [3],  [4] illustrates the global p r o p  
erties of a  maximum  likelihood  (ML) estimator.  In  terms of a 
hypothesis  test,  the ambiguity function shows the response of 
the  estimator to all possible values of the hypothesized param- 
eters,  when the  true parameters are specified. Possible.confu- 
sion between  different  parameter values can thus be illustrated. 
Like CR bounds,  the ambiguity function is often derived 
under a WGN assumption,  but  the  effect of spurious echoes 
can be  analyzed in terms of this idealized ambiguity  func- 
tion,  and  its  utility is not restricted to the WGN case [ 51 - [ l o ] .  
In view  of these properties, it is not surprising that ambiguity 
analysis often results in the  imposition of constraints  upon a 
system design that minimizes  a CR bound.  For  example,  the 
ambiguity function gives the accuracy of prior knowledge 
that is required  for  such a  system. 

We shall consider properties of both CR bounds and the 
ambiguity function  for  joint range-angle estimation.  Targets 
that are in  the  near field of an  array, as well as in the far  field, 
will be considered, since the effective size of synthetic aper- 
ture arrays is so large that  the far-field assumption is often 
violated. Diagnostic ultrasound arrays for  examination of 
near-surface effects  (breast  and  parotid  tumors,  carotid  artery 
wall thickness) will sometimes  operate in a near-field con- 
figuration, and passive sonar  systems  with widely separated 
sensors must also be analyzed without far-field assumptions. 

The ambiguity function  approach to radar/sonar signal 
design is well established [ 31, [4 ] ,  [ 111,  and  this  paper uses 
a similar method  for combined signal and array (temporal  and 
spatial) design. Ambiguity analysis, however,  has apparently 
been  neglected for  other  parameter  estimation problems,  and 
it has been  confined to  the  radarlsonar  literature.  One  pur- 
pose of this paper is to illustrate the advantages of multi- 
parameter  ambiguity analysis (Kelly and Wishner [ 121) in a 
more general context. 

It will be shown that  the volume of the ambiguity function 
provides  a  measure of the  extent  to which different  parameter 
estimates can be separated  from each other  and  from a  back- 
ground  that may  include spurious signals as well as noise. By 
far  the best known ambiguity function is associated with delay 
and  frequency shift  measurements, using narrow-band signals 
[ 31.  The volume of this ambiguity function  depends  only 
upon signal energy, and  the resulting  volume  invariance for 
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Element #k 

Fig. 1. Definitions of angles  and  distances for a planar array of receiving  elements. 

energy  normalized signals can be interpreted as a radar un- 
certainty principle [ 131.  The volume  invariance of the narrow- 
band  range-Doppler  ambiguity function is more  the  exception 
than  the rule,  however, [ 141, [ 151,  and  the analysis in this 
paper demonstrates  that minimization of ambiguity  volume 
can be an important  technique for the  optimization of a 
parameter  estimator. Minimization of ambiguity  volume 
should  be especially applicable to signal design for system 
identification, a branch of control  theory  that has much  in 
common with radar/sonar design. 

Animal sonar  or  echolocation  is a biological phenomenon 
that is especially fascinating to radar/sonar engineers. One 
of the first  proposals for a  man-made sonar system was sug- 
gested in  1912,  after  the  Titanic disaster, as a simulation of 
the  “sixth sense of the  bat” [ 161, [ 171. Photographs of 
bats  in pursuit of insects among foliage [ 181 seem to indicate 
a high degree of clutter suppression capability,  and  the e c h e  
location  performance of cetaceans  in  shallow,  reverberation 
limited environments is also impressive. Animal sonars  oper- 
ate  under a  significant constraint;  their receiving “arrays” 
consist of only  two closely spaced  elements. Many echo- 
locating animals, however, have evolved extremely wide- 
band systems, and  the highest frequency is often  more  than 
three times larger than  the lowest frequency [ 191. We know 
that increasing a signal’s bandwidth results  in better range 
resolution [ 31, [4] and  better target  discrimination  capability 
[20]-[ 251, and  that large time-bandwidth products can be 
advantageous for wide-band velocity resolution [ 261, [ 271 or 
for  Doppler  tolerance [ 281-[30]. We also suspect that  the 
use of wideband signals may be  associated with  better angle 
measurements [ 3 1 1 ,  [ 321,  and  that echolocating  animals  may 
be  able to compensate for limited  array  size  by using larger 
bandwidths. The following analysis indicates  that this suspi- 
cion is well-founded. 

For  the reader who is interested in radar, sonar,  diagnostic 
ultrasound,  and animal echolocation,  the  paper should  provide 
some  useful  results and insights. For  the reader  who is in- 
terested in other  parameter  estimation problems, the specific 
results are  not so important,  but  the general approach illustrates 
a  useful  system design philosophy. 

PROBLEM FORMULATION AND GENERAL RESULTS 

In this  section,  expressions for CR bounds  and  the ambiguity 
function are derived for  the  position  estimation problem. The 
results will apply to all planar  array  configurations. No as- 
sumptions  about array  shape or target position will be i n t r e  
duced,  except  for  the simplifying assumption  that  the target 
lies in the plane of the receiving array. 

Let E(w) be the  Fourier  transform  of an echo, measured at 
the target. The frequency-domain  response of the  kth array 
element to  the  echo is: 

F d o )  = exp (-io7,) (1) 

where 

A k  E complex gain of the  kth element (2) 

7k E delay from target to  kth element. (3) 

In  (1)-(2),  it is assumed that  the  transfer  function of the  kth 
array  element is constant, i.e., it is independent of direction 
and  frequency.  Frequency  independence is sometimes as- 
sociated  with  a  narrow-band assumption, since an element’s 
transfer  function is approximately  constant over a  sufficiently 
narrow  frequency band. The  more general case can be in- 
vestigated by substituting A& w )  for Ak in  the following 
development, where the direction parameter 0 is defined 
below. 

