BINARY PERIODIC SEQUENCES WITH LOW SIDELOBE SUPPRESSION LOSS
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The properties of binary signals obtained by coding elements of g-ary M-sequences
Y by symbols #1 are considered. Coding rules are synthesized with respect to the
criterion of minimum loss in threshold signal accompanying linear sidelobe sup-
® pression. Examples are quoted of new families of sequences which are better
. than the familiar sequences from the point of view of the minimum loss criterion.
* To resolve a periodic discrete signal (PDS) in a reflection-type noise background, a
linear sidelobe suppression filter (SLSF) can be successfully used [1]; the response of
. this filter to the input PDS has zero sidelobes throughout the signal period, thereby
} enabling efficient protection to be obtained against reflections of theoretically unlimited
intensity. It was shown in [1] that an SLSF exists and is uniquely defined for any PDS
b with linearly independent cyclical shifts, its disadvantage in output signal/fluctuation

noise ratio to the matched fillter (MF) being solely determined by the type of periodic
autocorrelation function (PACF) of the signal.

When choosing the signal for a radio channel with SLSF at the recelver end, it is
natural to try to minimize this disadvantage; in thils sense, PDS with PACF having zero
sidelobes would be best, since the SLSF and MF are then identical. However, there are
no signals of practical interest with such PACF among the PDS based on binary sequences
consisting of *1 [2]. 1In view of the obvious technical merits of binary PDS, it is clearly
worth seeking coding rules whereby the sidelobes of the binary PDC can be completely sup-
pressed at the cost of minimum energy loss. Below, we describe the synthesis of such
rules, based on the mapping of the elements of g-ary M-sequences onto the set a={—1,1}.

M-sequences over GF(q). Consider the finite field GF(q), where q = pw, p is prime
and w an integer. Let g(x)=x"+g,_*"" +g,_X"'+...+8 where g€GF(), i=0,n—11s the normal-
ized primitive polynomial of degree n over GF(q). Then, the recurrent sequence {ci} of
elements of GF(q), generated by the rule
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Cl=—8p €1y — ByaCi2— +- — & 1_p> i=..—10,1,..., (1)

is called an M-sequence over GF(q). . A detalled theory of such sequences is given in [31].
» Let us recall the following properties of {ci} [3,4]:

' 1) the period of {c;} 1s M = q® - 1 bits; s
A -
2) in one period of the M-sequence, the zero element of GF(q) appears qn 1. 1 times,
> and any other element qn-l times;
r : 3) let m=40 (mod h), where h=(q"—1)/(¢g—1); then, among all the M pairs{ci ciym}, i=0, M—1, the

ﬁff' pair {0, 0}, where 0 1s the zero element of GF(q), is encountered qn_2 - 1 times, and any
" other pair qn_2 times;

o §) with m=lh, (=.., —1, 0, I, .. Cym=pci, i=.., —1, 0, 1, .. , where u 1s the primitive element of
field GF(q).

- Binary sequences based on M-sequences. Let f be a mapping of elements of GF(q) into
set o={—1, 1} (f:GF(¢)—0), mapping M-sequence {ci} into binary sequence {ai}’ where ai=f(c;)=
' w—1,0,1.. We canassume without loss of generality that £(0) = 1. Writing the nonzero
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elements of GF(q) as ¢S and denoting their images in ¢ by u,=f(p*), s=0, ¢—2, consider the
periodic sequence {u=-.., lg-2 to, , ..., Ug-z, ---- Let t be the minimum positive number for which

ug = Ugyto where the sum in the subscript is taken mod q - 1. Clearly, t is the period

of sequence {us} and hence divides into q - 1. Let r be the number of bits "-1" in the
period t of sequence {us}; then, the number of elements of the multiplicative group of
GF(q), mapped by mapping f into "_1," 1s (g - 1)r/t.

Now consider how the PACF of sequence {ai} is connected with mapping f:
M-t M1
R(m) =Y 618 muy= 3 FedFCqrmmn): (2)
=0 i==0

where ((x, y)) denotes the remainder of division of x by y:

((x, y)) = x (mod g), O (%, P <y— -
We first put m £ 0 (mod h). Using préperty 3 above, we obtain from (2):

q—2q¢-2

q—2
Rm=@"—D+24"f@)+ 43 X)) = (
=0 soml p=0 3)

_ 1y
=q" 2(£7—2i’—‘—1r) — 1, ms50 (mod h).
Hence, for all m which are not multiples of h, the values of the PACF of {ai}: R(m) = R,
are the same, and are entirely determined by the parameters t and r of mapping f.

