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coating resistance deteriorates appreciably the noise performance of beam- 
type tubes. 

The value of S increases more steeply than is expected from (3) for a 
beam current above 300 pA [see Fig. 3(a)]. This increase in S may be 
ascribed to the noise increase at frequencies close to the plasma frequency 
at the  potential minimum as has been theoretically The 
computed plasma frequency at the  potential minimum for the present gun 
is 3.7 GHz for lo = 500  FA. 
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Discrete Fourier T d o r a r s  when the 
Number of Data S a q k  Is Prime 

Abstract-The disac(e Foprier transform of a sequace of N points, 
w h e r e N i s a p r i n w u l b o r , b s e o n n t o b e ~ ~ a c u ~ c o r r e h t i o a .  
T h i s c a o b e r e c o g a i % c i ~ ~ t h e t h e b e r s o f t h e s e q ~ a d t h e  
transform accordimg to a rak imvohiqg a primitive root of N. Thip ebsen.- 
t i o o p e r m i t s t b e ~ F - ~ o r m t o b e e o m p o t e d b y m e a r s o f a  
fast F d e r  transfom algorithm, witb the associated increase in speed, 
e v e n t k q h N i s p r i m e .  

To compute  the discrete Fourier  transform of a long sequence of data 
samples, one of the fast Fourier  transform (FFT) algorithms should be 
used if po~sible.[’~.[~~ The limitation common to all of these algorithms is 
that the  number of data samples, N, must be highly composite. In this 
letter we show how FFT techniques can be applied to the computation 
of a discrete Fourier transform when N is prime. 

I. NOTATION AND DEFTNITIONS 
We basically restrict our attention  to  the discrete Fourier  transform. 

Let the data to be transformed be a sequence of N  numbers {ai}, i=O,  
1, . . ’ ,  N -  1, where the braces indicate the entire sequence, while the 
symbol ai  represents only the ith member of the sequence. The discrete 
Fourier  transform ( D m  is the sequence {A,},  k = O ,  1, . ’ ,  N -  1, whose 
members are given by 

N- 1 

A, = ai exp (-j(Za/N)ik). 
.. - 

i = O  

The values of A, are samples of the z-transform of the finite length sequence 
{ai} at N points equally spaced on the unit circle. 

We need a  notation for an integer modulo  N. For brevity we  will indi- 
cate this by supeduous parentheses : 

((X)) = X modulo N. (2) 

If N is prime there is some number g, not necessarily unique. such that 
there is a one-to-one mapping of the integers i =  1,.  . ’, N - 1  to the integers 
j=1,2; . . ,N-l ,givenby 

j = (hi)). (3) 

For example, let N = 7  and g= 3. The table below  gives the mapping of i 
onto  j. 

In number  theory, g is called a primitive root of N .  A table of primitive 
roots of primes less than 104 is given by Abramowitz and S teg~n . ‘~ ’  

11. COMPUTATION OF {A, }  WEN N Is PRIME 

In (1) we have an expression for A,  for all k .  The expression for A, is 
particularly simple, 

N- 1 

A ,  = ai. 
i = O  

and is to be computed directly. For the  other A, we observe that a, is not to 
be multiplied, and we choose to  add it last into the summation. We are left 
with the sequence {Ak-uo} ,  k = 1,2, . . , N- 1 to compute, given by 

N-1 

i =  I 

We permute  the terms in the  summation, and change the order of the  equa- 
tions via transformations 

and,  noting that ((#-‘))=((go)), we can see that 

N-1 
(A,@), - ao) = x a,(,i,, exp -j - g(’+*) . 

We are now able to recognize that the sequence {Al(e,,-ao} is the circular 
correlation of the sequence { u ( ~ ~ , , }  and the sequence {exp (-j(2a/N)g’)}. 
But Stockham  has shown how clrcular (or  ordinary)  correlation functions 
can be computed with a greatly reduced number of operations by making 
use of FFT algorithms.[41 There  are tw: ways we can p r o d  Since N is 
prime, N - 1 must be composite. Suppose  that  it is highly composite. Then 
the N-1 point circular correlation (7) may be recognized as the in- 
verse DFT of the  product of the D I T  of {a,@-,),} and the DFT  of 
{exp (-j(2x/N)g’}.’ All the DFT operations called for are performed by 
an F I T  algorithm. 

i = O  C )  (7) 

