
a+&,, and look a t   the  residuals X,( t )  = X ( t )  - 6- 6t .  This 
is a new function,  which  has a spectrum. Is this  the 
spectrum  we  want?  In  other  words,  should  one heed ad- 
vice to  pick out  and  throw  away  linear  trends?  The 
point  is  that  there is no  such  thing as magically taking 
out linear  trends. If one  wants  the  spectrum of the 
trend,  then  one should  be  estimating  that. If one wants 
the  spectrum of the series that  is  hidden  in,  or  super- 
posed on,  the  trend,  one  should  be  estimating  that.  The 
spectrum  should  be  interpreted  with  the  idea  that  there 
are  many  spectra,  each of which  should  be  looked at .  

Another  important  term is coherence. T o  my  mind, 
one of the  most  important roles of spectra is in the  fit- 
ting of models. In  this role,  two  kinds of testing  prob- 
lems  are  very  important  in  spectrum  analysis:  testing 
for  the  presence of white noise and  testing  for  zero 
coherence. 

To  model a time  series, we try  to  represent  it as the 
output of a system  whose  input  is  white noise (a  series 
of zero  mean  uncorrelated  random  variables). Now the 
question is: How does  one  know  when  one  has  the  model 
that  one  has  an  input  that is  white?  The  idea of testing 
for white noise is a crucial  problem  in  the  statistical 
theory of spectral  analysis. To  interpret  computed  spec- 
tra,  one  must  apply  the  many  ways of testing  for  white 
noise,  each  powerful against  different  kinds of alterna- 
tives. 

Similarly,  to  interpret  computed  spectra  one  must 
apply  various  tests of coherency.  Unit  coherence is 

indicative of linearity of a system, since  we  have  unit 
coherence  between  input  and  output. Zero coherence  is 
the  measure of hon-  one  splits  the  signal  into  incoherent 
parts.  The problem of estimating  coherence  happens  to 
be a very  tricky  problem,  since i t  is  very  easy  to  think 
one  has  zero  coherence  when i t  is not  there, because oi 
bad  computational  technique. So coherence  is another 
aspect of spectral  analysis  that  has  to  be  kept  in  mind: 
its  definition, horn to  compute  it,  and how to  interpret 
it. 

I mould  like to offer a final idea  that  may  be useful. 
People  are  very  often  interested  in  classifying  patterns 
or  records  (for  example,  cardiograms). That  is,  one  may 
want  to decide  whether  a  cardiogram  is  from a ‘rgo~d’’ 
patient.  Various  techniques  are  being  considered  for 
examining  the  record  and  performing  some  kind of 
analysis  on  it. I t  seems to me  that one ought  to consider 
taking a Fourier  transform of these  records,  and  work 
with  that in the  same role. That  is,  whenever someone 
thinks of a time  domain  approach  to a problem,  one 
should  consider  taking  the  Fourier  transform of the 
time  record of the  sample  and use that.  Similarly,  when 
one  talks  about  pattern recognition  in the  plane,  people 
are  interested in  recognizing the  various  letters of the 
alphabet.  I  have  always  wondered  why  they  do  not  take 
a two-dimensional  Fourier  transform of the  data;  this 
might  avoid  some  positioning  problems.  These  are  some 
of the  ideas  that  have come to  mind as I  listened to  talks 
on  pattern-recognition  problems. 

Historical  Notes  on  the Fast Fourier  Transform 
JAMES W.  COOLEY, PETER A. W. LEWIS, AND PETER D. WELCH 

Abstract-The fast  Fourier  transform  algorithm  has a long and 
interesting  history that  has only  recently  been  appreciated. In this 
paper, the contributions of many  investigators  are  described  and 
placed in historical  perspective. 

