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Abstract—This talk is based on a joint paper with A.
Bonami and G. Garrigós [3] in which the phase retrieval
problem for the Radar Ambiguity Function (i.e. the Radar
Ambiguity Problem) has been tackled. In particular it
was shown that for wide classes of signals, the radar
ambiguity problem has a unique solution, up to trivial
transformations.

In the second part of the talk, we report on ongoing
work by the author where the radar ambiguity function
is used as a tool to solve other phase retrieval problems.

I. INTRODUCTION

In this paper, we report on our work on the phase
retrieval problem for the Radar Ambiguity Function and
for Fractional Fourier Transforms. Let us recall that the
ambiguity function of u ∈ L2(R) is defined by

A(u)(x, y) =
∫

R
u

(
t+

x

2

)
u

(
t− x

2

)
e−2iπtydt.

This function has been introduced by Woodward [11] in
Radar theory and has been studied by many authors. The
properties that we use here are well documented see e.g.
[1], [10]. The first problem under consideration here is
the phase retrieval problem for the ambiguity function:

Problem 1: Radar ambiguity Problem.
Given u in some subset D ⊂ L2(R), find all v ∈ S such
that

|A(v)(x, y)| = |A(u)(x, y)| for all x, y ∈ R.

We then say that v is a partner of u (in D).
It is not hard to see that v defined by v(x) =

ceibxu(εx − a), ε = ±1, a, b ∈ R c ∈ C, |c| = 1 is
a partner of u, in which case we say that v is a trivial

partner of u. The question we ask is thus whether non-
trivial partners exist and to have as large as possible
classes D of functions which have only trivial partners.
The classes we consider are mainly the two following:

i) Hermite functions that is D is the set of all
functions of the form P (x)e−πx

2
, P a polynomial;

ii) rectangular pulse trains, that is D is the set of
all functions of the form

∑N
k=1 akχ(k,k+η) where

the ak’s are complex numbers and χ(k,k+η) is the
characteristic function of the interval (k, k + η)
where 0 < η ≤ 1/2.

The second family of problems we deal with is
the Phase Retreival Problem for the Fractional Fourier
Transform (FrFT). This is defined as follows: let α ∈

R \ πZ, let cα =
exp i

2

(
α− π

2

)√
| sinα|

. For u ∈ L1(Rd) and

α /∈ πZ, define

Fαu(ξ) = cαe
−iπ|ξ|2 cotα × (1)

×
∫

R
u(t)e−iπt

2 cotαe−2iπtξ/ sinαdt. (2)

Note that Fπ/2 is just Fπ/2 = F , the usual Fourier
Transform. As ‖Fαu‖L2(R) = ‖u‖L2(R) this transform
can be extended to u ∈ L2(R). The problem we address
here is the following:

Problem 2: Phase Retrieval Problem for the frac-
tional Fourier transform.
Let u, v ∈ L2(R) and let τ ⊂ [0, π) be a set of indices
(finite or not). Assume that |Fαv| = |Fαu| for every
α ∈ τ .

i) Does this imply that v = cu for some constant c ∈
C, |c| = 1?



ii) If we restrict u ∈ D for some setD ⊂ L2(R) do we
then have v = cu for some constant c ∈ C, |c| = 1?

iii) If we further restrict both u, v ∈ D for some set
D ⊂ L2(R) do we then have v = cu for some
constant c ∈ C, |c| = 1?

In the first two cases we say that u is uniquely determined
(up to constant multiples or up to a constant phase factor)
from {|Fαu|, α ∈ τ}. In the last case we say that u is
uniquely determined (up to a constant phase factor) from
{|Fαu|, α ∈ τ} within the class D.

This problem appears in diffraction optics and quan-
tum mechanics. We will reformulate this problem in
terms of the radar ambiguity function. This will allow
us to bring a solution to the problem for various classes
D of functions. We will again focus on the class of Her-
mite functions and of rectangular pulse trains and also
give some results for more general compactly supported
functions.

The remaining of this paper is organized as follows:
the next section is devoted to the radar ambiguity func-
tions and presents results that already appeared in [3].
Section 3 is then devoted to the announcement of new
results from [9].