Let L be a  straight  line  segment between  the elements of the 
array that are furthest  apart.  The range parameter 7 is defined 
as the delay between the target and  the  center  point P of L ,  
i.e., the  point  that lies midway between  the  extremities of the 
array (see Fig. 1). The  direction  parameter 0 is defined to 
be the angle between the  normal to L at P and  the line seg- 
ment between P and  the target. Movement of the target 
counterclockwise around P causes 8 to increase, i.e., 0 is 
positive in the counterclockwise direction. 

The position of each  array element can be  defined  in the 
same way as the target  position. In Fig. 1, the  kth element 
position is described in terms of the direction  parameter 
$k and  the distance dk from P, where $k is the angle between 
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the  normal  to L at P and  the  line segment  between P and  the 
array  element. From Fig. 1, a  general  expression for rk is 

rk = [ r2  + ( d k / ~ ) 2  - 2 ~ ( d ~ / ~ )  cos (@k - e ) ]  ( 4 )  
and rk depends upon  the  unknown parameters r and 8 ,  as well 
as upon  the  known  parameters dk and @k. 

The array  element  responses in  the absence of noise can  be 
represented  by  a column  vector m(r, e )  of complex  numbers. 
The first N elements of m(r, e )  are  frequency samples of 
Fl(w) in (1).  The  next N elements  are  samples of F,(w), 
etc. For  an  integration interval T ,  the N discrete frequency 
samples  are  separated  by n/T rad/s. For K array  elements, m 
has KN elements. 

In representing F k ( w )  by N discrete frequency samples, it is 
assumed that  the response of the  kth element is time limited. 
Although  a time limited signal cannot be  band limited,  it is 
assumed that,  for any  acceptable mean-square error E > 0 
between the original time signal and the  time signal that is 
reconstructed  from N frequency  components,  there exists  a 
bounded  number N such that  the  meansquare  reconstruction 
error is less than E .  

In Gaussian noise, a data  vector r is observed,  where the 

where m = m(r, e )  are the  expected responses in (9, i.e., 
frequency samples of F k ( w )  in ( l ) ,   for  k = 1, 2, . . . , K. The 
derivatives in (7) are evaluated at  the  particular r and e values 
that  correspond to the target's true position. The diagonal 
terms of J-' are  the  CR  kounds  for  the variance of the range 
and angle estimates 7̂  and e ,  

elements of r are the  frequency samples of Fl(w), F,(w), * . . , Var (7̂  - 7) 2 [JT7 - (JdJer/Jee)I- '  
FK(w) when noise has  been added to the echo. The con- 
ditional  probability density function  (PDF) of the noisy data Var (8 - 8 )  2 [Joe - (JdJo7/JT7)] -' . (8) 

is [311 In order to obtain simple mathematical expressions for  the 

p(rIr, e )  = (nKN/'~C~)-' exp - [ r  - m(r, e ) l * i j [ r  - m(r, e ) ]  above variances, it will be assumed that 

(5) 
Q=N-' 0 1  ( 9 )  

where c= a-' is the noise covariance matrix and  the asterisk 
denotes a  conjugate-transpose operation. 

In  the presence of multiple targets  and  clutter  or reverbera- 
tion, as well as noise, it is still possible to use a Gaussian PDF 
as in (5), provided that  an  appropriate covariance matrix is 
determined [ 3 3 ] .  The  PDF  in (5) may appear to be unrealistic 
for sea clutter, since the envelope of a Gaussian clutter process 
is Rayleigh distributed, while the measured PDF of envelope 
detected sea clutter echoes is often  more log-normal than 
Rayleigh [ 341, [ 351. The empirical log-normal model  for  the 
clutter envelope  indicates that  the underlying PDF of the 
time  domain  clutter process decreases more slowly in the 
"tails" than  the Gaussian distribution.  The use of a frequency 
domain  representation in (5), however, implies that  time 
domain echoes are effectively passed through a bank of 
narrow-band  filters  with  impulse  responses that are T s long. 
The sampled responses r of these filters tend to be much  more 
Gaussian than  the original time domain distribution [ 361. 
ML estimates of range and angle are the values of r, 8 that 

maximize p(rIr, e )  in (5) for a given data  vector r .  The as- 
ymptotic variance of these  estimates for  many observations 
of the  data can be obtained  from  the  matrix CR bound [ 1 1 ,  
[ 21. The  CR  bound is defined for a particular  value of r,  8 ,  
and it does not  take  account of the possibility that  two very 
different  parameter pairs r l ,  0 and r 2 ,  8,  may yield nearly 
equal local maxima of p(r17, e). The ambiguity function is a 
global measure of ML estimator  performance  that reveals 
the  parameter pairs which are most  likely to be  confused 
with one  another, i.e., which  are  associated with  an  ambiguous 
interpretation of the  data. We shall obtain general  expressions 
for  both  the CR bound  and  the ambiguity function. 

When range r and angle 8 are both  unknown, CR bounds 
for  their  joint estimates  are determined by  inverting the 

where No is the noise power  spectral density and I is the 
identity matrix.  This  assumption  means that  the noise is 
white and Gaussian, and  that  the noise at each of the K array 
elements is statistically independent of the noise at  any  other 
element. The CR bounds  that are obtained  by using (9) are 
generally not relevant for  an  environment  that includes multiple 
targets and  clutter  or reverberation, although  it may  be pos- 
sible to  approximate a diagonal covariance matrix  by using a 
large integration time T for  the  computation of the  frequency 
domain samples r [ 371. The WGN assumption yields  idealized 
bounds  that convey only qualitative information  about  the 
relation between  system requirements  and performance. 
These  qualitative insights, however, can be very important. 
For example, CR bounds  for WGN show  that  the accuracy of 
angle estimates are not  completely  determined by the physical 
beamwidth of the receiver [ 3 1 1. 

