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Scattering transforms

Let P be a countable index set and fix a sequence of L2(Rd) functions,

G = {g, gp}p∈P.

Associate p ∈ Pk with the scattering propagator U[p], formally defined as

U[p](f ) =

{
|f ∗ gp| if p ∈ P,
U[pk] · · ·U[p2]U[p1]f if p = (p1, p2, . . . , pk) ∈ Pk.

The scattering transform SG associated with G is formally defined as

SG(f ) = {f ∗ g} ∪ {U[p](f ) ∗ g}p∈Pk,k≥1.

Zero order coefficient: {f ∗ g}.
First order coefficients: {|f ∗ gp| ∗ g}p∈P.

Second order coefficients: {||f ∗ gp1 | ∗ gp2 | ∗ g}(p1,p2)∈P2 .

Etc.
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Scattering network

Figure : Network structure of the scattering transform.

Weilin Li Time-Frequency Scattering Transforms: Theory and Applications



Background
Fourier Scattering Transform

Properties of the FST
Truncated FST

Hyperspectral data

Mallat scattering transforms

Theorem [Mallat ’12]

Consider the Parseval semi-discrete wavelet frame W = {ϕ,ψλ}λ∈Λ, where ψ a
certain technical condition. If SW is the wavelet scattering transform associated with W,
then

1 (Energy preservation) For all f ∈ X, ‖SW(f )‖L2`2 = ‖f‖L2 .

2 (Non-expansiveness) For all f , h ∈ L2, ‖SW(f )− SW(h)‖L2`2 ≤ ‖f − g‖L2 .
3 (Translation stability) There exists a constant C(J) > 0 such that for all y ∈ Rd and

f in a certain logarithmic Sobolev space,

‖SW(f )− SW(f (· − y))‖L2`2 ≤ C(J)|y|(‖f‖L2 + ‖f‖X).

4 (Diffeomorphism stability) For any diffeomorphism τ ∈ C2(Rd;Rd) such that Id − τ
is sufficiently small, there exists C(J, τ) > 0 such that for all f in a certain
logarithmic Sobolev space,

‖SW(f )− SW(f (τ(·)))‖L2`2 ≤ C(J, τ)
(
‖f‖L2 +

∞∑
k=1

∑
λ∈Λk

‖U[λ](f )‖L2

)
.
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Mallat scattering transforms

Applications:

Handwritten digit analysis [Bruna, Mallat]

Texture classification [Bruna, Mallat], [Sifre, Mallat]

Music classification [Andèn, Mallat]

Classification of molecules [Eickenberg, Exarchakis, Hirn, Mallat]

Related theory:

Scattering on graphs [Cheng, Chen, Mallat], [Lerman, Zou]

Wavelet phase retrieval [Waldspurger, Mallat]

Alternative admissibility conditions [Waldspurger]

More general scattering networks [Wiatowski, Bölcskei]

The Lipschitz problem [Balan, Zou]

Weilin Li Time-Frequency Scattering Transforms: Theory and Applications



Background
Fourier Scattering Transform

Properties of the FST
Truncated FST

Hyperspectral data

Time-frequency scattering?

We would like to use a different set of analyzing functions in the scattering transform
instead of a wavelet frame. Our reasons:

The convolution kernels that are learned in a convolutional neural network
typically are not related by some algebraic structure such as scaling.

Learned filters in the first few layers of neural networks almost always are
localized, oriented, band-pass filters, which resemble Gabor functions.

Biological evidence suggests that simple cells in the mammalian visual cortex are
modeled by modulations and rotations of a fixed 2-dimensional Gaussian.

The short-time (or windowed) Fourier transform

Vgf (x, ξ) =
∫
Rd

f (y)g(y− x)e−2πiξ·y dy,

has been used as a feature extractor for various audio and image classification
problems. Most notably, for d = 1, the function |Vgf |2 is the spectrogram of an
audio signal f .
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Uniform covering frame

From here onwards, we assume that G is a uniform covering frame (UCF):

Mild regularity and integrability. g ∈ L1 ∩ L2 ∩ C1 and gp ∈ L1 ∩ L2 for each p ∈ P.

Frequency support conditions. |̂g(0)| = 1 and supp(ĝp) is a compact and
connected set for each p ∈ P.

Uniform covering property. For any R > 0, there exists an integer N, such that for
any p ∈ P, the supp(ĝp) can be covered by N cubes of side length 2R.

The uniform covering property and the connectedness assumption implies the
family of sets {supp(ĝp)} have uniformly bounded diameters.

Any wavelet frame violates the uniform covering property, so it is not a UCF.

Frame condition. We have
|̂g|2 +

∑
p∈P

|ĝp|2 = 1.

This is equivalent to: For all f ∈ L2,

‖f ∗ g‖2
L2 +

∑
p∈P

‖f ∗ gp‖2
L2 = ‖f‖2

L2 .
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Example 1: Gabor frame

Figure : Tiling of the Fourier
domain induced by a Gabor
system.

