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Certain changes in pulse shape do not affect the resolution capability of a sonar system. These changes can 
be expressed as mathematical transformations that leave invariant important properties of the wide-band am- 
biguity function. Such transformations provide a large number of signal and filter functions, all of which satisfy 
a given range-Doppler resolution requirement. The sonar designer can then choose the signal and filter that 
best satisfy other system constraints (e.g., ease of signal generation and filter synthesis, clutter suppression 
capability, and peak power). 
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INTRODUCTION 

When echoes are detected by means of a correlation 
process, the capabilities of a sonar system can be de- 
scribed in terms of the wide-band cross-ambiguity func- 
tion. Although this function depends upon the sonar 
signal-filter pair, there are transformations of signal 
and filter that will not affect certain properties of the 
ambiguity function. 

Such transformations suggest the existence of alter- 
native waveforms that will satisfy a particular range- 
Doppler resolution requirement. Having found alter- 
natives, the designer can then choose the signal and 
filter that best satisfy other system constraints2 

Invariance transformations are also important to 
the study of animal echolocation. Dolphins, for example, 
are capable of using a bewildering variety of echo- 
location waveforms. Suppose, however, that all these 
waveforms are related by signal transformations that 
leave invariant a certain system capability. There 
would then be strong evidence that the invariant 
capability is of primary interest to the animal. 

I. DEFINITIONS 

When a signal u(t) is reflected from a planar target 
which has a constant velocity/•c, where c is the speed 
of sound, the energy normalized echo has the form 
•u[-3(tq-•)3, where 3= (lq-/•)/(1--/•) and • is the time 
delay or range variable? Since IBI <1, s>0. A corre- 
lation processor forms the function 

f ( ) [3( )3• • 
where v(t) is called the filter function. The asterisk 
symbolizes complex conjugation. 

In the presence of additive white noise, maximum 
output signal-to-noise ratio is realized when v(t) 
=•tu[-3(t+•)3. The target parameters (X,i) are gener- 
ally unknown a priori. The receiver must therefore 
form a series of hypotheses (•,?), which can be tested 
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by examining the relative magnitude of 
oo 2 

I x•,(•,•; 3,•)12= (3g)•f• 

f• u(t)u*Es(t+r)3dt 2, = s• (2) 

where s=3/•, r=•(•--•). Again, s>0. If s=l and 
r=0, i.e., if •=3 and ?= •, I x•l • assumes its maximum 
possible value for a given signal energy. The function 
Ix•(r,s) l 2 is called the wide-band auto-ambiguity 
function; I x•,(r,s) I • is the wide-band cross-ambiguity 
function. 

The auto-ambiguity function is an important special 
case of the cross-ambiguity function and corresponds 
to a system that optimizes output signal-to-noise ratio. 
It is possible, however, that interference can take forms 
other than white noise, and in such cases a cross- 
correlation operation may be advisable? 

A signal-filter pair is Doppler tolerant •-• if 

max (3) 

for a large range of s values. 
A signal-filter pair is Doppler resolvent • if 

even if s is only slightly different from unity. 
Two signal-filter pairs (u•,vO, (u•,v•) are equally 

Doppler resolvent if 

for any given value of s. 
In the above definitions, 

max l 2 

is the maximum output power of a filter with a specific 
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error on the velocity hypothesis. When passive filters 
implement the correlation process, the maximum filter 
response is used both to detect a target and to estimate 
its range and velocity. Delay hypotheses are auto- 
matically implemented by the passage of time. Targets 
are said to be present when filter output exceeds a 
particular threshold. Velocity is estimated by com- 
paring the maximum responses for a number of different 
filters, 

max I 

and choosing the largest. 
If the real and imaginary parts of the complex 

signal u(t) are a Hilbert transform pair, the signal is 
said to be Analytic. 4.8 The Fourier transform U(co) 
of an Analytic signal is one sided, i.e., U(co) is zero for 
co<0. For an Analytic signal, Parseval's theorem gives 

[X•,,(r,s) 12 = U(co) U* e-J"'dco . (6) 

II. INVARIANCE PROl•ERTIES 

We are interested in signal transformations that do 
not affect certain properties of the wide-band ambiguity 
function. Cross-ambiguity functions will be used 
whenever possible, since auto-ambiguity results im- 
mediately follow as a special case. 