Substituting (9 )  into (7), we have 
OD K 

Jt7 = 2N;'(T/n) wZIE(w)12 dw I&IZ(ark/ar)2 I_ k = l  

(1 Oa) 
OD K 

J d  =JOT = 2 N  O'(T/n) wz IE(w)lz d a  l&lZ 
-OD k = l  

- ( a ~ , / a m ~ , / a e )  (1 Ob) 
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simplifications  can be obtained  under  appropriate assump- 
tions  about  the relative magnitudes of 7, Tk, and dk/C. Some 
of these  simplifications will be discussed in  the sequel. 

A range-angle ambiguity function is obtained by studying 
the behavior of the  conditional  probability density function 
when we try  to  determine ML estimates by  trial-and-error. 
This procedure  has been  utilized  by Urkowitz et al. [38] to 
derive an angular  ambiguity function x(8 ,  8,). 

The ML estimates 7, 8 are the values of the  hypothesized 
range  and angle TH, 8, that maximize p[rITH, OH] or  that 
minimize 

E = [ r  - m(TH,  OH)] *@[r - m(TH, OH)] (11) 

where 

r = m ( 7 , e )  + n 
and where n is a vector of zero-mean complex noise samples. 

between r and  m(?H, 8H). Since 
The mean value of E is the weighted mean-square err01 

k=1 n=1 

we see from  (1)  that 11 m(7, 8)(l does not  depend  upon 7k, and 
it is  therefore invariant  in 7 and 8. If Q is given by (9), it 
follows that  the mean  value of E is minimized when ~ ( 7 ,  TH, 8, 
8H) is maximized, where 

k = l  
P m  

k = l  

where R(T)  is the  autocorrelation  function of the  echo  and, 
from  (4), 

The trial-and-error ML estimator can  be  conceptualized  as  a 
large number of filters,  each matched  to a different  set of 
values of the  known parameters. The ambiguity function 
X(T, TH, 8, 8,) describes the  outputs of these fiters when a 
noise-free signal is present at  the  input to the system. If the 
ambiguity function is large for more than  one  set of hypoth- 
esized parameter values (TH, OH), then  the  introduction of 
noise can easily lead to  erroneous estimates. 

The range-angle ambiguity function in (13) was obtained 
under  the WGN assumption (9). Unlike the  CR  bound  for 
WGN, the ambiguity function in (1  3) can be applied to the 
analysis of system performance in the presence of clutter  or 
reverberation and  multiple  targets [ 51 - [ l o ] .  If a point target 
is at position 7 ,  8 and a point  clutter  reflector is at position 
T,, e,, the  output  power of a correlation processor due to  the 
clutter  reflector is 

clutter response (7, e) a I x ( T ,  T,, 8, &)Iz. (1 5) 

The  expected  output  power  due to a superposition of statisti- 

cally independent  clutter  reflectors is 

PC = E  {clutter  response (7,8)} 

0: l: [I_ p(Tc,  e,)Ix(T, T,, 8, ec)lZdT, de, (16) 1 
where p ( ~ , ,  8,) is a PDF  [51  or scattering function 191 that 
describes the  distribution of clutter  in range-angle space. 

The  correlator response to the  target is 

PT a IX(T, 7 , 8 ,  u z  (1 7) 

and  the signal to  clutter  ratio (SCR) is 

SCR = PT/PC. (18) 

For  the case when p(7,,  8,) is uniform, e.g., when there is no 
prior knowledge of the  clutter  distribution, we have 

SCR-' = Pc/PT = normalized  volume of I x ( T ,  TH, 8, 8H)I'. 

(19) 

One of the well-known properties of the narrow-band range- 
velocity  ambiguity function is volume invariance, i.e., the 
same ambiguity  volume is obtained  for  any energy  normalized 
signal (31. it would appear that this  volume invariance 
property does not apply to  other ambiguity functions, how- 
ever, e.g., the wide-band range-velocity ambiguity function 
[ 141, [ 151 and the  function in (13).  In  fact, we shall show 
that range-angle ambiguity  volume and SCR depend  upon  the 
bandwidth of the  radarlsonar system. 

An effective beamwidth can also be written  in  terms of (1 6). 
For a  target at angle 8, the  expected response from  clutter  at 
angle e,, integrated over range, is the  bracketed integral in 
(1 6 ) .  If this  integral is small relative to PT, then  the effective 
beam pattern has small gain at 8, when the  center of the beam 
(boresight) is aimed at  the target. For  uniformly  distributed 
clutter, 

Effective gain at 8, with boresght  at 8 
OD 

=pF1 I_ M, T,, 8, e,)lz d7,. (20) 

We have now  obtained expressions for CR bounds  and  the 
range-angle ambiguity function,  under a WGN assumption. 
The general target  and  array  description  in Fig. 1  has  led to 
comparatively simple notation  in  (10)  and  (1 3), where no 
assumptions  about specific geometries have been introduced 
(except  for a  planar  array  with  a  coplanar  target).  These 
expressions will now  be  applied to position measurements 
with  a  linear  array. 

LINEAR ARRAY, FAR FIELD 
For a  linear array, we have @k = fn/2  for all K array ele- 

ments. For simplicity of notation, we shall set $k = -n/2  and 
we shall allow dk to be negative as well as positive. In this 
case, equation  (4) becomes 

7k=T[1 +?-'(dk/C)' + 2 T - 1 ( d k / C ) ~ 8 ] 1 / 2 .  (21) 

If the target is in the  far field, we can assume that 

(dk-C)' << 7' (22) 
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and  (2 1) becomes follows easily from  the  inequalities 
W [r o’IE(o)l’ d o <  W’ I IE(w)l’ d w  (34) 

dilAk1’ < m a  ( d i )  lAklZ (35) 

-W 

K K 

k k =1  k=1 

which  become  equalities  when the signal energy is concen- 
trated  at *lV and  only  two  array  elements  with  the largest dk 
value  are  used.  These  solutions,  however,  have  undesirable 
ambiguity  properties.  A ML processor  should  be  evaluated 
not only  by  CR  bounds  but  also  by  ambiguity  function 
analysis. 