HISTORICAL  REMARKS 

T HE FAST  FOURIER  transform (FFT) algo- 
rithm is a method  for  computing  the  finite  Fourier 
transform of a series of N (complex) data  points in 

approximately N log2 M operations.  The  algorithm  has 
a fascinating  history.  When  it was described by Cooley 
and  Tukey [l] in 1965 i t  was regarded as new by  many 
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knowledgeable  people  who  believed  Fourier  analysis to 
be a process requiring  something  proportional  to N2 

operations  with a proportionality  factor  which could be 
reduced by using the  symmetries of the  trigonometric 
functions.  Computer  programs  using  the  N2-operation 
methods were, in fact,  using  up  hundreds of hours of 
machine  time.  However,  in  response  to  the Cooley- 
Tukey  paper,  Rudnick [SI ,  of Scripps  Institution of 
Oceanography, La  Jolla, Calif.,  described  his  com- 
puter  program  which  also  takes a number of operations 
proportional  to N log2 N and is based on a method  pub- 
lished by Danielson and  Lanczos [2]. I t  is interest- 
ing  that  the Danielson-Lanczos  paper  described  the 
use of the  method in X-ray  scattering  problems,  an  area 
where,  for many  years  after 1942, the  calculations of 
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Fourier  transforms  presented a formidable  bottleneck  to 
researchers  who mere unaware  of  this efficient method. 
Danielson  and  Lanczos  refer  to  Runge [6], [7]  for the 
source of their  method.  These  papers  and  the  lecture 
notes of Runge  and  Konig [SI describe the  procedure 
in  terms of sine-cosine  series. The  greatest  emphasis, 
however,  was  on  the  computational  economy  that 
could be  derived  from  the symmetries of the sine and 
cosine  functions. In a relatively  short  section of Runge 
and  Konig [8] i t  was  shown  how  one  could use the 
9eriodicity of the sine-cosine  functions to  obtain a 
2N-point  Fourier  analysis  from  two  N-point  analyses 
with  only  slightly  more  than N operations.  Going 
the  other  way, if the series to  be  transformed  is of 
length N and N is a power of 2 ,  the series  can  be  split 
into log2 N subseries and  this  doubling  algorithm  can  be 
applied  to  compute  the finite  Fourier  transform  in logz N 
doublings. The  number of computations in the  resulting 
successive  doubling  algorithm  is  therefore  proportional 
to  N log, N rather  than N2. The  use of symmetries  only 
reduces the  proportionality  factor while the successive 
doubling  algorithm  replaces N 2  by N log N .  This  distinc- 
tion  was  not  important  for  the  values of N used  in the 
days of Runge  and Konig.  However,  when  the  advent of 
computing  machinery  made  calculations  with  large N 
possible, and  the N log N methods  should  have  been 
thoroughly  exploited,  they  were  apparently  overlooked, 
even  though  they  had  been  published by well-read and 
well-referenced authors. 

The  fast  Fourier  transform  algorithm of Cooley and 
Tukey [l] is  more  general  in  that  it  is  applicable 
when N is  composite  and  not necessarily a power of 2. 
Thus, if two  factors of N are used, so that  N = r X s ,  the 
data  is,  in  effect, put in an  r-column, s-row rectangular 
array,  and a  two-dimensional  transform  is  performed 
with a phase-shifting  operation  intervening  between  the 
transformations in the  two dimensions. This  results  in 
N(r+s)  operations  instead of N z .  By selecting N to  be 
highly  composite,  substantial  savings  result.  For  the 
very  favorable  situation  when N is equal  to a power of 
2 ,  the Cooley-Tukey  method is essentially the succes- 
sive  doubling  algorithm  mentioned  above  and  takes 
N logs N operations. 

The  23-year hiatus in the use of the  algorithm  seemed 
quite  remarkable,  and  prompted  us  to  inquire of Prof. 
L. H. Thomas at the IBM Watson  Scientific  Computing 

analysis.  However,  the  algorithms  are  different  for  the 
following reasons: 1) in the  Thomas  algorithm  the fac- 
tors of N must  be  mutually  prime; 2) in the  Thomas 
algorithm  the  calculation is precisely  multidimensional 
Fourier  analysis  with no intervening  phase  shifts  or 
“twiddle  factors” as they  have  been  called;  and 3) the 
correspondences  between the one-dimensional  index and 
the  multidimensional  indexes in the  two  algorithms  are 
quite  different. The  Thomas  or  “prime  factor” algo- 
rithm is described  in  detail  and  compared  with  the fast 
Fourier  transform  algorithm in the  next section.1 I t  can 
be  extremely  useful  when used in  combination  with  the 
fast Fourier  transform  algorithm. 

