
a+&,, and look a t the residuals X,(t) = X (t) - 6- 6t . This
is a new function, which has a spectrum. Is this the
spectrum we want? In other words, should one heed ad-
vice to pick out and throw away linear trends? The
point is that there is no such thing as magically taking
out linear trends. If one wants the spectrum of the
trend, then one should be estimating that. If one wants
the spectrum of the series that is hidden in, or super-
posed on, the trend, one should be estimating that. The
spectrum should be interpreted with the idea that there
are many spectra, each of which should be looked at .

Another important term is coherence. T o my mind,
one of the most important roles of spectra is in the fit-
ting of models. In this role, two kinds of testing prob-
lems are very important in spectrum analysis: testing
for the presence of white noise and testing for zero
coherence.

To model a time series, we try to represent it as the
output of a system whose input is white noise (a series
of zero mean uncorrelated random variables). Now the
question is: How does one know when one has the model
that one has an input that is white? The idea of testing
for white noise is a crucial problem in the statistical
theory of spectral analysis. To interpret computed spec-
tra, one must apply the many ways of testing for white
noise, each powerful against different kinds of alterna-
tives.

Similarly, to interpret computed spectra one must
apply various tests of coherency. Unit coherence is

indicative of linearity of a system, since we have unit
coherence between input and output. Zero coherence is
the measure of hon- one splits the signal into incoherent
parts. The problem of estimating coherence happens to
be a very tricky problem, since i t is very easy to think
one has zero coherence when i t is not there, because oi
bad computational technique. So coherence is another
aspect of spectral analysis that has to be kept in mind:
its definition, horn to compute it, and how to interpret
it.

I mould like to offer a final idea that may be useful.
People are very often interested in classifying patterns
or records (for example, cardiograms). That is, one may
want to decide whether a cardiogram is from a ‘rgo~d’’
patient. Various techniques are being considered for
examining the record and performing some kind of
analysis on it. I t seems to me that one ought to consider
taking a Fourier transform of these records, and work
with that in the same role. That is, whenever someone
thinks of a time domain approach to a problem, one
should consider taking the Fourier transform of the
time record of the sample and use that. Similarly, when
one talks about pattern recognition in the plane, people
are interested in recognizing the various letters of the
alphabet. I have always wondered why they do not take
a two-dimensional Fourier transform of the data; this
might avoid some positioning problems. These are some
of the ideas that have come to mind as I listened to talks
on pattern-recognition problems.

Historical Notes on the Fast Fourier Transform
JAMES W. COOLEY, PETER A. W. LEWIS, AND PETER D. WELCH

Abstract-The fast Fourier transform algorithm has a long and
interesting history that has only recently been appreciated. In this
paper, the contributions of many investigators are described and
placed in historical perspective.

HISTORICAL REMARKS

T HE FAST FOURIER transform (FFT) algo-
rithm is a method for computing the finite Fourier
transform of a series of N (complex) data points in

approximately N log2 M operations. The algorithm has
a fascinating history. When it was described by Cooley
and Tukey [l] in 1965 i t was regarded as new by many

Manuscript received January 26, 1967; revised ”Irch 6, 1967.
The authors are with the IBM Research Center, Yorktown

Heights, N. Y .

knowledgeable people who believed Fourier analysis to
be a process requiring something proportional to N2

operations with a proportionality factor which could be
reduced by using the symmetries of the trigonometric
functions. Computer programs using the N2-operation
methods were, in fact, using up hundreds of hours of
machine time. However, in response to the Cooley-
Tukey paper, Rudnick [SI , of Scripps Institution of
Oceanography, La Jolla, Calif., described his com-
puter program which also takes a number of operations
proportional to N log2 N and is based on a method pub-
lished by Danielson and Lanczos [2]. I t is interest-
ing that the Danielson-Lanczos paper described the
use of the method in X-ray scattering problems, an area
where, for many years after 1942, the calculations of