Although  significant  caveats  exist for  quantitative analysis 
of  (32)  and  (33),  the  bounds are  qualitatively  significant 
because they  illustrate  a basic interdependence  between 
signal  (temporal)  design  and  array  (spatial)  design. This 
interdependence will become  even  more  apparent  when 
ambiguity  functions  are  considered. 

The range-angle  ambiguity function  for  targets in the  far 
field  of a  linear  array is obtained  by  substituting  (23)  into 
(131, 

K 
x(T, TH,  8, 6,) = IAkl’R [ r  - TH + (dk/C)(Sin 8 - sin eH>1 

k = l  

= x(7 - T H ,  sin 8 - 6 H ) .  

(36) 
If e and 6, are less than  30°, 

K 
x(7, TH,  8, OH)  x IAkI’R[r - TH + (dk/c)(e - 8H)I 

k = l  

= x(Ar, Ad). (3 7) 

When the angle  hypothesis is correct, we have 6, = 8 or 
A8 = 0, and  (36) is proportional to  R(Ar),  the  echo  auto- 
correlation  function.  Additional  array  elements do  not affect 
the  structure of *AT, 0), and  this  structure  includes  many 
undesirable  sidelobes  when the signal is narrow  band. Fig. 2 
shows x(&, Ad) for  a narrow-band  pulse and  with two hydro- 
phones, i.e., for  the  “optimum”  system design that is obtained 
from  CR  bounds  as  in  (34)  and  (35). 

For  a single target in a  clutter-free  environment, Fig. 2 
indicates  that  an  accurate  position  estimate  can be obtained 
only if prior knowledge  restricts the search  area to  the central 
lobe of the ambiguity  function. The central  lobe  becomes 
more  narrow  as the signal frequency  and  the  distance  between 
hydrophones increase, so a  more  accurate  estimate  implicitly 
requires  better  prior knowledge  of the  estimated  parameters. 
Under  clutter-free  conditions,  one  might  then  expect the  two- 
hydrophone  high-frequency  system to  emerge as the  solution 
of  a  sequential  beam  forming  procedure [ 391. Ironically, such 
a  final  result  would  be  a  poor  starting  point  for  an  adaptive 
beam  former, if the  system begins without  prior knowledge 
of r and 8. The  optimality of the  two-hydrophone  con- 
figuration  depends  upon  accumulated  information  (prior 
probability  densities  with  small  variance),  and  the  result is 
useless without  this  information. 

Far-field  range  ambiguities  depend upon  the behavior of 
R(Ar),  the  echo  autocorrelation  function. R(Ar)  becomes 
more  impulse4ke when the  bandwidth of the  echo is increased, 

Substituting  (23)  into  (1 0) gives 

JTT = SNR D L  

Joe = SNR O L D ;  cos’ 8 

J d J e T  = (SNR D:MA cos e)’ 
where 

and 

Because J d  =JOT, the  product JdJ,gT in (8) is always  non- 
negative. For given values of JTT and Joe, and  for J d J e T  2 0, 
equation  (8)  indicates  that  the best  performance is obtained 
when 

J d  JOT = 0. (29) 

According to  (24c)  and  (28), this condition is obtained in 
WGN when the array is symmetric  about  its  midpoint, i.e., 
when 

d z = - d l ,   d 4 = - d 3 , * * *  

M z I Z  = M i l ’ ,  I A I ’  = IA312, * (3 0) 

or 
d l  = O ,  d 3 = - d z ,  d5 = - d 4 , . . *  

1 ~ ~ 1 ’  = I A ~ ~ ’ ,  I A #  = I A ~ I ~ ,  . (3 1) 

When either  (30)  or  (31) is true,  equation  (8)  becomes 

Var (? - r )  > [ SNR D L  ] -’ (32) 

var (8 - e) > [SNR D ~ D :  COS’ e] - l .  (33) 

Equality in (32)  and  (33) is asymptotically  obtained for a 
large number of measurements, if a ML estimate is used in 
WGN (no  clutter),  and  there is accurate  prior knowledge of 
target  location. 

What,  exactly, is meant  by  “accurate  prior  knowledge of 
target  location?” How  accurate is “accurate?”  Does  the 
required  accuracy of prior knowledge  change  when D L  and/or 
D l  are  increased in (32)  and  (33)? These questions  are  often 
left unanswered in the  derivation of  parameter  estimation 
methods  that are  based upon CR  bounds,  or the problem is 
sidestepped  by assuming that  the  estimates  are  consistent  and 
unbiased. It will become apparent, however, that ambiguity 
analysis  provides  straightforward  answers to these  questions. 

The  bounds in (32)  and  (33)  can be minimized by using two 
elements  at  opposite  ends of the array  and  a  narrow-band 
signal with  the  highest  allowable  frequency.  This  observation 
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Fig. 2.  Two hydrophones, narrow-band  pulse. Range-angle ambiguity  Fig. 3. Wide-band signal, two  hydrophones.  Range-angle  ambiguity 
function  for  sonar. function  for  sonar. 

and range  ambiguities can be reduced  by using a wide-band sig- 
nal. In the  two-hydrophone case, the  effect of switching to 
a wide-band signal is illustrated  in Fig. 3.  