Several  other  calculations  have  been  reported in the 
literature  and  in  private  communications  which use one 
or  the  other of the  two  algorithms. 

Another  line of development has since  led to  the 
Thomas  algorithm in its full generality.  This  comes  from 
work in the  analysis  and design of experiments.  Let 
A ( h ,  h ,  * . , km-1) be, for  example, a crop  yield  when a 
level Ki of treatment i, which may  be an amount of 
fertilizer,  is  used. Yates [ll] considered the  case 
where k i =  0 or  1,  meaning  treatment i is  or is not  used. 
This yields N = 2’” values of crop  yields  and,  to  get  all 
possible  differences  between  all  possible averages,  one 
would, in principle,  have  to  compute N linear  combina- 
tions of all of the A’s. This would  require N2 operations. 
Yates devised a scheme  whereby  one  computed  a new 
array of N sums  and differences of pairs of the A’s. The 
process  was repeated  on  the  new  array  with  pairs  se- 
lected in a different  order.  This was done m =logz N 
times,  meaning  he  did  the  calculation  in N log2 N opera- 
tions  instead of N2. 

Good  [4]  noted that  the  Yates  method  could  be 
regarded  as  m-dimensional  Fourier  analysis  with  only 
two  points in each  direction  and  that  the  procedure 
could be generalized to  one  for an arbitrary  number of 
points  in  each  direction.  Then  Good  showed  that if 
N is  composite,  with  mutually  prime  factors, i.e., 
N=rlr,z, ‘ ’ . , I,, one could do a one-dimensional 
Fourier  analysis  of N points  by  doing  m-dimensional 
Fourier  analysis  on  an  m-dimensional, rlx12x, . . , 
X r m ,  array of points.  With  these  ideas  put  together  and 
developed,  Good’s  paper  contains  the full generalization 
of the  Thomas  prime  factor  algorithm. 



nl 
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n1 
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tant  to  distinguish between  these  two  algorithms  since 
each  has  its  particular  advantages  which  can  be ex- 
ploited  in  appropriate  circumstances. 

T h e  differences will be  illustrated  by considering the 
calculation of a Fourier  series  using  two  factors of N .  
The  Fourier series is 

X ( j )  = A (?Z) W A p  
N- 1 

n=O 

Al(j0, no)TV~~ono. The  factor Wiono, referred to as the 
“twiddle  factor”  by  Gentleman  and  Sande 131, is 
usually  combined  with  either  the T/V,jon1 factor in (4) or 
the W S j l n o  factor in (5). 

For  the  Thomas  prime  factor  algorithm,  one  must 
require that  r and s be  mutually  prime.  In  this  case, 
different  mappings of the one-dimensional arrays  into 
two-dimensional arrays  are used. These  are  also  one-to- 
one  mappings  and  are defined as  follows. Let 

where Whr = e21ri’N. Consider  first  the  fast  Fourier  trans- .IZ = Y J Z O  + m l  (mod N )  (0 _< n < N )  (6) 
form  algorithm. We assume N = r . s ,  and define  a  one-to- and 
one  mapping  between  the  integers j ,  0 < j  < N ,  and  the 
pairs of integers (jl, jo),  0 <j ,  < r ,  0 <j, <s, by the rela- 
tion j, = j  (mod s) (0 < j 1  < s). ( 7 )  

j o  = j (mod y )  (0 _< j ,  < y )  

j = i l y  i- j o .  