Now let m = lh. Then, using the M-sequence properties 2 and 4, we obtain from (2):

—2
R(lh)_(qn—l_ l)+ qn—lzf(l»”.)f(lf"ﬂ)‘—'—"qn—‘ -1 +qn—lq—_7__l p(’)' (u)
sum()
where
=1
P(')=2“-“u+l.m (5)
0

is the PACF of sequence {us}. Since p(t) = p(0), and hence R(th) = R(0), the perlod of
sequence {a,;} is N =th=(g"—1)t/(¢—1). Combining (3) and (4), we have
T : R(m)=R+ (A+ Bp()—R)8a.ur. (6)

where 613 is Kronecker delta:

CA=g""—1, B=q~—ll_7_l, (7)

Sidelobe suppression loss. It was shown in [5] that the loss 1in signal/noise ra®o
accompanying complete suppression of the sidelobes of sequence {ai} in period N = th, 1is
characterized by the factor

V=—=F 'zl (8)

where Ayr and q are the maln signal peak to noilse pow=r ratios at MF and SLSF outputs,
respectively, E = R(0), and

N-1

"§.== ZR(m)exp(——i-zT:; km), kE=0,1,... (9)

are the components of the dlscrete Fourier transform (DFT) of PACF of {ai}‘
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Using (6) in (9), we arrive at the result

t(R(h— 1)+ A) + Bl k=0(mod N), ) (10)
(A— Ryt + B, k=0 (mod?), k==0(mod N), -
B, k=0 (modt).

E =

In these last expressions,

1—1

1 4
cu=2p(l>exp(—i3’;—"’—),k=o,1,... (11)
n =0
N are the components of the DFT of PACF of sequence {us}, while
i t—1 .\2
[ c0= (zu,) =(t—-2f)z.
s=0
. 1\Iow, writing (8) in the form
* ' @—12 g1 — 1
Y= —1 o + -3 o
. @ qe—2n+2n—t 4D

(12)

1—1
g —1 —1
+ = [
(—D g 2 *
=]

then substituting from (10) in the 1light of (7), we can directly connect the loss in SLSF
with the order q of the basic field and the type of mapping of GF(q) into o.

For long sequences (n » 1), (12) simplifies to

= (13)

¢—2
‘qz 1 [l +E§I“ for q=2m, t=qg— 1, r=q/2,

0 1—1

|
9 |4
,,.—_—1"47z+ El

k=]

C:l} otherwise

Using (12) and (13), we can find the binary sequences of the class in question with
low values of y. The relevant computational procedure can be computerized in the form of
a search for extrema of y with fixed g when variables t and r are varied (i.e., the period
of {us}, which must always divide into g - 1, and the number of "-1" symbols in the period

of {us}), and for different mappings of ug = f(us) with given t and r (which appear in
(12) and (13) via the DFT components Ck).

If we confine ourselves for a rough guide to long segquences, i.e., use (13), we can
greatly restrict the range of variation of t and r. In fact, we note that

t—1 t—1
2 AN =t ((t 2P+ ¥ ;h) =p(0)=t¢,
£=0 k=1

whence
1—1

3 Lh=4r@t—n. (14)
k=

1

It is easily shown that, under condition (1l4), the set of values §v=4fU——0/U——D,k==th:T

t—1
minimizes the form :ECT, the minimum being (t - 1)2/4r(t - r). Hence, instead of (13), we
=1

can write
2— for g= 2%, t=q—1, r=g/2,
Yo =) ¢ (q t— 12 . (15)

q._._— 1 4._r2 +—__4f (t — r) )— otherwise
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Clearly, sequences with parameters corresponding to the top line of (15) (in particu-
lar, binary M-sequences [2]), are of no interest, since they lose half their energy with
sidelobe suppression. Moreover, as may be seen from the bottom line of (15), necessary
conditions for y_ to be close to 1 are g/4r*<<l and (t—1)/4r(t—r)<<l. The second of these in-

equalities imposes restrictions on r (t—y2ﬁ_1”2s;ng(b+v2b—lw2), whereas the first, since
t > r, fixes the limits tyq/2<t<q——l.