Fig. 3 illustrates a decomposition of the  ambiguity  function 
into a  sequence of shifted  autocorrelation  functions when A8 
becomes  large. This effect is predicted by (37).  The  width of 
each autocorrelation  function is approximately 1 / B  s,- where 
B is the  echo  bandwidth. If (dk/C)A8 is greater than 1/B for 
all k in (37),  then a constant A8 profile of the ambiguity func- 
tion is a  sequence of K  nonoverlapping autocorrelation  func- 
tions, each with  amplitude lAk lZ .  Decomposition occurs 
when I A8 I > A80 , where 

= ( C / B ) / T  ( d k )  

- spatial  width of echo  autocorrelation  function - 
minimum distance  between hydrophones 

(38) 

The  ratio  in (38)  can be small if very large bandwidths are 
used. In the case of sonar, if B = 50 kHz and array elements 
are 1 m apart,  then A80 = 0.03 rad (less than 2”). 

For l A 8 l >   A 8 0 ,  it is easy to obtain  some  fundamental 
properties of the  ambiguity  function. Since  AT, A 8 )  for 
A8 constant  and I A81 > A80 is a sum of nonoverlapping auto- 
correlation  functions, we have 

max x ( A T ,   A e ) / x ( O ,  0) 
AT I IAOI > AO,, 

-1- 

Fig. 4 .  Wide-band signal,  five  uniformly  spaced  hydrophones.  Range- 
angle  ambiguity  function for sonar. 

A8 is related to the effective beamwidth of the system, as 
described by (20). Equation (20) gives the receiver response 
to uniformly  distributed  clutter  that is A8 radians  from  the 
center of the beam. For IA81> A d o ,  Equation (20) becomes 

2 1/K (39)  

with  equality when IAkI’ is the same for all k values (uniform * { I IE(w)14 [I lE(~)l ’  d a ] ’ }  . 
weighting). The sidelobe level for lA8l > AO0 can be reduced 

In terms of SCR, Equation (39) describes the maximum  re- 
sponse of the  system to a single clutter  reflector  that is A8 
radians from  the  target, divided by the response to the target 
itself. Equation (39) is thus a  measure of worst case SCR, 
where  the  clutter is restricted to a single point in T ,  8 space. 
For uniformly  distributed  clutter, SCR for a given value of 
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and 

Effective  gain &)( lAe I > Ae,radians from boresight > ~ / K B  

with  equality when IAk(’ = constant  (uniform  weighting  in 
space)  and  when (E(w)l’ = constant over  B (uniform weight- 
ing in frequency). These equality  conditions  are  the converse 
of the equality  conditions  for  (34)  and  (35), which  minimize 
CR bounds by  using the  ultimate  in nonuniform weighting. 

For  uniformly  distributed  clutter,  the  maximum  sidelobe 
level in  (39) is not as relevant as  the effective beamwidth mea- 
sure in (20)  and  (41). In order t o  produce  a  small  effective 
beamwidth  for  uniformly  distributed  clutter,  the  product KB 
should  be large, and  system  performance  depends  equally 
upon  bandwidth  and  array size. For a given array  size,  clutter 
suppression  performance  can be improved  by  increasing  the 
bandwidth of the  system. 

A more general  measure of SCR is the  normalized  ambiguity 
volume in (18)  and  (19).  It is shown in the  Appendix  that, 
when IE(w)lz is constant over  a bandwidth  B, 

SCR > B/(2n)’. (42) 
For  uniformly  distributed  clutter, SCR increases  with 
bandwidth. 

An upper  bound  can  be  obtained  for  a  two-element  system 
which  uses a maximum  wavelength A and  a  bandwidth  B  such 
that 

h Q the distance  between  receiving  elements 

B 2 one  octave. 

These  conditions  hold  for  many  animal  sonar  systems, e.g., 
the  bottlenosed  dolphin (Tursiops  truncatus) and  the large 
brown  bat (Eptesicus  fuscus). For  these  animals, 

SCR Q 2B  (43) 

when  clutter is uniformly  distributed. Many animal  echoloca- 
tion  systems have apparently  compensated  for  their  restricted 
array size by using  large  bandwidths. 

In summary, analysis of the  linear  array, far-field case has 
demonstrated  that  optimization  on  the basis  of CR bounds 
alone is not  a desirable  procedure  unless the  environment is 
clutter-free  and  there is good  prior knowledge of the estimated 
parameters.  The  required  accuracy of the  prior  knowledge can 
be  deduced  from  an  appropriate  ambiguity  function. Qualita- 
tive interpretation of CR bounds yields important insight into 
the  fundamental  tradeoffs  between signal  and  array  parameters. 
These  tradeoffs  can be further investigated  by computing 
bounds  on SCR, using the range-angle  ambiguity function. 
For  uniformly  distributed  clutter,  these  bounds  depend  upon 
bandwidth  alone  or  upon  the  product of bandwidth  and  array 
size.  Array size, independent of bandwidth,  becomes  impor- 
tant when the  clutter consists of a single reflector  with  par- 
ticular  values of T and e. 

LINEAR ARRAY, NEAR FIELD 
For  synthetic  aperture  systems  and  for  some  diagnostic  ultra- 

sound  and passive sonar  apphcations,  targets  are  often  in  the 
near field of  the  array.  The  elements of the Fisher informa- 
tion  matrix  are in this case obtained  by  substituting  (21)  into 
(10).  The  results  are 

J 

where SNR and DL were  defmed  in (25) and  (26) and 

(dk/C) Sin 8 + T 

T k  
ak = 

- approximate far-field delay to  kth element - 
actual  delay to  kth element 

delay to  center of  array 
delay to   kth element * 

( 4 5 4  

f lk  T / T k  = (45b) 

The  expression  for J,, indicates that  the  array  configuration 
is important  for near-field range estimation,  a  condition  that 
did not exist  for far-field measurements. As in  the far-field 
case, Joe depends  upon  both  temporal  and  spatial param- 
eters. If the gains A k  are to be  adjusted so as to  maximize 
J,,  and J o e ,  the  optimum weights will depend  upon  target 
position. This observation  suggests that  the gains A k  are no 
longer  decoupled  from  the  position  hypothesis T H ,  O H ,  and 
the gains  should  change as the  environment is scanned. From 
(451, the  element  that is closest t o  the  hypothesized  target 
position  should  have  the largest gain. The expression for 
J,eJe,  indicates that  the  elimination  ’of range-angle error 
coupling is more  difficult to  accomplish in the near-field 
case. This difficulty arises because  differences  in  the  near- 
field delays T k  depend  upon  range as well as  angle. 