Let g be smooth and assume
that ĝ is compactly supported and for all ξ ∈ Rd,∑

m∈Zd

|̂g(ξ − m)|2 = 1

Let P = Zd \ {0}.
For each p ∈ P, define the function gp by the formula,

gp(x) = e2πip·xg(x).

The sequence of functions,

G = {g, gp}p∈P

is a semi-discrete Gabor frame as well as a UCF.
This example readily generalizes to other lattices.
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Example 2: Rotational UCF
For a fixed integer A ≥ 1 and each integer m ≥ 1, let Um be the finite rotation group on
R2 generated by rotations by 2π/(m∗A), where m∗ = 2blog2(m)c. Define the index set,

P = {(m, r) : m ≥ 1, r ∈ Um}.

It is possible to select g and {gm}m≥1 appropriately such that if we let gm,r(x) = gm(rx)
for each r ∈ Um, then

G = {g, gp}p∈P

is a UCF that is partially generated by rotations. This readily generalizes to
d-dimensions, but is more complicated to write down.

(a) Tiling of the Fourier domain induced by
the Rotational UCF for A = 8.

(b) Intensity plot of the Rotational UCF in the
spatial domain.
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Fourier scattering transform

The Fourier scattering transform (FST) SF associated with a uniform covering frame
F = {g, gp}p∈P is formally defined as

SF(f ) = {f ∗ g} ∪ {U[p](f ) ∗ g}p∈Pk,k≥1.

Theoretical questions:

What does this transform do?

Does it provide a useful representation of data?

Computational concerns:

Transform needs to be truncated to be used in practice.

Appears to be computationally expensive.
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Proposition: Exponential decay of energy

There exists a constant 0 < Cdecay < 1 depending only on the UCF such that for all
f ∈ L2 and n ≥ 1,∑

p∈Pn

‖U[p](f ) ∗ g‖2
L2 ≤

∑
p∈Pn

‖U[p](f )‖2
L2 ≤ Cn−1

decay‖f‖
2
L2 .

This property is not (known to be) true for the wavelet scattering transform. To prove
this, the main challenge is to obtain the lower bound,

‖|f ∗ gp| ∗ g‖2
L2 ≥ (1− Cdecay)‖f ∗ gp‖2

L2 .

Higher order terms can be controlled by iterating this inequality and using the partition
of unity property to obtain some cancellation in the form of a telescoping series.

Let fp = |f ∗ gp|. From a Fourier perspective, the inequality of interest is equivalent to∫
Rd
|f̂p(ξ)|2 |̂g(ξ)|2 dξ ≥ (1− Cdecay)

∫
Rd
|f̂p(ξ)|2 dξ
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Proof. Let φ ≥ 0 such that |φ̂| ≤ |̂g| ≤ 1. Choose R > 0 sufficiently small such that
|φ̂|2 ≥ Cφ on QR(0). By the uniform covering property, there exists an integer N ≥ 1
such that Sp = supp(f̂p) can be covered by N cubes of side length 2R, for any p ∈ P. Let
{ξp,n}N

n=1 ⊆ Rd be the center of these cubes, and so

‖f ∗ gp‖2
L2 ≤

1
Cφ

N∑
n=1

∫
Rd
|̂f (ξ)|2|ĝp(ξ)|2|φ̂(ξ − ξp,n)|2 dξ

=
1

Cφ

N∑
n=1

‖f ∗ gp ∗Mp,nφ‖2
L2

≤
1

Cφ

N∑
n=1

‖|f ∗ gp| ∗ φ‖2
L2

≤
N

Cφ
‖|f ∗ gp| ∗ g‖2

L2

Rearranging, we have

‖|f ∗ gp| ∗ g‖2
L2 ≥

Cφ
N
‖f ∗ gp‖2

L2 .
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Theorem [Czaja, L. ’17]

Let SF be the Fourier scattering transform associated with a UCF F, and let PW(R, ε)
be the set of f ∈ L2 such that ‖̂f‖L2(QR(0)) ≥ (1− ε)‖f‖L2 .

1 (Energy conservation) For all f ∈ L2, ‖SF(f )‖L2`2 = ‖f‖L2 .
2 (Non-expansiveness) For all f , h ∈ L2, ‖SF(f )− SF(h)‖L2`2 ≤ ‖f − h‖L2 .
3 (Translation stability) There exists a constant C > 0 depending only on the UCF

such that for all f ∈ L2 and y ∈ Rd,

‖SF(f )− SF(f (· − y))‖L2`2 ≤ C|y|‖∇g‖L1‖f‖L2 .

