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The equivalent  noise bandwidth Be, of a 
filter is defined by 

CA = N,B,, (2) 

where c,, is the  output rms voltage  with an in- 
put of white  noise  whose  power spectral density 
in V2/Hz is No. The  output power u b  is  equiv- 
alent to  that contained in a uniform spectral 
density No over a hypothetical  frequency band 
of Be, Hz,  with zero spectral  density  elsewhere. 

Assuming a filter transfer  function H(s),  the 
equivalent bandwidth is given  by 

- - -1 IH(s)I2ds 1 1 j', 
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The  squared  magnitude ofa normalized nth- 
order low-pass Butterworth lilter is 

where s=jo. From integral  tables [4] the equiv- 
alent bandwidth for this case,  normalized  with 
respect to the 3-dB bandwidth, is 

Beq= ~ 

x d o  
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The results are listed  in Table I as the  correct 
values of equivalent bandwidth. As expected, 
the equivalent bandwidth  approaches  the 3 d B  
bandwidth for  higher orders  (sharper cutoff). 

The transfer  function of a normalized nth- 
order low-pass Butterworth filter is 

The coefficients  for the  denominator poly- 
nomials  can be calculated  from the recursion 
formula [5] 

starting from bo= 1. This  polynomial is sym- 
metric: bi=b, - i .  

The normalized  equivalent bandwidths were 
calculated  from  these  transfer  functions  for the 
first ten orders of Butterworth filters using the 
formulas from  Seifert and Steeg [2], and  are 
listed  in Table I. The writer has  thoroughly re- 
checked  these calculations  and is  convinced that 
they  faithfully  represent the  formulas given  in 
P I .  

A very  compact  derivation of a general 
formula  for 1. has  been  given by Battin [3]. The 
numerator polynomial  is first multiplied out 
with its complex  conjugate, producing  a  numer- 
ator polynomial of order 2n - 2 in  even  powers 
of s (this polynomial  often  consists of only one 
nonzero  term).  Then  the integral  is of the form 

( -  lr-' IN.1 
2b" ID4 

=-_ 

where (N.1 and ID,/ are n x n determinants.  The 
elements of ID,I are 

d.. = b $1 n - l i + j  (74 

where the indices i and j range from 1 to n ;  d, 
is  defined to be zero where 2i -j is  less than 0 or 
greater  than n. The elements of 1N.I are  the same 
except that  the first column  is  replaced  by 
a2n-2, a2n-4r"' ,a0 for i = l ,  2;.., n, respec- 
tively. 

Equation (7b) is written  in the form  of 
Cramer's rule for solving n simultaneous  linear 
algebraic equations, where I,, is the value of the 
unknown  for  the first column. However,  eval- 
uating  determinants for n > 3 implies laborious 
expansion by minors. which  rapidly  becomes 
impractical for higher orders, even by com- 
puter. A much more convenient  method  is the 
Gauss-Jordan elimination  method [6], which  is 
suitable  for  solving as many as 15 to 20 simul- 
taneous  equations where the  computation is 
carried out with  eight to ten  significant digits. 
(More sophisticated methods  are available for 
accurate  computation of  higher orders of  simul- 
taneous  equations.)  A sample Fortran  program 
for  the  Gauss-Jordan elimination method, read- 
ing in the  order n and  the matrix  elements,  is 
given  in [6]. An  extension  of  this program was 
written computing  the matrix  elements  from the 
polynomials and calculating  only the first un- 
known (the value of I,,). With the transfer  func- 
tions calculated as before from (6b). the results 
of this computer  program  are as given  in Table I. 

CONCLUSIONS 
The  tabulated results  show that  the  formulas 

in [2] for orders  6, 7, 8. and 10  give erroneous 
results  for this case. Although  the  formula for 
order 9 does  give a fairly  good  result  here,  it  is 
not nearly as  accurate  as  that from the com- 
puter  program,  and is  therefore also somewhat 
questionable.  (Note  that these  results  did  not 
completely test the  formulas in [2], since  only 
the  constant  term was  utilized  in the  numerator 
of the  integrand.) 