The  expression  for  the  near-field  ambiguity  function  can 
be simplified if Tk in (21) can be written 

Tk % T {  1 t (1/2)[(dk/CT)’ + 2 ( d k / m )  sin 61). (46) 

If the  term in square  brackets is less than  unity,  the  error  in 
the above approximation is less than  6.4  percent. We are 
thus assuming that  the  distance  from  the  target  to  the  center 
of the array is larger than  the  array  itself.  Substituting  (46) 
into  (1 31, 

where 

The sum in (47) can have  an effect  that is similar to  broad- 
ening the  bandwidth. When 8 = O H ,  the near-field  ambiguity 
function  depends  upon  a  superposition of weighted autocor- 
relation  functions, where  each autocorrelation  function is 
scaled by  a  factor s k .  If the  echo  autocorrelation  function 
has  sidelobes  (local  maxima at AT # 0), the sum of scaled 
functions can have  a  smaller  sidelobe level than  a sum of un- 
scaled functions, since the maxima  for  the  scaled  functions at 
AT f 0 occur  at  different  locations  for  different scale  factors, 
s k .  We therefore  suspect  that  the range  resolution  capabilities 
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of near-field systems (e.g., synthetic  aperture) will often  be 
better  than we would predict  from  the signal autocorrelation 
function. 

When the distance from  the target to  the  array is smaller 
than  the size of the  array  itself,  the best way to  obtain a pic- 
ture of the range-angle ambiguity function is probably to 
evaluate (13)  by means of a computer. A function  of T H ,  8 H  
can be  displayed for  any  particular values of 7 and 8. The 
effect of sensor positions, gains, and signal bandwidth  upon 
ambiguity volume  can then be  empirically determined. If 
ambiguity  volume is used as a measure of system  perform- 
ance (SCR), then  the  optimum signal/array design can  be 
obtained  by  gradient  techniques [ 401. 

DIRECTION-DEPENDENT SIGNALS AND ARRAY ELEMENTS 
The  effect of transmitting  an angle-dependent signal is to 

replace I E ( w ) ~ *  in (13)  with ~ ( w ,  e ) E * ( a ,  8 H ) .  If the in- 
verse Fourier  transform of Ha, 8)E*(w, 8 H )  has s m d  maxi- 
mum  amplitude  for 8H # 8, the  ambiguity  function will be 
rapidly attenuated  for A8 # 0. 

The  most  common  method of achieving direction  depen- 
dence is through  the use of a narrow physical beamwidth. 
Other  methods include the use of a  frequency-steered array, 
a dispersive lens (for  sonar),  and  movement of the array  with 
respect to the  environment, so that  an  angle-dependent Dop- 
pler history is obtained  from each target.  The  latter  method 
is employed in synthetic  aperture systems [ 4 11, [421. Angle- 
dependent Doppler shifts could also be used in ultrasonic 
blood flow measurements, where  movement of the target 
would  replace movement of the  array. 

Direction-dependent array elements can also increase angle 
resolution [ 3  1 1 ,  To include the  effect of a direction-depen- 
dent  transfer  function,  the gain A k  in  (2) is replaced  by 
A k ( 8 ) .  More generally, we can take  account of the  temporal 
impulse  response of the  element by using A k ( 8 ,  a). The 
quantity 1 ~ ~ 1 ’  in (13) is then replaced  by A k ( 8 , W ) A $ ( 8 H ,  
a). The  effect is again to reduce  the level of  AT, Ad)  for 
nonzero A $ .  

A direction-dependent receiving element  that makes use of 
multiple  reflections, as in the  human pinna [431, imposes  a 
direction-dependent  convolutional  code  upon received wide- 
band  waveforms. If the receiver can decode  the resulting sig- 
nal, good angle resolution can be obtained  with a very com- 
pact physical array.  The tradeoff  here is between array size 
and processor complexity. 

It is likely that animal echolocation systems exploit direc- 
tion  dependence of transmitted  and received signals [ 3  11.  A 
transmitted  dolphin  echolocation pulse has different  struc- 
ture when it is observed at  different angles relative to  the 
animal [ 191, [321 and the  external ears of many  bats  are 
capable of imposing  a direction-dependent  code  upon re- 
ceived signals. 

EXTENDED TARGETS AND SYSTEM  IDENTIFICATION 

The  formulation  in  (1  1)-(13) can produce a generalized 
ambiguity function [38] for any ML estimation  problem, 
and  it would seem that  the  ambiguity  function should not 
be restricted to radar/sonar  applications. Ambiguity analysis 
should be especially beneficial for system identification, where 
CR analysis has already  been  applied to  the design of probing 
signals [44]  -[46].  The  shortcomings of signal derivations that 
are based upon CR bounds  alone have already  been  discussed. 
It remains to demonstrate  the  utility of ambiguity analysis for 
system  identification.  The advantages of ambiguity analysis 

should  be obvious if we can find a  system identification  prob- 
lem that involves radarlsonar measurements.  Parameteriza- 
tion of extended  targets is ideal for  this  purpose. 