4 (Diffeomorphism stability) There exists a universal constant C > 0 such that for
any τ ∈ C1(Rd;Rd) with ‖Id − τ‖L∞ sufficiently small, and any f ∈ PW(R, ε),

‖SF(f )− SF(f (τ(·)))‖L2`2 ≤ C(R‖Id − τ‖L∞ + ε)‖f‖L2 .
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Truncation

A natural way to truncate the transform is to generate the FST using only UCF frame
elements whose Fourier transforms tile a large cube centered at the origin.

Proposition: Canonical ordering of the frame elements

For any UCF F, there exist a constant C = Ctiling > 0 and finite subsets {Pm}m≥1 such
that Pm ↗ P and for each m ≥ 1,

|̂g(ξ)|2 +
∑

p∈Pm

|ĝp(ξ)|2 =

{
1 if ξ ∈ QCm(0),
0 if ξ 6∈ QC(m+1)(0).

Using more covering techniques:

Proposition: Energy propagation along frequency decreasing paths

For each m ≥ 1, there exists Cm > 0 such that Cm ↗ 1 as m→∞ and for all n ≥ 1,
p ∈ Pn, and f ∈ L2,

‖U[p](f ) ∗ g‖2
L2 +

∑
q∈Pm

‖U[p](f ) ∗ gq‖2
L2 ≥ Cm‖U[p]f‖2

L2 .
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The truncated Fourier scattering transform SF[M,N] is formally defined as

SF[M,N](f ) = {f ∗ g} ∪ {U[p](f ) ∗ g}p∈Pn
M ,1≤n≤N .

It has N layers and (#PM)n coefficients in the n-th layer.

Theorem [Czaja, L. ’17]

For any UCF F, let SF be its associated Fourier scattering transform.
1 (Upper bound) For all M,N ≥ 1 and f ∈ L2, ‖SF[M,N](f )‖L2`2 ≤ ‖f‖L2 .
2 (Lower bound) Let M(ε,R,F) be sufficiently large. For all N ≥ 1 and f ∈ (R, ε),

‖SF[M,N](f )‖2
L2`2 ≥ (CN

M(1− ε2)− CN−1
decay)‖f‖

2
L2 .

3 Non-expansiveness, translation stability, and diffeomorphism stability still hold,
and the estimates are similar to the regular Fourier scattering transform.
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Fast Fourier Scattering Transform

Using standard frame theory techniques, for any UCF G, we can explicitly construct
discrete and finite frame versions of G.

Fast Fourier scattering transform:

Input: vector f , parameters M,N ≥ 1
Construct: finite UCF frame elements {g, gp}p∈PM
for n = 1, 2, . . . ,N

for each p = (p′, pn) ∈ Pn
M

Compute U[p](f ) = U[(p′, pn)](f ) = |U[p′](f ) ∗ gpn | and U[p](f ) ∗ g.
end

end

The algorithm can be made more efficient by computing only the path decreasing
coefficients and down-sampling the FST output. If f is real-valued and G is a standard
Gabor UCF, then only approximately half the FST need to be computed.
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Hyperspectral images

Figure : An example of a hyperspectral image, taken from Wikipedia.
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Example 1: Indian Pines

Figure : Ground-truth for the Indian Pines dataset.
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Experiment setup

Supervised classification: design a classifier that uses a small portion of the data as
training and classifies the remaining data points.

Goal: Compare the hyperspectral image classification performance of five algorithms:
raw spectral, 1D WST, 1D FST, 3D WST ([Tang, Lu, Yuan]), and 3D FST.

For each transform:
1 Transform all of the labeled samples in the hyperspectral image.
2 Pick n% from each category of the labeled data as training samples.
3 Use the training samples to calculate a “1 vs. 1” support vector machine (SVM)

classifier.
4 Classify the remaining (1− n)% labeled points using the SVM and compute the

classification accuracies.
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Indian Pines

Figure : Classification results on Indian Pines using 10% of the labeled points for training.

(a) Ground truth (b) Spectral (c) 1D WST (d) 1D FST (e) 3D FST

Metric Raw Spectral 1D WST 1D FST 3D WST 3D FST
OA: 76.16 (±0.85) 74.53 (±0.70) 76.82 (±0.61) 94.46 (± 0.79) 98.12 (± 0.29)
AA: 71.64 (±1.97) 69.40 (±1.59) 71.46 (±2.30) 89.37 (± 3.35) 96.48 (± 1.26)
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Example 2: Pavia University

Figure : Ground-truth for the Pavia University dataset.
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Pavia University

Figure : Classification results on Pavia University using 10% of the labeled points as training.

(a) Ground truth (b) Spectral (c) 1D WST (d) 1D FST (e) 3D FST

Metric Raw Spectral 1D WST 1D FST 3D WST 3D FST
OA: 90.21 (±0.20) 87.99 (±0.17) 91.35 (±0.11) 99.30 (± 0.12) 99.77 (± 0.08)
AA: 84.94 (±0.58) 84.50 (±0.27) 88.60 (±0.32) 98.63 (± 0.23) 99.56 (±0.20)
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