TABLE I 
CALCULATED BUTTERWORTH EQUIVALENT 

NOISE BANDWIDTH, B.,/B3 -dB 

Correct Seifen Computer 
n Value and Steeg Program 

2 
1 

3 
4 
5 
6 
7 
8 

10 
9 

1 1  
12 
13 
14 
15 

1.57080 
1.11072 
1.04720 
1.02617 
1.01664 
1.01152 
1.00844 

1.00510 
1.00645 

1 .00341 
1.00412 

1.00244 
1.00286 

1.00210 
1.00183 

1.57080 
1.11072 

1.02617 
1 .04720 

1.01664 
-0.36757 

0.53815 
0.46727 

0.38301 
1.00405 

1.57080 
1.11072 
1.04720 
1.0261 7 
1.01664 
1.01152 
1.00844 

1.005  10 
1 . m a 5  

1.00341 
1.00412 

1.00286 
1 BO242 
1.00208 
1.00179 

20 1.00103  1.00688 

While formulas may  have  the advantage of 
simplifying operations for  optimizing .a func- 
tion,  they  have the disadvantages of requiring 
a  separate  formula for  each order  and of  being 
increasingly  cumbersome  with  greater  chances 
of transcription mistakes  for  higher orders 
(formula  number 10  fills  two  pages). Because of 
this and  the  errors in  two  consecutive  sets of 
published formulas, it seems  unlikely that 
formulas for the higher orders will  ever  be  very 
useful. A simple computer  program with short 
computation time and valid  for any  order is 
clearly a  favorable  alternative. 
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Optimum Waveforms for Sonar 
Velocity Discrimination 

Abstract-Velocity  resolvent  wide-band 
sonar  waveforms  are  derived  by  using  the 
variational  calculus  together  with some 
properties  of  the  wide-band  ambiguity  func- 
tion. 

When a wide-band sonar signal u(r) is  re- 
flected  from a moving  point  target, its echo has 
the form [l] s'i2u[s(t+r)], where s=(l+u/c) 
/(l -u /c )  is the  Doppler scale  factor, u is radial 
target velocity, and c is speed of sound.  Multipli- 
cation by s'" is  necessary to preserve  signal 
energy,  which  is  normalized to unity. 

If correlation processing [2] is u s e  receiver 
performance is determined by the function 

/XZB(r ,  s)12 = ~ s ' ~ ' [ ~ ~ u ( r ) u * [ s ( r  + r)]dri'. (1) 

1971. 
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- [ j ; d a ’ d t ] l  (8) 

J2(8 ,  a)  S O  because It1 I TI 1, so that, regardless 
of a(t), the maximum value of J2(8,  a) occurs 
when 

&) = 0; e(t) = constant. (9) 

It remains to maximize the functional 

Fig. I .  P,(t) and P, , ( r )  truncated at their 
last zero crossings. 

/- 
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Fig. 2. Doppler axis behavior of IX,’(r,  s)lz, for y ( r )  = P,(r) 
and P, Jt). truncated as shorn in Fig. I .  

For (T, s) near (0, 1) [5] 

max IXE’(T, s)I2 B 1 - (7’ - y2/ i2) (s - 1)’ (2)  

where [ 6 ] ,  if du(t)/dt = u 

If u(t) is a real function that is either even or odd 
about r = 0, then y = 0 and 

max IXZB(r, s)I2 z 1 - q2(s - (4) 

An even or odd, real function that maximizes q2 
is thus  an optimally Doppler resolvent  wave- 
form. 

We  will make no assumptions about whether 
the signal is real,  even, or odd. We want to find 
a unit energy signal of the form 

u(t) = 4t) exp [ j W ]  (5) 

where 4t) and B(t) are such as to maximize q’. If 

the signal that maximizes q2 turns  out  to be real 
and even or odd, then it will follow from (4) that 
u(t) is an optimally Doppler resolvent wave- 
form. 