I. If f(t)=u(-t) and g(t)=v(-t), then IX0/(r,s)l 2 
= I Xv•(--r, s)]L Time reversal of both signal and filter 
functions leaves invariant the Doppler resolution 
properties of the wide-band ambiguity function. If 
positive and negative range errors are equally probable, 
the expected range resolution capability is also 
unaffected. 

II. If F(w)=S(co) exp(jk logco) and G(w)= V(co) 
Xexp(jk logco), where F(co), U(co), G(M, V(co) are the 
Fourier transforms of the Analytic signals f(t), u(t), 
g(l), v(t), respectively, then IxoAr,s)12= lx(r,s)l 
The ambiguity function is unaffected when signal and 
filter spectra are multiplied by exp(jk logco). 

III. If f(t)=k•u(kt) and g(t)=kiv(kt), then 

I X.(r,s)12= I X.(kr,s) I 
and 

max [X,z(r,s)[ 2 =max I x•(r,s) 12. 

An energy invariant scaling of the signal and filter 
functions does not affect Doppler resolution capability. 

IV. max, lx,,(r,s) la=max,[X,,v(r,1/s)lL If echoes 
induced by the signal u(t) are cross correlated with a 
filter function v(t), then interchanging signal and filter 
functions has the effect shown above. If s corresponds 
to a velocity mismatch tic, 1Is corresponds to a velocity 
mismatch of --•c. The sensitivity of I Xvu(r,s)l 2 to a 

positive velocity mismatch therefore equals the sensi- 
tivity of I x•(r,s) I • to a negative velocity mismatch of 
the same magnitude. If positive and negative velocity 
mismatches are equally probable, the interchange of 
signal and filter has no effect upon the expected doppler 
resolution capability of the system. 

All the properties listed in this paper can be proven by 
direct substitution into one of the expressions for 
x•(r,s), i.e., 

X•,(r,s) =sif_• v(t)u*[-s(t+r)]dt 
= V(co) U* e -s'•dco. (7) 

2•rs« 

To prove the fourth property, for example, we change 
variables in Eq. 7, giving 

x =-- v(cos)e-'"co 
2•r 

Vs) (8) 

so that, for a given x)alue of s, 

max 12--max l 2. (9) 

V. If f(t)=u(t+T) and g(t)=v(t+T), then 

max Ix0z(r,s) l,=max [X•(r,s)[ 2 

If F½)= U(w) exp(jcoT) and G(co)= V(co) exp(jcoT) 
are substituted into the last expression in Eq. 7, it is 
easily shown that xoz (r,s) = x•,, (r-- T+ T/s, s), so that 
time translation of signal and filter does not affect 
Doppler resolution properties. 

VI. Suppose that u(t) and v(t) are either even or 
odd; either u(t)=u(-t), v(t)=v(-t) or u(t)= -u(-t), 
v(t)=-v(-t). If f(t)=2«u(t)[«-l-«Sgnt• and g(t) 
= 2•v(t)]-«+« Sgnt-], where 

then 

Sgnt= +1, t_>O, (10) 
=--1, l<0, 

max I Xo•(r,s) [ 2_> max Ix•dr,s) l 2. 

Part of an even or odd Doppler tolerant wave- 
form can be discarded, and the waveform will still 
retain its Doppler tolerance. It also follows that if 
a given causal waveform f(t) is Doppler resolvent, 
then u(t)=2-•[f(t)+f(--t)• is at least as Doppler 
resolvent as f(t)? 
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The above statement follows from the fact that, if 
v(t) and u(t) are even or odd, 

x•.t(-r, s)=2 v(t)u*[-s(t--r)-ldt 

= --2 v(--t)u*[---s(t+r)•dt 

--2 v(t)u*[-s(t+r)-]dt, 

so that 

•[-x•(,,s) +xoA-*, s)• 

=x•(•,s). 

Therefore, 

max Ix•(r,s) l 

-• max I X•(*,s)+Xo•(--*, s) l 

_<« max Ixo•(r,s) l+« max I xo•(--*, s)[ 

=max I x•(r,s)!. 

VII. If F(oJ) =oj-1U(1/oJ) and G(co)=o;-1V(1/co), then 
Ixo•(O,s) 12= I x•(o,x?s)[•= I•<O,s) I •. The energy in- 
varient transformations w-•U(1/w), w-•V(1/w) do not 
affect ambiguity function behavior along the r=0 
profile if signal and filter are interchanged. In general, 
the transformations F(•)=(• • 1)IU(w•) have the 
effect that I xf•(0,•)l•= I x•(O,s•)l •. 

viii. If f(t)=t-Xu(1/t) and g(t)=t-•v(1/t), then 
• xo/(0,s) [• = I x,• (0, l/s) I • = 1 x• (0,s) I •. The energy in- 
variant transformations t-•u(1/t), t-•v(1/t) do not 
affect s-axis ambiguity function behavior if signal and 
filter are interchanged. 