An extended target can sometimes be described  as  a  distribu- 
tion of point  reflectors  or highlights  in range-angle space. 
Most diagnostic ultrasound  and  synthetic  aperture imaging 
systems are based upon  such a description. In estimating the 
position of each  highlight,  reflections from  the  other highlights 
can be regarded  as clutter. We have seen that CR bounds, de- 
rived under WGN conditions,  are  not applicable to  this situa- 
tion. An impulse-like ambiguity function, however, will be 
capable of resolving the target into  its  separate highlights, or 
at least of determining  the target  reflectivity  within  a small 
range-angle cell. 

An extended target  can also be  characterized  as  a distributed 
parameter  system.  The impulse  response is a function of time 
(range) for a given angle,  and the impulse  response changes 
with angle. The system is to be  parameterized by  the loa-  
tions (i.e., the T, 8 values) of large local  maxima in  the im- 
pulse response (i.e., the highlights).  Each of these  position 
parameters is to be estimated in the presence of noise and 
spurious signal components  (clutter)  that  are  part of the sys- 
tem’s response to  the probing signal. 

The system identification problem for  an  extended target is 
thus equivalent to  the  estimation of a  sequence of T, 8 values in 
clutter.  The ambiguity function is a valuable aid in  the design 
of signals and filters that can  perform the  required identifica- 
tion. Exclusive use of CR bounds  for design of the probing 
signal for this identification  problem can  result  in an ambiguity 
function  with large volume or large sidelobes, and undesirable 
interaction  between  parameter  estimates will result.  The con- 
cept of resolution in radar/sonar performance  translates into 
parameter  separability or increased  observability in control 
theory. In a  system identification  context,  the volume of  the 
ambiguity function is a  measure of the  extent to which each 
parameter  estimate is unaffected  by  the remaining  system 
parameters. 

CONCLUSION 
A range-angle ambiguity function can be used to predict 

signal-to-interference ratios  for high-resolution radarlsonar 
systems.  The  expected  clutter response will often  depend 
upon  the volume under  the sidelobes of the ambiguity func- 
tion,  rather  than  the height of these  sidelobes. For a given 
array  size, the sidelobes  are made  “thinner” by using a wide- 
band signal, the volume is thus  reduced,  and signal-to-inter- 
ference ratio is increased. 

Direction-dependent wide-band echoes can result  in an im- 
pulse-like range-angle ambiguity function. In synthetic  aperture 
systems,  the  direction  dependence is obtained by moving the 
radar or sonar relative to  the  environment.  Other  methods 
that  do  not  depend  upon movement can perhaps  be used to 
increase the  rate  at which  a given area can be mapped.  For 
example,  one can use an angle-dependent pulse with large 
time-bandwidth product,  and  this signal could be transmitted 
in all directions  simultaneously. 

It would seem that  the range-angle ambiguity function is a 
radarlsonar  counterpart of the  point spread function  that is 
used to define visual acuity.  It is therefore a  useful concept 
for sonar  systems that are attempting to “see with sound.” 
The tradeoff between  bandwidth  and array  size,  which has 
been obtained  from  properties of the range-angle ambiguity 
function, would seem to be important  for echolocating ani- 
mals that use wide-band signals. 
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CR bounds  are  helpful  indicators of qualitative  interdepen- 
dencies between  temporal  and  spatial  parameters.  The  ex- 
clusive use  of  CR bounds  for signal and  array  synthesis, 
however, can lead to results  which  are  only  optimum in the 
immediate  neighborhood of a  particular  position,  i.e.,  with 
accurate  prior  knowledge  of 7 and 8 .  The global  behavior of 
the  maximum likelihood estimate is portrayed  by  the  am- 
biguity  function, which provides  a  more reliable functional 
for  synthesis of signals and  array  configurations. This observa- 
tion can be  generalized to  any  parameter  estimation  problem, 
and  it  appears to  be especially  relevant to  the design of prob- 
ing signals for  system  identification. 

Multiparameter  space-time  ambiguity analysis  can be used to 
determine  the best array  locations  for passive sonar  systems, 
and  the  approach is also applicable to  signal design and  trans- 
mitter  placement  for  radio navigation. 

In many  cases, ambiguity  volume  depends  upon  the p r o p  
erties of the  estimation device, and  a small volume is indicative 
of paramter  separability.  Computer  minimization of the 
volume of a  multidimensional  ambiguity  function (especially 
with  a  constraint  on  maximum sidelobe level) should  result 
in an  optimum  estimating device,  e.g.,  an optimum  probing 
signal for  system  identification. 

APPENDIX 
SCR is defined as the  ratio PT/Pc, where 

and 

(A-2) 

In (A-2), p(rC,  e,) is the  clutter  probability  density  function 
or  a  normalized version of the  clutter  scattering  function,  and 

for  a far-field condition. 
For  uniformly  distributed  clutter, 

(A-4) 
Performing  the 7, integration, we have 

and 

P -  

pC = C I A ~ ~ ~  I A , I ~  1, I E ( ~ ) I ~  
k,  n 

exp [ i ( w / c ) ( d k  - d , )  sin 81 

. {(1/2n)J- exp [ - i (w /c ) (dk  - d, )  sin e,] de, do. 1 
(A-5 1 

The  imaginary  part of the 0, integral is zero,  i.e., 

- ( l / * n ) l n  sin [ ( o / c ) ( d k  - d , )  sin e,] de, = o 
-n 

because  the  integrand is an  odd  function of 6, and  the  limits 
of integration are symmetric  about 6, = 0. The  real part of 
the 6, integral is [ 471 

( w o  J n  [ ( a / c ) ( d k  - d , )  sin e,] de, 
0 

= J o  [ (w /c ) (dk  - dn)l 

where J o (  e )  is a Bessel function of order  zero.  It  follows  that 

pC = I A ~ I ~  IA,V IE (W) I~  ~ ~ [ ( w ~ ) ( d ~  - d,)1 
k,n I: 