Physically realizable sonar systems produce 
waveforms that have  finite  energy and  band- 
width.  Energy (IluI2dt) and mean square  band- 
width (Illil’dt) are therefore included as con- 
straints, with Lagrange multipliers & and I,,, 
respectively. We  will also require that 

u(t) = 0, for It1 > 1. (6) 

Taking the above  constraints  into account, we 
wish to maximize the functional 

J(U, 8, a) = t2[U2 + d2a2]dt 
j:T 

whereO<T$l.  IfIEw=1, 

Jl(U, a) = 

- j -TT[( l  - t2)u2 + (AE + 1/4)a2]dt .  (10) 

Applying the Euler and Legendre necessary 
conditions [3], J1(4 a) is  maximized  only if 

0 - f Z ) B  - 2tu + [n(n + l)]. = 0 ( 1 1 )  

where n(n + 1 ) =  - ( L E +  1/4). The  solutions  [4] 
of the differential equation (11) are Legendre 
polynomials, 

a(t) = P”(t), It1 I T I 1. (12) 

In order  that mean square  bandwidth ( I?m, lu (2d t )  
be finite, u(t) can have no discontinuities. We 
therefore choose T to correspond with the last 
zero crossing of PJt), as shown in Fig 1. 

Because &)=O and we are interested in the 
magnitude of X ~ ’ ( T ,  s), we can set e ( t )=O with- 
out loss of generality. The signal u(t) is thus real 
and either even  (for n even) or odd (n odd)  about 
t = O .  The signal that maximizes q2 is then such 
as to  make y=O in (34, so that (4) applies and 
PJt) is an optimally Doppler resolvent wave- 
form. The  property y = 0 implies that  the con- 
stant  magnitude  contours of IXZB(r, s)I2 near 
(T, s)=(O, 1) are symmetrical with resped to the 
s axis. For (T, s) ~(0, 1) and s # 1 ,  the maximum 
value of l X E B ( ~ ,  $1’ occurs for T = 0, so that 

max IXZB(r, s)I2 B IXZ’(0, s)lz. 

The behavior of IXE’(0, s)I2 for u(t)=P,(t) and 
P12(t)  is shown in  Fig. 2. 

Any of the  solutions u(t)= kP,,(t), - T I  t I T ,  
n=2,3,4;..,canhaveaprespeci6edenergyif 
the scale factor k is correctly adjusted. For  a 
given  energy,  however,  the  mean square  band- 
width  is quantized and  depends upon the integer 
n. To insure the existence of a  solution, it  is 
therefore advisable (and physically  meaningful) 
to use an inequality constraint for bandwidth; 
SZm,(u(’dt < E .  The largest allowable value of n is 
then chosen. 

It is possible to make PJt) range resolvent as 
well as Doppler resolvent by simply compress- 
ing the waveform  in  time [6],  i.e, 
if 

then 

a1’’u(af) -P XEB(m, s), a > 0. (13) 

If P.(t) is compressed in time, n must be de- 



PROCEEDINGS LETTERS 

creased in order to maintain  the same  upper 
bound on bandwidth.  For a  given  maximum 
bandwidth, velocity  resolution  (Fig. 2) becomes 
worse as range resolution  becomes  better. If 
systems  with greater  bandwidth  are utilized, 
then these  systems  must also be capable of 
generating  the high power that will occur when 
the  constant energy  waveform is compressed in 
time.  Applicability of (13) is thus limited by both 
bandwidth and power  constraints.’ 

The  Fourier  transform of PJt) is of the 
form [9] kw-”zJ,,,,,(w). The time  function 
k t - 1 / 2 J p ( t )  describes the  amplitude of an opti- 
mally Doppler tolerant waveform [5], the  anti- 
thesis of the signal  derived  here. 

The waveforms PJt) should be useful for 
sonar velocity measurements (on a  single  pulse 
basis). If the sidelobes of /X,& s)lz are small, 
then  the waveforms should also prove useful for 
the suppression of unwanted  reflections  from 
stationary objects  (clutter suppression  [lo]). 
Although the problem  has been formulated  for 
sonar, the result  should be applicable to wide- 
band  radar as well. 

&CHARD A. ALm 
ESL Inc. 
Sunnyvale, Calif. 94086 
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Broad-Band Passive 90” RC Hybrid 
with Low Component Sensitivity for 
Use in the  Video  Range of Frequencies 

Abstract-A  practical 90’ hybrid  cover- 
ing  the  frequency  range  from 200 Hz t o  
2 MHz for single-sideband  modulation  and 
demodulation  can be constructed  using cas- 
caded RC lattice  networks.  A  differential 
phase  shift  within f6’ of 90’ can be main- 
tained  using 5 percent  components. 