II. THE RADAR AMBIGUITY PROBLEM

The radar ambiguity problem as stated is not yet fully
solved. Early results can be found in [5], [4]. The author
tackled this problem in [8], [6] and [3]. The aim of this
section is to present the two main results from this last
paper which may so far have stayed unnoticed outside
the mathematical community and all results presented
in this section come from that paper. The main object
of [3] was to study the Radar Ambiguity Problem in
a “discrete” setting by restricting attention to Hermite
functions and to pulse trains.

A. Hermite functions

In this section, we study Problem 1 when u is of
the form u(x) = P (x)e−πx

2
where P is a polynomial.

As a consequence of Hardy’s Uncertainty Principle for
the ambiguity function (see e.g. [2], [7]), it is not hard
to see that every partner v is of the form v(x) =
Q(x)e(a+ib)x−πx

2
with Q a polynomial. Thus, up to

replacing v by a trivial partner, we may assume that
v(x) = Q(x)e−πx

2
. Moreover, it is easy to see that P

and Q have same degree.
If we write Hj = (−1)jeπt

2
∂jt e
−2πt2 for the Hermite

basis, then we may write u and v in that basis, u =
n∑
j=0

αjHj and v =
n∑
j=0

βjHj . Define P =
n∑
j=0

αjt
j , Q =

n∑
j=0

βjt
j , and let us write x, y ∈ R, Z = x + iy, Z̄ =

x− iy. One may then show that

A(u)(x, y) =
n∑
j=0

2−j

j!
P(j)(Z)P(j)(−Z)e|Z|

2/4.

Next, expending |A(u)|2, the radar ambiguity problem
then amounts to determining β such that∑ 2−j−k

j!k!
P(k)(−Z)P(j)(Z)P(j)(−Z)P(k)(Z) (3)

=
∑ 2−j−k

j!k!
Q(k)(−Z)Q(j)(Z)Q(j)(−Z)Q(k)(Z).

Expending this polynomial in Z and Z̄ and comparing
highest order terms leads to |βn| = |αn|. Up to replacing
v by a trivial partner, we may thus assume that βn = αn.

Expending (3) further, we then obtain

P(Z)P(−Z) = Q(Z)Q(−Z)

so that the zeroes of Q are obtained from those of
P via a symmetry, so that we may factor P(Z) =
A(Z)B(Z)C(Z) and Q(Z) = A(Z)B(−Z)C(Z) where
C(Z) is of the form Zk

∏
(Z2−λ2

j ). Our aim is to show
that neither A nor B are even or odd.

For a polynomial P , write P̃ (Z) = P (Z)P ′(−Z) +
P (−Z)P ′(Z). One easily sees that P̃ = 0 if and only if
P has a definite parity.

Expending further (3), we now obtain

P ′(Z)P ′(−Z) +
2
n
αn−1P̃(Z)

= Q′(Z)Q′(−Z) +
2
n
βn−1Q̃(Z).

We then reformulate this in terms of A and B and notice
that the equations obtained that way generically do not
have a solution. This leads to the following result:

Theorem 2.1: [3] For almost all and quasi-all polyno-
mials P , u(t) = P (t)e−πt

2
has only trivial partners

Here, for a fixed degree n, almost-all refers to 0
Lebesgue measure in Cn+1, while quasi-all refers to
Baire theory. Actually we showed that the set of poly-
nomials for which there exists a non trivial partner is
included in a lower dimensional sub-manifold of Cn+1.
We conjecture that this manifold is actually empty so
that the above result is true for all polynomials.

There are some polynomials P for which one can
assert that u(t) = P (t)e−πt

2
has only trivial partners,

for instance those that have no term of degree n − 1.
From this, it is not hard to deduce the following:

Corollary 2.2: [3] The set of functions in L2(R) that
has only trivial partners is dense in L2(R).