Manuscript  received  March 4,1968 where  it is - 1. 
’ It may be shown  that this D I T  has  magnitude p a t  all frequencies but tpe zeroth, 
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Proceeding in this first way  we  will be  successful only if N - 1 is highly com- 
posite. If N - 1 is only modestly composite, as with N = 563, the savings of 
the FFT algorithm will  be overcome by the fact that more  than one DFT 
must be computed. However, there is another way  we can proceed which 
is not subject to these limitations. The second method is based on the 
observation that  a circular correlation or convolution where the  number of 
points is not highly composite can be computed as a  part of a circular 
convolution with a larger number of points. Letting N ‘  be any highly com- 
posite integer greater than 2 N - 4 ,  we create an N ‘  point sequence {b,} 
by inserting ( N ’ - N +  1) zeros between the zeroth and fist  points of 
{a,(g-ilJ and we create a second N‘  point sequence {ci} by periodically 
repeating the N - 1 point sequence {exp ( - j (2n /N)g’ ) }  until N ‘  points are 
present. Then the inverse DFT of the  product of the DFTs of {b,} and {ci} 
contains {At(pL,,-ao} as a subsequence-the  first N -  1 points. Since N ’  
can be chosen to be highly composite, even a power of two, an FFT 
algorithm can be used to  compute  the DFTs. 

Using either technique, about one-third of the  computation can be 
saved if the transform of {exp ( - j ( 2 n / N h i ) }  is precomputed. One method 
requires a  computation  proportional to ( N  - 1) times the s u m  of the factors 
of ( N - 1 )  whereas the second method requires a  computation  propor- 
tional to N ‘  log N ’ .  Furthermore,  the  summation called  for in (4 )  and the 
addition of a, to each other A, c& each be performed with negligible addi- 
tional computation by operating on intermediate  quantities available when 
the  correlation is done by FFT techniques. 

111. CONCLUSIONS 
While the restriction that N be a highly composite number  for FFT 

techniques to be useful has  not proved severe, it is interesting to know that 
it  can be removed. On the  other  hand,  the recognition that  a D l T  can 
be expressed as a  convolution may be useful in itself, as this implies that a 
single network with fixed parameters  can  compute all the  points of a DFT. 
It is expected that such diverse applications as radar beam forming and 
modem design may profitably use this result. 
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On a Theoretical Pattern Recognition 
Model of Ho and Agrawala 

Abstract-Two versioaf of M ursllpervised leprning a J g o r i h  for pat- 
ternrecognitionarecomparedbymeaosofMIlnericPlcPlclllftioafbasedoo 
twdimensional ellipsoidal pattern dist r i i .  

In a recent letter, Ho  and Agrawala’ describe a theoretical model 
intended to explain some previpAy published experimental results in 
character recognition? They call attention  to  the  introduction of a 
simplifying assumption, expected to have little effect on the behavior of 
the recognition algorithm, to render  the analysis tractable. Inspired by 
their observations we have calculated the performance of the  algorithm, 
with and without this modification, for a specific family of distributions 
also suggested by Ho and Agrawala. 
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pip 1. Twoclass ellipsoidal  pattern  distributions. In this  example o=l.O and b =5.6. 
The initial  separating  hyperplane,  which is perpendicular to the weight  vector 40).  
idemifis incorrectbone-tenth of the  patterns  (shaded  region),  thus F=90.0 percent. 
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Fig.  2. Critical  values of the parameters  for  two  learning  algorithms. The region  below  the 
dotted  line  indicates  sucxessful  convergence of the Ho-Agrawala  algorithm. The solid 

Nagy-Shelton algorithm. In the  example of Fig. I ,  shown with an asterisk, tbe former 
line mark the  upper limits of cow convergence,  for  a  given  initial  hyperplane, of the 

would fail whi the latter  would suaed provided the initial  error rate is lower  than 10.0 
peIoRlt. 

Using their notation, the two versions of the unsupervised learning 
algorithm  are 

or(k + 1 )  = X X J a ( k )  ( 1 )  
a(k + 1) = x sgn ( X J a ( k ) )   ( 2 )  

where the a(k) are  the successive approximations to the weight vector 
characterizing the hyperplane separating  the two classes, and the  columns 
of the X matrix  are  the pattern vectors to be classified. 

Ho  and Agrawala show that the  procedure described by ( 1 )  always 
converges to the eigenvector associated with the largest eigenvalue of the 
sample covariance matrix XX’.  It will  be  seen,  however, that the asymp- 
totic behavior of (2)  depends strikingly on the initial weight vector a(0). 

The family of distributions considered consists of patterns uniformly 
distributed on two ellipses symmetrically located about the origin, as 
shown in Fig. 1. Ho  and Agrawala’s procedure (1) converges to the  correct 
hyperplane  (the y-axis) whenever the y component of the variance of the 
overall distribution is inferior to the x component.  This imposes constraints 
on the  relation between the  major axis b and the  minor axis a of the 
ellipses, as shown by the dotted line in Fig. 2. 