. exp [ j ( O / c ) ( d k  - d , )  sin e]  d o .  (A-6) 

The  expected  clutter  response  for  uniformly  distributed  clutter 
is  therefore  a  function of 8 ,  the angle between  a line drawn 
from  the  center of the  array  to  the  target  and  a line that is 
normal  to  the  array. An upper  bound  on PC can be obtained 
by  noting  that 

[ ( o / c ) ( d k  - dn)l exp [ ~ / c ) ( d k  - d , )  sin e l  I G 1 

and,  therefore, 

From  (A-1)  and  (A-3), 

and 

PT/Pc 2 [(1/2n) [I IE(w)lz .a] 1 Jm IE(w)14 dw. -- 
(A-9) 

If IE(u) l z  is constant over a  bandwidth  B,  then  from  the 
equality  condition in (40), 

PTIPc 2 B/(2n)’.  (A-10) 

For  uniformly  distributed  clutter,  the  lower  bound  (A-10) 
on SCR will increase as bandwidth increases. 
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An upper  bound  for SCR can  be  obtained when i) the maxi- 
mum  echo wavelength is less than  the  minimum  distance be- 
tween  hydrophones,  and ii) the  echo  spectral  magnitude is 
smooth  and  has  at least an  octave  bandwidth.  The  first  con- 
dition means that [ 471 

J o b )  = (2 /nx)”Z cos (x - n/4) 

where 

The  error in the  approximation is less than 3.2  percent  for 

x > 2n 

or 

which is condition (i). 
The  second  condition  implies that, for k f n ,  

I L  IE(W)I4 J0 [ ( u / c ) ( d k  - dn)I dw 1 << l: IE(W)I4 dw 

(A-1 1) 

because the  smooth  nonnegative  function IE(w)I4 is multi- 
plied  by  a  periodic function  with  at least one  full  oscillation. 
Substituting (A-1 1) into  (A-6)  and using  (A-8), we have 

(A-1 2 )  

and  from  (40) 

(A-1  3) 

The  inequality in (A-1 1)  must  be  used  carefully,  since 
the sum  of the left-hand  side  over  a  large  number of elements 
may not be  small relative to  the  right-hand  side, even  though 
each  term of the sum is small. This reservation is inconse- 
quential  for  studies of  animal  echolocation,  where K = 2 .  The 
two  conditions  that lead to (A-13)  are satisfied by  many  wide- 
band  animal  echolocation  systems.  For  the  Atlantic  bottle- 
nose dolphin, Tursiops truncatus, echolocation pulses  cover  a 
frequency  range  between  about  20  and  150 kHz [ 191.  The 
maximum  wavelength in water is 7.5 cm,  which is shorter  than 
the  distance  between  the ears. The large  brown bat, Eptesicus 
fuscus, has  a cruising  pulse that covers the  frequency range  be- 
tween  about 25 and  65 kHz [ 161. The  maximum  wavelength 
in air is 1.3  cm,  which is again shorter  than  the  distance be- 
tween  the ears. Although  many  animals  are  restricted to  two 
array  elements,  they  can  obtain  good SCR by using very wide 
bandwidths. 
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The  Processing of Hexagonally Sampled 
Two-Dimensional  Signals 

Invited Paper 

Abstract-Twdimensional signals are normally  processed as rect- 
angularty sampled arrays; Le., they are periodidly sampled in each of 
two orthogonal independent variables. Another  form of periodic 
sampling, hexagonal  sampling, offers substantial savings in machine 
storage  and  arithmetic  computations for many  signal  processing opera- 
tions. In this paper, methods  for the processiug of  two-dimensonal 
signals which  have been sampled as two-dimensional  hexagonal  arrays 
are presented. Included are methods  for signal representation, linepr 
system  implementation,  frequency response calculation, DFT calcula- 
tion, filter  design,  and fiter implementation. These algorithms bear 
strong  resemblances to the corresponding results for rectangular  arrays; 
however,  there are also many  important  differences.  Some comparisons 
between the two methods  for  representing  planar  data  will also be 
presented. 

I. INTRODUCTION 

B AND-LIMITED two-dimensional signals can  be  sampled 
and processed as arrays of numbers. This is both well 
known  and  fundamental. Less well appreciated is the 

knowledge that  there are many strategies  by which this sam- 
pling can be  performed,  each of which  represents  a different 
generalization of one-dimensional  periodic sampling. These 
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alternate sampling  strategies  differ  in their  assumptions  about 
how  the  continuous waveform is band  limited,  in  the  number 
of samples that must be taken,  and  in  the efficiency of the 
resulting signal processing algorithms. Importantly,  rect- 
angular sampling, the most common  approach, is generally 
not  the most  efficient. 

With rectangular  sampling  a  band-limited function of two 
independent variables is sampled at evenly spaced values of 
each of those variables. It  has been the  method of choice for 
virtually all signal processing applications for a  variety of 
reasons:  algorithms for processing signals which have been 
rectangularly sampled can be straightforwardly generalized 
from  the one-dimensional  case; the resulting  expressions  can 
be  readily understood and implemented in software;  and 
hardware to perform  the sampling  (scanning) is straight- 
forward to build. In  fact, we have become so comfortable 
with  rectangularly  sampled arrays  that  the alternatives are 
rarely  considered.  Petersen  and  Middleton [ 11, however, 
showed  in 1962  that rectangular  sampling is a special case of 
a  more general sampling strategy by which a  band-limited 
waveform is sampled on a skewed (i.e., nonorthogonal) sam- 
pling raster.  Hexagonal  sampling is another special case of 
this general strategy.  It is the  optimal sampling  scheme for 
signals which are  band  limited over a  circular region of the 
Fourier plane,  in the sense that  exact  reconstruction of the 
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