B. Pulse trains

In this section, we consider signals of the form u(t) =∑
ajH(t − j) where H à support danshas support in

[0, 1/2]. One then easily shows that, for y ∈ R, k ∈ Z
and k − 1

2 ≤ x ≤ k + 1
2 ,

A(u)(x, y) =
(∑
j∈Z

ajaj−ke
2iπjy

)
A(H)(x−k, y). (4)

This lead us to propose the following discrete radar
ambiguity problem in [6]:

Problem 3: Discrete Radar Ambiguity Problem.
Given a = {aj} ∈ `2(Z), find all sequences b ∈ `2(Z)
such that, for every k ∈ Z and y ∈ R,

|A(a)(k, y)| = |A(b)(k, y)|

where A(a)(k, y) =
∑
j∈Z ajaj−ke

2iπjy.
We will then say that a and b are partners and that

they are trivial partners if bj = eiβ+ijωa±j−` for some
β, ω ∈ R and ` ∈ Z.

One easily sees that, as A(a) and A(b) have same
support, if the support of a has finite length N then so
has b. More precisely, we will say that a ∈ S(N) if a
has support {0, . . . , N} with a0aN 6= 0. Then, if b is a
partner of a, up to replacing it by a trivial partner, we
may also assume that b ∈ S(N).

By adapting a method by Bueckner [4] from the
continuous case, the discrete radar ambiguity problem
can be reformulated as a combinatorial problem on
matrices. More precisely, let

dj,k =

a j+k

2
a j−k

2
if j, k have same parity

0 otherwise
,

and let Ka = [dj,k]−N≤j,k≤N and call this the ambiguity
matrix of a. One then shows that

Proposition 2.3: [3] Two sequences a, b ∈ S(N) are
partners if and only if K∗aKa = K∗bKb. In other words, if
Vi (resp. Wi) is the i-th column of Ka (resp. Kb) this is
equivalent to the following identity for all (i, j)’s:

(i, j) 〈Vi, Vj〉 = 〈Wi,Wj〉.

Recall that the Kronecker product of two matrices A =
[ai,j ]−N≤i,j≤N and B is the matrix defined blockwise by

A⊗B =


a1,1B a1,2B . . . a1,nB
a2,1B a2,2B . . . a2,nB

...
...

. . .
...

an,1B an,2B . . . an,nB

.
The main result of [3] for pulse type signals can be stated
as follows:

Theorem 2.4: [3] Let a ∈ S(N) and b ∈ S(M) (N,M
integers) then there is a c ∈ S(M(2N+1)+N) such that
Ka ⊗ Kb = Kc. Let us denote c = a ⊗ b. Then, if a, a′

are partners and b, b′ are partners, then a ⊗ b and a′ ⊗ b′
are partners. Moreover, even if a, a′ (resp. b, b′) are trivial
partners, a⊗ b and a′ ⊗ b′ need not be trivial partners.

Actually c = a ⊗ b may be constructed as follows.
Write P (z) =

∑N
k=0 akz

k and Q(z) =
∑M
k=0 bkz

k. Then
P (z)Q(z2N+1) =

∑M(2N+1)+N
k=0 ckz

k. For example, if
a = (1, 2), b = (1, 2) and a′ = (2, 1) (a trivial partner of
a) then a⊗b = (1, 2, 0, 2, 4) while a′⊗b = (2, 4, 0, 1, 2)
and these two sequences are not trivial partners.

Further, based on this construction, we are able to
prove the following which has to be compared to Corol-
lary 2.2:

Corollary 2.5: [3] The set of functions in L2(R) that
has non-trivial partners is dense in L2(R).

Finally, we were also able to obtain a result for the
ambiguity problem itself, without assuming that v is
itself of pulse type. More precisely:

Theorem 2.6: [3] Let 0 < η ≤ 1
3 and u(t) =∑N

j=0 ajχ[j,j+η](t) where a = (a0, a1, . . . , aN ) ∈ CN+1.
Let v ∈ L2(R) be a trivial partner of u. Then, up to
replacing v by a trivial partner, v is of the form v =∑N
j=0 bjχ[j,j+η], where b = (b0, b1, . . . , bN ) ∈ CN+1 is a

partner of a.