The present method allows interesting families of binary sequences to be found with-
out having recourse to computer synthesis. The relevant coding rules here correspond to
the trivial mappings f: GF(q) - o. First take an example leading to a familiar family.
et t =r =1, i.e., the entire multiplicative group of GF(q) maps into the element "-1"
of set 0. In other words {a;} only contains n41" symbols at the positions where zero ele-

ments of GF(q) appear in the M-sequence {Ci}' It is easily seen that such a mapping f gen-

erates the so-called Singer codes [2], which exist for any periods N=(¢g—1)/(g—1). The
second term in braces in (13) vanishes here, and ye=¢%4(¢g—1). The minimum of this quantity
corresponds to Singer codes over GF(3) and is equal to Yy _ = 1.125, which corresponds to an
0.51-dB loss in threshold signal due to SLSF mismatch.

Now let r = t - 1, i.e., in each subset of elements{p“,p”“,m,p““-q,s=ﬂ,(q—JYﬁ, only
one element maps into "+1," and the rest into "-1." Then, in accordance with (5),

t, =0 s
p(l)={ (mod ¢)
t—4, [5=0(mod?),
which, after substitution in (11), gives ly=4, k=0 (mod?), after which we obtain from (13):

=91 [ 9 _ —
Yo ,4(4_1){“_1)24-« 1)]. (16)

The minimum of (16), regarded as a function of t, 1S Yemin =3qVﬁH§’Z@—-n, and 1is
reache@ for topt = %§§+1, Hence, as the period of {us}, we need to choose a divisor of
q - 1 closest to topt' Moreover, ym pin increases with q, with the result that low loss
can be achieved in the SLSF for a given coding rule, only with relatively small q.

Table 1
awtr \\\<L 2 3 4 5 6 .
N 4 13 40 121 o4 |
by st ¢ | 1,000 | 1,040 | 1,088 | 1,112 1,120 1,125
2| 5,43 | ¥ 2% 124 624 3124 15624 .t

Y 1,067 1,098 1,108 1,111 1,111

3 7.3, 2 N 24 171 1200 8403 58824 1,004
v 1,071 1,083 1,092 1,094 1,094 L )
!
N 56 732 9520 123764 1608936
4 , 4, 2 1,204
13, 4 7 1,171 1,20t 1,204 1,204 1,204

We now turn to some concrete data. In Table 1, we show loss Yy for the coding rules
of the present section, with several values of parameters q, t, T, evaluated both for fi-
nite lengths N=(q"—1)t/(¢—1), in accordance with (12), and also for n + = (y_ ). In particu-
lar, the table demonstrates the existence of extremely interesting familles of sequences '
with sidelobe suppression loss less than for the familiar Singer codes (row 1). For in-
stance, for the sequences of lines 2 and 3, the loss 10 1g Y, in threshold signal is not
more than 0.46 and 0.39 dB, respectively.

Let us give an example to demonstrate the algorithm for generating the described
sequences. Let g = 5, t = 4y, r = 3 (row 2 of Table 1), while n = 2. A primitive poly-
nomial of degree 2 over GF(5) is, in particular,{m}==m,0,L1.4,2,&(L2,2,3,4,&(L4,4,l,&
1,0,3,3,21,301,1,.. We now replace all the zeros, and e.g., all the ones by "+1," the
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" other symbols of {ci} are replaced by "_1." The resulting binary sequence is {a}=... 1. 1, ],
—1, —1, —1, L-—l.—4,1-h’—l,—4,l;—b,—J,l,—J,l1.——L-—1,—4,1,—4,1,l,L.J, which is easily shown
to have the PACF )

R (m) = 208m 0t + 48meis Mo l=es =10 1o
With this PACF, v, 1is very easily evaluated; 1t 1is 1.067 (0.28 dB).

An example of a more complicated coding rule, obtained by computer minimization of
(13) with respect to mappings f: p—rut, s=0, I—1 , 1s provided by the rule, generating binary
sequences of lengthN=23"—1, n=23,.., with parameters £ =22, r = 12. The corresponding
mapping f replaces by the symbols My1" ten elements of the multiplicative group of GF(q),
having indices s equal to 0, 2, 3, 4, 5, 8, 11, 12, 13, 18.  The 12 remaining elements are replaced
by "-1." For sequences of this family, v, is not greater than 1.13.

To sum up, generation of binary seguences on the basis of the mapping of elements of
g-a M-sequences into the set {-1, 1}, offers scope for synthesizing signals with low
loss in the SLSF. The particular interest of sequences of this class lies in the simpli-
city of the generating circuits, consisting of a standard generator of M-sequence {ci} on

the basis of a g-ary shift register with linear feedback (generator of field GF(qn) [61)
and a logic converter, associating with each symbol of {ci} its mapping in accordance
with the chosen rule f: GF(q) +~ ©.
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