COOLEY et al: HISTORICAL XOTES 77

Fourier transforms presented a formidable bottleneck to
researchers who mere unaware of this efficient method.
Danielson and Lanczos refer to Runge [6], [7] for the
source of their method. These papers and the lecture
notes of Runge and Konig [SI describe the procedure
in terms of sine-cosine series. The greatest emphasis,
however, was on the computational economy that
could be derived from the symmetries of the sine and
cosine functions. In a relatively short section of Runge
and Konig [8] i t was shown how one could use the
9eriodicity of the sine-cosine functions to obtain a
2N-point Fourier analysis from two N-point analyses
with only slightly more than N operations. Going
the other way, if the series to be transformed is of
length N and N is a power of 2 , the series can be split
into log2 N subseries and this doubling algorithm can be
applied to compute the finite Fourier transform in logz N
doublings. The number of computations in the resulting
successive doubling algorithm is therefore proportional
to N log, N rather than N2. The use of symmetries only
reduces the proportionality factor while the successive
doubling algorithm replaces N 2 by N log N . This distinc-
tion was not important for the values of N used in the
days of Runge and Konig. However, when the advent of
computing machinery made calculations with large N
possible, and the N log N methods should have been
thoroughly exploited, they were apparently overlooked,
even though they had been published by well-read and
well-referenced authors.

The fast Fourier transform algorithm of Cooley and
Tukey [l] is more general in that it is applicable
when N is composite and not necessarily a power of 2.
Thus, if two factors of N are used, so that N = r X s , the
data is, in effect, put in an r-column, s-row rectangular
array, and a two-dimensional transform is performed
with a phase-shifting operation intervening between the
transformations in the two dimensions. This results in
N(r+s) operations instead of N z . By selecting N to be
highly composite, substantial savings result. For the
very favorable situation when N is equal to a power of
2 , the Cooley-Tukey method is essentially the succes-
sive doubling algorithm mentioned above and takes
N logs N operations.

The 23-year hiatus in the use of the algorithm seemed
quite remarkable, and prompted us to inquire of Prof.
L. H. Thomas at the IBM Watson Scientific Computing

analysis. However, the algorithms are different for the
following reasons: 1) in the Thomas algorithm the fac-
tors of N must be mutually prime; 2) in the Thomas
algorithm the calculation is precisely multidimensional
Fourier analysis with no intervening phase shifts or
“twiddle factors” as they have been called; and 3) the
correspondences between the one-dimensional index and
the multidimensional indexes in the two algorithms are
quite different. The Thomas or “prime factor” algo-
rithm is described in detail and compared with the fast
Fourier transform algorithm in the next section.1 I t can
be extremely useful when used in combination with the
fast Fourier transform algorithm.

Several other calculations have been reported in the
literature and in private communications which use one
or the other of the two algorithms.

Another line of development has since led to the
Thomas algorithm in its full generality. This comes from
work in the analysis and design of experiments. Let
A (h , h , * . , km-1) be, for example, a crop yield when a
level Ki of treatment i, which may be an amount of
fertilizer, is used. Yates [ll] considered the case
where k i = 0 or 1, meaning treatment i is or is not used.
This yields N = 2’” values of crop yields and, to get all
possible differences between all possible averages, one
would, in principle, have to compute N linear combina-
tions of all of the A’s. This would require N2 operations.
Yates devised a scheme whereby one computed a new
array of N sums and differences of pairs of the A’s. The
process was repeated on the new array with pairs se-
lected in a different order. This was done m =logz N
times, meaning he did the calculation in N log2 N opera-
tions instead of N2.