IX. If f(t)=u(t) exp(•/•log]tl) and 'g(t)=v(t) 
Xexp(&jk log I t{ ), then lxo/(O,s)re= I x•(0,s) I •. 

X. If f(t)=(2r)-iU(t) and g(t)= (2r)-IV(t), then 
Ixo/(0,s) l•= [•(o,1/s)•= Ix•(O,s) lL For auto-am- 
biguity functions, I•(0,s>l == (2•)•r x•<0,s> i •, where 
U(w) is the Fourier transform of u(t). If u(t) is Doppler 
tolerant and if 

max Ix•(,,s) 12= Ix•(0,s) l •, 

then U(t) is also Doppler tolerant. If 

max Ixu•<r,s) l 2---- Ixu•(0,s) l • 

and if u(t) is Doppler resolvent, then U(t) is also 
Doppler resolvent. 
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Properties VII-X are especially useful when 

max ]X•(r,s)[ := I x,•(O,s) I: (14a) 

and 

max [X•/(r,s) l: = [X•/(0,s) I •. (14b) 

A sufficient condition for Eq. 14a is that 

U(co) and V(co) are real (or imaginery) (15a) 

(11) and 
U(w) and V(w) are positive (or negative) 

semidefinite. (15b) 

If Conditions 15a and 15b are true, then I V(co)U*(o•/s){ 
= V (w) U* (co/s). Since r exp (- jwr) I = 1 = exp (- 

1 fo• (•) (12) {x"•(r's) I • 2• I v(•)U* 
=lx,•(0,s) l •. (16) 

By Property II, Eq. 16 is also true if signals that 
satisfy Conditions 15 are multiplied by exp(jk log•). 

If Condition 15b is dropped, then Eq. 14a will hold 
true in the neighborhood of s= 1, but not necessarily 
over the entire (r,s) plane. If Condition 15a is true, then 

(13) u(t)=•u*(-t) and v(t)=•v*(-t), (17) 
a condition which implies that ]x•(r,s) • is symmetric 
about the s axis•ø; [x•(r,s)} •= }X•(--r, s)[L Since 

m•x [x•(•,•)l•= {x•(0,•)l • 

Eq. 14a will be true for s-• 1, i.e., on the main lobe of 
the ambiguity function, if Condition 15a is satisfied. 
This conclusion also follows from the two-dimensional 

Taylor series expansion of Ix•,(r,s) l • about the point 
(r,s) = (0,1) ? 

If Condition 15a or both Conditions 15a and 15b are 

satisfied by U(•o) and V(co), then the same conditions 
will be satisfied by F(co) and G(co) in Property VII. 
Therefore, both Eqs. 14a and 14b are true for Property 
VII, if Condition 15 is satisfied. 

If Condition 15a is satisfied, then Eqs. 17 are true, 
and Eqs. 17 are unaffected by the transformations in 
Property VIII. In the neighborhood of s=l, both 
Eqs. 14a and 14b are therefore true for Property VIII, 
if Condition 15a is satisfied. 

If the signal and filter functions in Property IX 
are multiplied by exp(•jkloglt]) for t>0 and by 
exp(•=jk log[tl) for t<0, then Eqs. 17 are unaffected 
by these transformations. For s• 1, Eqs. 14a and 14b 
are therefore true for the transformations in Property 
IX, provided that Condition 15a is satisfied. 

Property X is applicable to real signals rather than 
to Analytic ones. If U(t)=0 for t<0, then u(--co), the 
Fourier transform of U(t), cannot be Analytic. For 
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real signals that are either even or odd, Eqs. 17 are 
satisfied for both u(t) and U(t), so that Eqs. 14 hold 
for the transformations in Property X, for s in the 
neighborhood of unity. 

An illustration of Property X, as applied to real, 6dd 
signals, is shown in Figs. 1 and 2. Figure 1 (a) shows an 
optimum signal for velocity discrimination. 7 Figure 
l(b) shows the ambiguity function of the signal in 
Fig. l(a). Figure l(c) shows the r=0 profile of the 
ambiguity function. Figure 2(a) shows the Fourier 
transform of the waveform in Fig. 1 (a). The correspond- 
ing ambiguity function is shown in Fig. 2(b), and the 
r=0 profile of this function is shown in Fig. 2(c). Note 
that both ambiguity functions are symmetrical about 
the line r=O, that their maximum value occurs at 
r=0 for the range of s values shown, and that the 
Doppler axis behavior is identical for both signals. 