Similarly, we let 

oil = ?21S + 110, 

where 

(2) Then  the expression of j ,  in terms of j o  and j,, is a solu- 
tion  of  the  “Chinese  remainder  problem”  and is given by 

j s.s,jo f r . y s j l  (mod N )  (0 < j < N )  ( 8 )  
(3)  

where s, and rS are  solutions of 

s.s, = 1 (mod Y) sT < r 

r - r s  = 1 (mod s) Y, < s, 
This  enables us to  refer  to A (n) and X ( j )  as  though 

they were  two-dimensional arrays  and  permits us to  do respectively. Substituting (6) and (8) and using (7) gives 

Table I shows  where A (n) and X ( j )  are placed in the 
two-dimensional arrays indexed by (nl, no) and (.jl, . i o ) ,  . .  

respectively,  for r = 8  and s =3. For  this  case, (4) con- As in the fast Fourier  transform  algorithm,  this is a two- 
sists of three  eight-term  Fourier series, one  for  each row dimensional  Fourier  transform.  The  essential difference 
of the n table.  Then, i f j ,  is taken  to  be  the  column  index is that  the  “twiddle  factor” WNjOnO does not  appear in 
of the  results, Al( jo ,  no) ,  (5) describes  eight  Fourier (10) and  the correspondence  between  one- and two- 
series of three  terms  each  on  the  columns of the  array of dimensional  indexing is different.  The presence  of the 

. .  
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“twiddle  factor”  does  not  introduce  any  more  computa- 
tion,  but  it  does  increase  programming  complexity 
slightly. T o  illustrate  better how the  indexing in the 
two  algorithms  differs,  the  mappings of n and j for  the 
Thomas  prime  factor  algorithm  are  given in Table I1 
for comparison  with  the  indexing  described in Table  I. 

The  prime  factor  algorithm  can  be  programmed  very 
easily in a  source  language like FORTRAN and,  therefore, 
can  be  used  efficiently  with a subroutine  designed  for a 
number of terms  equal  to a power of two.  For  example, 
if r is a power of 2 and s is any  odd  number,  the  sub- 
series (9) can  be  computed  by  the  power of 2 sub- 
routine. 
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Application of the Fast  Fourier  Transform to 

JAMES W. COOLEY, PETER A. W. LEWIS, AND PETER D. WELCH 

Absfracf-The  fast  Fourier  transform is a  computational  proce- 
dure  for  calculating  the finite Fourier  transform of a  time  series. In  
this paper, the properties of the finite Fourier  transform are  related 
to commonly used  integral  transforms  including  the  Fourier  trans- 
form  and convolution  integrals. The relationship  between  the finite 
Fourier  transform  and  Fourier  series  is  also  discussed. 

M 
INTRODUCTION 

ANY PROBLEMS of current  interest  require 
the use of a variety of numerical  methods  for 
their  solution. A technique  that  has  found  wide 

applicability is the  integral  transform  method. How- 
ever,  numerical  problems  are  generally  solved  with  the 
aid of a  digital  computer  which is not designed to handle 
the  continuous  waveforms  that  occur  when  integral 
transform  methods  are used. For  this  reason,  it is neces- 
sary  to  convert  continuous  time  series  or  other  func- 
tions  to a series of discrete  data  samples,  and  to  per- 
form  numerical  operations  such  as  the  finite  Fourier 
transform on these  samples.  The  fast  Fourier  transform 
(FFT)  algorithm  has  reduced  the  time  required  to  com- 
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pute finite  Fourier  transforms  by  the  fraction logz N / N  
where N is the  number of discrete  data  samples.  For 
large  values of N ,  this  reduction is important.  It is 
therefore  necessary  to  relate  the  properties of continuous 
integral  transforms  to  the  properties of the finite 
Fourier  transform in order  to  take  advantage of digital 
computers  and  the  fast  Fourier  transform  algorithm.  In 
this  paper,  the  correspondence  between  the  finite 
Fourier  transform  and  the  Fourier  integral is described, 
and a method  that  can  be  used  to  compute  Fourier in- 
tegrals is discussed  in  detail.  Other  problems  covered 
are  the  computation of convolution  integrals  and  in- 
tegral  equations of the  convolution  type.  Finally,  the 
relationship  between  the  finite  Fourier  transform  and 
the  Fourier series is discussed in order to apply  the FFT 
to  problems  that  involve  harmonic  analysis  and syn- 
thesis. 

RELATIOKSHIP BETWEEN THE FINITE FOURIER  TRANS- 
FORM AND THE FOURIER TRANSFORM: USE OF THE 

ALGORITHM TO CALCULATE FOCRIER IKTEGRALS 

Suppose we have  a  function x ( t )  which  has a Fourier 
transform 