Manuscript  received  March 5, 1971. 
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Fig. 1. Circuit of w i v e  SSB modulator-demodulator. 
All resistanas are 2OOO n unless otherwise noted. 

Broad-band 9 0 ”  phase  difference  networks 
operating at video  frequencies use RC circuits 
to avoid  the use of large inductors. Albersheim 
and Shirley’ used RC bridge  circuits combined 
with  active  inverters.  Simple RC networks  of 
low component sensitivity  have  been  cascaded 
with  active isolation stages by Galpin et al.’ In 
order to achieve  low component sensitivity and 
avoid  active  circuits,  cascaded RC lattice net- 
works  have  been  designed  for  a  “video”  hy- 
brid.  The elimination of active isolation stages 
allows the bidirectional  use  of  these  networks. 
The  optimum pole-zero  pair  locations  have 
been computed using the method  described by 
Albersheim and Shirley.’ 

Fig. 1 shows  a  completely  passive  SSB 
modulator-demodulator.  The local  oscillator 
signal  is  divided into  quadrature  components by 
an RF quadrature  hybrid.  Doubly balanced 
mixers  provide  balanced and isolated inputs to 
the differential  phase-shifter  lattice arms.  The 
sum  and  the difference  of the  quadrature video 
signals are  obtained using  a  resistive  bridge  net- 
work. The video ports (upper  and lower  side- 
band  are labelled U f ,  U- and L f ,  L-) are 
balanced  but  isolated so that  one of the video 
terminals can be grounded. Since the hybrid 
and mixers are bilateral, SSB signals  can be gen- 
erated  or detected.  When used as a demodulator, 
the  total loss is about a factor of 10  in  voltage 
(ratio of  video output voltage to signal input 
voltage) and  the unwanted  sideband  rejection  is 
greater than 25 dB (in  power) from 200 Hz to 
2 MHz  as illustrated  in the measured  per- 
formance shown  in  Fig. 2. 

Most  of the unwanted  sideband  results from 
deviations in differential phase shift from 90’ by 
up to 6” while some results  from amplitude  im- 
balance. The network is fairly  insensitive to 
component values.  At  any  frequency the phase 
shift  in one  lattice  arm is at worst  changed  by 
0.25” for 1-percent  change  in one  component. 
Owing to the balanced and isolated nature of the 
lattice arms, a  1-percent  change of values in any 
of the  components except  those  making  up the 
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Fig. 2. Relative  video output for desired  and  undesired 

open circles are  measured points. Arrows  indicate 
sidebands.  Solid and  dashed curves are computed; 

points where  the measured sideband rejection is greater 
than 30 dB. 

summing bridge  produces  a  gain  change of less 
than 0.02 dB  in the worst  case.  Phase errors  are 
not completely  accumulative  since at any given 
frequency  two  lattice  sections at most  in  each 
arm  have  any appreciable  phase  sensitivity. 
Measurements on several  hybrids  using  5-per- 
cent components show that accumulative errors 
degrade  the unwanted sideband rejection by 
about 2 dB on average.  Bridge  phase-shift net- 
works  like those described by Albersheim and 
Shirley’ use fewer components but  have  a  higher 
sensitivity.  These authors estimate probable 
cumulative errors in  a 90” phase  difference  net- 
work operating  from 25 to 6OOO Hz to be * 1” 
in phase and k0.15 dB in  gain for f 1 percent 
component tolerances. 

The network  shown has four  zeros in each 
arm  at  the locations listed in Table I. The zero 
locations are  simply  given by the individual RC 
lattice  sections,  whereas  pole  locations  are  af- 
fected by the  loading  that occurs in the process 
of cascading  lattice  networks. The resistive  com- 
pensation  sections are required to move  the 
pole locations  to  the symmetric  locations  on  the 
negative  real  axis  required  for  any  all-pass  net- 
work. 

If the  compensation  conductances  are writ- 
ten as Go,   G, ,   G, ,  ’ . . , G, for the case where 
RC lattice  sections all have  unit  conductance, 
Go is the load conductance  (nearest  the video 