In order to apply properties VII-X to an arbitrary 
signal f(t), one can force the signal to satisfy Condition 
17 by forming the function u(t)=2-•Ff(t)-I-f*(-t)]. 

XI. A large set of transformations do not affect the 
behavior of I x•(r,s)] 2 for the particular values of s 
described by s=so •, where so can be chosen by the 
designer. If •9o=Vo/c<<l and so= (1-1-•0)/(1-•0), then 
so• (1-F2/•o)• 1-F2n/•a. For/•,<<1, s, • corresponds to 
uniform velocity intervals for integer values of n. 

Let F(oO=U(co) expl-jklt(logco/logso)] and G(w) 
-- g (co) exp[jkH (log•o/logso) ], where H (x) is a periodic 
function of x; H(x+n)=H(x), and n is any integer. 
Then I xf(r,so)l 2---- I x•(r,s0')l 2 for any integer n. 

Since a large class of functions are periodic, the above 
property provides a large set of transformations that 
leave I X(r,s0)l invariant. If so is close to unity 
(fi0<<l), then H(Iogco/logso) oscillates very rapidly as co 
changes. 

The transformations given in Properties I-XI should 
prove useful for the derivation of optimum sonar wave- 
forms. If a signal is optimally Doppler tolerant (or 
resolvent), then a transformation that preserves or 
improves Doppler tolerance (or resolution) will again 
produce an optimally Doppler tolerant (resolvent) 
waveform. If the optimum waveform is unique, a toler- 
ance (resolution) invariant transformation will have no 
effect upon the signal. Optimum signals can therefore 
be found by looking for waveforms that are invariant 
to the various transformations listed above. For ex- 

ample, a first-order Bessel polynomial u with a loga- 
rithmic phase function is invariant to the transforma- 
tions given in Properties VII and VIII. 

Other eigenfunctions of the transformations in 
Properties VII and VIII are given by 

U(•) =o•-•F (logco), (18) 

where F(x) is any even function of x, i.e., any function 
such that F(x)=F(--x). 

XII. The volume under the ambiguity function for 
r•(--oo, •o), s•(O, oo) is not easily related to any 

particular resolution property. The volume of the 
narrow-band auto-ambiguity function depends only 
upon signal energy•; all signals with the same energy 
have the same volume. Narrow-band volume invariance 
is conceptually useful because, if the ambiguity is 
"pushed down" in one area, it is bound to "pop up" 
somewhere else. 

Volume invariance, therefore, can sometimes be a 
helpful signal design concept. Let us consider some 
signal-filter transformations that do not affect wide- 
band cross-ambiguity volume. 

XIIa. If a wide-band filter function has Fourier 

transform V(co) and if the transmitted signal U(co) 
=co-iV(l/w), then the volume under the cross-am- 
biguity function is 2•rE a, where 

This volume is exactly the same as the volume under 
the narrow-band auto-ambiguity function. 

If a signal's Fourier transform satisfies the relation 

(19) 

then the signal's wide-band and narrow-band auto- 
ambiguity functions have the same volume. There are 
many functions that satisfy Eq. 19. For example, all 
signals of the form 

U(o•) = co-"F(logco) 

satisfy Eq. 19 provided F(x) =F(-x) as in Eq. 18. 
XIIb. If F(•u)=co-iU(1/c,), then the volume under 

Ixzz(r,s) l • equals the volume under [X•(r,s) 
XIIc. If F(co)=co-iU(1/co) and 

then the volume under Ix•(r,s)12 equals the volume 
under Ix.(r,s) l 2. 

To prove these relations it is necessary to determine 
the volume, W,•, under the wide-band cross-ambiguity 
function •.•*: 

= 

V*(y) u(y/s) 

---- - I 2 u dxd,. 
2a'do $do 
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O. •88 1. 000 ].. 012 
(½) 

b'io. 1 (a). A Legendre polynomial of order 25, truncated at its last zero crossings. (b) The wide-band auto-ambiguity function of the 
signal in (a). (c) The Doppler axis behavior of the ambiguity function in (b). 