Good [4] noted that the Yates method could be
regarded as m-dimensional Fourier analysis with only
two points in each direction and that the procedure
could be generalized to one for an arbitrary number of
points in each direction. Then Good showed that if
N is composite, with mutually prime factors, i.e.,
N=rlr,z, ‘ ’ . , I,, one could do a one-dimensional
Fourier analysis of N points by doing m-dimensional
Fourier analysis on an m-dimensional, rlx12x, . . ,
X r m , array of points. With these ideas put together and
developed, Good’s paper contains the full generalization
of the Thomas prime factor algorithm.

nl
1 0 1 2 3 4 5 6 5

n1

I 0 1 2 3 4 5 6 7

0 0 3 6 9 1 2 15 18 21
77 0 1

2 I k 5 8 11 14 17 20 23
4 7 10 13 16 19 22

0 3 6 9 12 15 18 21

16 19 22 1 4 7 10 13
8 11 14 I T 20 23 2 5 no

j = Y j l + j o = Sjl + j o

j a
i o 1 2 3 4 5 6 7

j_s . s j ,+r . r*~,=9j j ,+16j~ (mod 24, O<j<N)

.io
1 0 1 2 3 4 5 6 7

0 1 0 1 2 3 4 5 6 7 0 9 18 3 12 21 6 15
-71 1 8 9 10 11 12 13 14 15 3 1

16 1 10 19 4 13 22 7
2 1 16 17 18 19 20 21 22 23 8 17 2 11 20 5 14 23

tant to distinguish between these two algorithms since
each has its particular advantages which can be ex-
ploited in appropriate circumstances.

T h e differences will be illustrated by considering the
calculation of a Fourier series using two factors of N .
The Fourier series is

X (j) = A (?Z) W A p
N- 1

n=O

Al(j0, no)TV~~ono. The factor Wiono, referred to as the
“twiddle factor” by Gentleman and Sande 131, is
usually combined with either the T/V,jon1 factor in (4) or
the W S j l n o factor in (5).

For the Thomas prime factor algorithm, one must
require that r and s be mutually prime. In this case,
different mappings of the one-dimensional arrays into
two-dimensional arrays are used. These are also one-to-
one mappings and are defined as follows. Let

where Whr = e21ri’N. Consider first the fast Fourier trans- .IZ = Y J Z O + m l (mod N) (0 _< n < N) (6)
form algorithm. We assume N = r . s , and define a one-to- and
one mapping between the integers j , 0 < j < N , and the
pairs of integers (jl, jo), 0 <j , < r , 0 <j, <s, by the rela-
tion j, = j (mod s) (0 < j 1 < s). (7)

j o = j (mod y) (0 _< j , < y)

j = i l y i- j o .

Similarly, we let

oil = ?21S + 110,

where

(2) Then the expression of j , in terms of j o and j,, is a solu-
tion of the “Chinese remainder problem” and is given by

j s.s,jo f r . y s j l (mod N) (0 < j < N) (8)
(3)

where s, and rS are solutions of

s.s, = 1 (mod Y) sT < r

r - r s = 1 (mod s) Y, < s,
This enables us to refer to A (n) and X (j) as though

they were two-dimensional arrays and permits us to do respectively. Substituting (6) and (8) and using (7) gives

Table I shows where A (n) and X (j) are placed in the
two-dimensional arrays indexed by (nl, no) and (.jl, . i o) , . .

respectively, for r = 8 and s =3. For this case, (4) con- As in the fast Fourier transform algorithm, this is a two-
sists of three eight-term Fourier series, one for each row dimensional Fourier transform. The essential difference
of the n table. Then, i f j , is taken to be the column index is that the “twiddle factor” WNjOnO does not appear in
of the results, Al(jo , no) , (5) describes eight Fourier (10) and the correspondence between one- and two-
series of three terms each on the columns of the array of dimensional indexing is different. The presence of the

. .

IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, VOL. AU-l$ N O .

“twiddle factor” does not introduce any more computa-
tion, but it does increase programming complexity
slightly. T o illustrate better how the indexing in the
two algorithms differs, the mappings of n and j for the
Thomas prime factor algorithm are given in Table I1
for comparison with the indexing described in Table I.

The prime factor algorithm can be programmed very
easily in a source language like FORTRAN and, therefore,
can be used efficiently with a subroutine designed for a
number of terms equal to a power of two. For example,
if r is a power of 2 and s is any odd number, the sub-
series (9) can be computed by the power of 2 sub-
routine.