III. THE RADAR AMBIGUITY FUNCTION AND THE

PHASE RETRIEVAL PROBLEM FOR FRACTIONAL

FOURIER TRANSFORMS

The aim of this section is to report on ongoing work
[9] on the phase retrieval for the Fractional Fourier
Transform (FrFT). Note that, mathematically, there is no
difference between the phase retrieval problem for the
Fractional Fourier Transform and the same problem for
the classical Fourier Transform. We here concentrate on
the question whether several phase-less measurements
can lead to uniqueness results.

The link between the FrFT and the ambiguity function
comes from the following property:

A(Fαu,Fαv)(x, y)

= A(u, v)(x cosα− y sinα, x sinα+ y cosα).

In particular,

A(u)(−y sinα, y cosα) = A(Fαu)(0, y)

= F [|Fαu|2](y). (5)

It follows that Problem 2 amounts to being able to recon-
struct u from the knowledge of its ambiguity function on
certain lines going through the origin.



The two main results from [9] are the following:
Theorem 3.1: In the following cases, exact reconstruc-

tion can be obtained.
1) Let u, v ∈ L2(R) such that, for every α ∈

[−π/2, π/2], |Fαv| = |Fαu|. Then there exists
c ∈ C with |c| = 1 such that v = cu.

2) Let τ ⊂ [−π/2, π/2] be either a set of positive mea-
sure or a set with an accumulation point α0 6= 0.
Let u, v ∈ L2(R) with compact support such that,
for every α ∈ τ , |Fαv| = |Fαu|. Then there exists
c ∈ C with |c| = 1 such that v = cu.

3) Let a > 0 and define (αk)k∈Z by α0 = π/2 and, for

k ∈ Z \ {0}, αk = arctan
a2

k
. Then, given u, v ∈

L2(R) with compact support included in [−a, a], if
|Fαk

v| = |Fαk
u| for every k ∈ Z, then there exists

c ∈ C with |c| = 1 such that v = cu.
The last point is based on Shannon’s Sampling For-

mula. In this case, there is even a reconstruction formula.
However, to obtain a reasonably accurate reconstruction,
we expect that the number of measures |Fαk

u| be rather
large, making this reconstruction formula non practica-
ble.

If the signal is assumed to be more “structured”, then
one or two well chosen measures actually suffice. In the
following theorem we group the main results from [9]
in that direction.

Theorem 3.2: In the following cases, exact reconstruc-
tion can be obtained.

1) Assume u, v are Hermite functions and let α ∈ R \
Qπ. If |v| = |u| and |Fαv| = |Fαu| then v = cu
with |c| = 1.

2) Assume u, v are pulse trains
∑
ciH(t − ti) where

H ∈ L2(R) has suppH ⊂ [0, 1/2] (the sameH for
u and v) and let α ∈ R\ π2 Z. If |Fαv| = |Fαu| then
v = cu with |c| = 1.

3) Assume u, v are of the form
∑
finite cie

−π(t−ti)2 ,
ci ∈ C and ti ∈ R, and let α ∈ R \ π2 Z. If |Fαv| =
|Fαu| then v = cu with |c| = 1.

The assumptions on α in this theorem are sharp. Note
that so far we have no algorithm to obtain u from the
measures, an issue we plan to tackle in the near future.

IV. CONCLUSION

In this paper we have partially solved the phase
retrieval problem for the radar ambiguity function. More
precisely, we concentrated our attention on the two com-
mon cases (gaussian signals and rectangular pulse trains).
In both cases, we have proved that most signals have
only trivial partners, if one restricts the problem to these

classes of functions. In the case of pulse type signals, we
have both the rareness of functions with strange partners,
some criteria to have only trivial solutions and various
ways to construct functions that have strange partners.
Moreover, if the pulses are short enough, then the signal
can be reconstructed among all signals (not just pulse
trains).

In the second part of the paper, we have used the
radar ambiguity function to reconstruct a signal from the
modulus of its Fractional Fourier Transforms of various
orders. We have shown that, if the orders are well chosen,
then uniqueness occurs in several classes of functions,
including gaussian signals and pulse trains.
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