Letting x=sz, we have 

2•r 

z L2. Jo [V(sz)[ 

• I•(•)l-d• I•(•)[=•. 

I• u(•)=•-w(1/•), 

• Jo 
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(21) 

(22) 

and 

W,•= 2•rE z, as in Property XIIa. 

If G(,.,)=,.,-W(1/o,) ana iv(o)=o,-•UO/o,), 

{ V(•0) { "• = {GO/o) I d• = (23) 

• I u )l I F(x/•>{ d•= {F(•)['•, (24) 
so that W•Wto, • in Property XIIc, •d, if V(•) 
• U(w), W• Wtt • in Pro•rty XIIb. 

The above discussion h• generally neglect• r•ge 
r•iution invari•ce. For a correct velocity by.thesis 
r•ge resolution is determin• by lx•(r,1)[ •, a cross- 
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(a) 

TIME 

] xuu (ø' •) { 9. 

0. 990 0. 998 1. 006 1. 014 

(c) 

FIG. 2(a). The fourier transform of the signal in Fig. 1 (a), written as a function of time. (b) The w/de-band auto-ambigu/ty function 
of the signal in (a). (c) The Doppler axis beh•v/or of the ambigu/ty function in (b). 

correlation function. Two signal-filter pairs (u,v)(J,g) 
can then be considered equally range resolvent if 

Many invariance properties of the cross-correlation 
function are already well known. If [/(o•) and U(o•) have 
the same spectral phase function, then [ X•,(7,1) l a is in- 
variant to changes in this phase function •: and depends 
only upon the product I V(•o)[ I U(o•)[. The cross-corre- 
lation function is unaffected by spectral shifts; u(t) 
exp(j•od) and v(t) exp(jo•0t) have the same cross-correla- 
tion function as u(t) and v(t). If signal and filter are 
interchanged, [x• (7,1) I: = [x,• (- 7, 1) I:; the expected 
range resolution capability of the system is unaffected 
if positive and negative range errors are equally likely. 
Time reversing signal and filter functions has the same 
effect as interchax•ging them (see Property I). If the 
time-reversed waveforms u(--t) anf v(--t) are inter- 

changed, the cross-correlation function remains 
invariant? 

Invariance properties of ]x•(7,1)]: are important 
for Doppler resolution studies by virtue of J. Speiser's 
transformations? • If U(•o)=o•-tF(logo•) and V(00) 
=•o-tG (logos), then 

[ X•(0,s) [: = G(logw)F*(log•--logs)d0og• 

= I Za•(--logs, 1) l • 

= g(t)f*(t)c i• '•'dt . (25) 

From Eq. 25, it can be seen that time reversing f(O 
has no effect u•n •z•O,s) l:. The function f(0 is the 
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Fourier transform of F(co), i.e., 

'[ (26) 

Any transformation of U(w) that time reverses f(t) will 
not affect ]xu•(0,s)[L U(co)--•,.,-•U(1/co) is such a 
transformation (Property VII). 

The right-hand side of Eq. 25 is also unaffected by 
a translation, g(t), f(t)---* g(t+k), f(t+k). It follows 
that any transformation of U(co) that makes f(t)---* 
f(t+k) will not affect I x•(0,s) I:. According to Eq. (26) 
U(,.,) • U(co) exp(jk logco) is such a transformation 
(Property I1). 

The transformations listed above can be combined 

to provide further invariant transformations. For 
example, if ffft):kl•U(--k•t), then fl(t) and u(t) are 
equally Doppler resolvent, by Properties I and III. 
Using Property V, kx«u(T--klt) also maintains Doppler 
resolution as measured by the auto-ambiguity function. 
This transformation demonstrates the equivalence of 
two well-publicized Doppler tolerant phase functions, 
[og(1--kt) and 1ogkt. •-• If 

occurs at r:0 for velocity errors of interest, then 

h (t) = t-tf• (l/t) exp ( jk• log[ t[ ) 
=kt•t-tu(--kz/t) exp(jk• log I t I ) 

has the same (or better) Doppler tolerance as u(t), by 
Properties VIII and IX. 

IIL CONCLUSION 

This paper has presented some signal transformations 
with which equivalent sonar waveforms can be gener- 
ated. Such transformations provide a choice of signals 
and filters for any given system specification. The 

results also prove useful for the identification of 
equivalent animal echolocation signals. 

tConstraints of interest might include carrier frequency, 
bandwidth, time duration, maximum power, and clutter 
suppression capability. 
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