REFERENCES
[l] J. W. Cpoley and J. W. Tukey, “An algorithm for the machine

calculation of complex Fourier series,” Math. of Comput., vol. 19,
pp. 297-301, April 1965.

2, JUNE 1967 79

G. C. Danielson and C. Lanczos, “Some improvements in prac-

from liquids,” J . Franklin Inst., vol. 233, pp. 365-380 and 435-
tical Fourier analysis and their application to X-ray scattering

452, April 1942.
W. M. Gentleman and G. Sande, “Fast Fourier transforms
for fun and profit,” 1966 Fall Joint Computer Conf., A F I P S
Proc., vol. 29. Washington, D. C.: Spartan, 1966, pp. 563-578.

analysis,” J. Roy. Statist. Soc., ser. B, vol. 20, pp. 361-372, 1958;
I. J. Good, “The interaction algorithm and practical Fourier

Addendum, vol. 22, 1960, pp. 372-375. (MR 21 1674; MR 23
A4231.)
P. Rudnick. “Note on the calculation of Fourier series.” Math. of
Cornput., vol. 20, pp. 429-430, July 1966.
C. Runge, Zeit. fiir Math. und Physik, vol. 48, p. 443, 1903.
C. Runrre, Zeit. fur Math. und Physik, vol. 53, p. 117, 1905.
C. Runie and H. Konig., “Die Grcndlehren derbathematischen
Wissengchaften,” Vorl&ungen uber Numerisches Rechnen, vol. 11.
Berlin: Julius Springer, 1924.

[9] K. Stumpff, Tafeln und Aufgaben zur Harrnonischen Analyse
und Periodogramlnrechnung. Berlin: Julius Springer, 1939.

[lo] L. H. Thomas, “Using a computer to solve problems in physics,”
Application of Digital Computers. Boston, Mass.: Ginn, 1963.

[ll] F. Yates, The Design and Analysis of Factorial Experiments.
Harpenden: Imperial Bureau of Soil Science.

Application of the Fast Fourier Transform to

JAMES W. COOLEY, PETER A. W. LEWIS, AND PETER D. WELCH

Absfracf-The fast Fourier transform is a computational proce-
dure for calculating the finite Fourier transform of a time series. In
this paper, the properties of the finite Fourier transform are related
to commonly used integral transforms including the Fourier trans-
form and convolution integrals. The relationship between the finite
Fourier transform and Fourier series is also discussed.

M
INTRODUCTION

ANY PROBLEMS of current interest require
the use of a variety of numerical methods for
their solution. A technique that has found wide

applicability is the integral transform method. How-
ever, numerical problems are generally solved with the
aid of a digital computer which is not designed to handle
the continuous waveforms that occur when integral
transform methods are used. For this reason, it is neces-
sary to convert continuous time series or other func-
tions to a series of discrete data samples, and to per-
form numerical operations such as the finite Fourier
transform on these samples. The fast Fourier transform
(FFT) algorithm has reduced the time required to com-

Manuscript received January 26, 1967; revised March 6, 1967.
The authors are with the IBM Research Center, Yorktowu

Heights, N. Y.

pute finite Fourier transforms by the fraction logz N / N
where N is the number of discrete data samples. For
large values of N , this reduction is important. It is
therefore necessary to relate the properties of continuous
integral transforms to the properties of the finite
Fourier transform in order to take advantage of digital
computers and the fast Fourier transform algorithm. In
this paper, the correspondence between the finite
Fourier transform and the Fourier integral is described,
and a method that can be used to compute Fourier in-
tegrals is discussed in detail. Other problems covered
are the computation of convolution integrals and in-
tegral equations of the convolution type. Finally, the
relationship between the finite Fourier transform and
the Fourier series is discussed in order to apply the FFT
to problems that involve harmonic analysis and syn-
thesis.

RELATIOKSHIP BETWEEN THE FINITE FOURIER TRANS-
FORM AND THE FOURIER TRANSFORM: USE OF THE

ALGORITHM TO CALCULATE FOCRIER IKTEGRALS

Suppose we have a function x (t) which has a Fourier
transform

