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This thesis contains material from four papers:

1 Wojciech Czaja and Weilin Li. Analysis of time-frequency scattering transforms.
Applied and Computational Harmonic Analysis, 2017.

2 Wojciech Czaja and Weilin Li. Rotationally invariant time-frequency scattering
transforms. Submitted.

3 John J. Benedetto and Weilin Li. Super-resolution by means of Beurling minimal
extrapolation. Submitted.

4 Wenjing Liao and Weilin Li. Stable super-resolution limit and smallest singular
value of restricted Fourier matrices. Submitted.

This presentation contains material from the first and second papers.
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Mathematics and deep learning. Classical and on-going areas of research:

Statistical learning theory

Non-convex optimization

Approximation theory

Scattering transforms

Figure : Cartoon explanation for what neural networks do.
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Let Λ be a countable index set and fix a sequence of functions,

Ψ = {ϕ, ψλ}λ∈Λ.

Associate λ ∈ Λk with the scattering propagator U[λ], defined as

U[λ](f ) =

{
|f ∗ ψλ| if λ ∈ Λ,

U[λk] · · ·U[λ2]U[λ1]f if λ = (λ1, λ2, . . . , λk) ∈ Λk.

The scattering transform S is formally defined as

S(f ) = {f ∗ ϕ} ∪ {U[λ](f ) ∗ ϕ}λ∈Λk,k≥1.

Zero order coefficient: {f ∗ ϕ}.
First order coefficients: {|f ∗ ψλ| ∗ ϕ}λ∈Λ.

Second order coefficients: {||f ∗ ψλ1 | ∗ ψλ2 | ∗ ϕ}(λ1,λ2)∈Λ2 .

Etc.

Scattering transforms are generally not invertible due to the loss of the phase with each
iteration!

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis



logo

Background
Fourier Scattering Transform

Rotationally Invariant Scattering
Numerical Experiments and Applications

Figure : Network structure of scattering transforms.
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Mallat studied a wavelet frame:

Let J be an integer and G be a finite group of rotations on Rd.

Fix ϕ ∈ L2(Rd) of scale 2−J .

Fix ψ ∈ L2(Rd), and for any integer j ≥ J and r ∈ G, let

ψ2j,r(x) = 2djψ(2jrx).

Assume the partition of unity condition is satisfied,

|ϕ̂|2 +
∞∑
j=J

∑
r∈G

|ψ̂2j,r|
2 = 1 a.e.

Additional mild regularity and integrability assumptions on ϕ and ψ.

In this case, the index set is

Λ = Λ(J,G) = {(2j, r) : j ≥ J, r ∈ G}.

The resulting operator is called the wavelet scattering transform.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Theorem: Properties of Wavelet scattering (Mallat)

Suppose the wavelet ψ satisfies an additional technical condition and let SW be the
wavelet scattering transform. Let X be a certain logarithmic Sobolev space.

1 (Energy preservation) For all f ∈ X, ‖SW(f )‖L2`2 = ‖f‖L2 .

2 (Non-expansiveness) For all f , g ∈ L2, ‖SW(f )− SW(g)‖L2`2 ≤ ‖f − g‖L2 .
3 (Translation stability) There exists a constant C(J) > 0 such that for all y ∈ Rd and

f ∈ X,
‖SW(f )− SW(f (· − y))‖L2`2 ≤ C(J)|y|(‖f‖L2 + ‖f‖X).

4 (Diffeomorphism stability) For any diffeomorphism τ ∈ C2(Rd;Rd) such that Id − τ
is sufficiently small, there exists C(J, τ) > 0 such that for all f ∈ X,

‖SW(f )− SW(f (τ(·)))‖L2`2 ≤ C(J, τ)
(
‖f‖L2 +

∞∑
k=1

∑
λ∈Λk

‖U[λ]f‖L2

)
.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Applications:

Handwritten digit analysis (J. Bruna and S. Mallat)

Texture classification (J. Bruna and S. Mallat, L. Sifre and S. Mallat)

Music and speech classification (J. Andèn and S. Mallat)

Classification of molecules (M. Eickenberg, G. Exarchakis, M. Hirn, and S. Mallat)

Related results:

Scattering on graphs and non-Euclidean data (X. Cheng, X. Chen, and S. Mallat)

Wavelet phase retrieval (I. Waldspurger and S. Mallat)

Alternative admissibility conditions (I. Waldspurger)

More general scattering networks (T. Wiatowski and H. Bölcskei)

The Lipschitz problem (R. Balan and D. Zou)

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Reasons for using different set of functions instead of wavelets in the scattering
transform:

Convolution kernels in a CNN typically do not satisfy a rigid multi-scale or
algebraic structure.

Biological evidence suggests that simple cells in the mammalian visual cortex are
modeled by modulations and rotations of a fixed 2-dimensional Gaussian.

Learned filters in neural networks almost always are localized, oriented,
band-pass filters, which resemble Gabor functions.

The short-time (or windowed) Fourier transform

Vgf (x, ξ) =

∫
Rd

f (y)g(y− x)e−2πiξ·y dy,

has been used as a feature extractor for various audio and image classification
problems. Most notably, for d = 1, |Vgf |2 is the spectrogram of an audio signal f .

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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A uniform covering frame (UCF) is a sequence of functions,

G = {g, gp}p∈P,

that satisfies the following assumptions:

Mild regularity and integrability: g ∈ L1 ∩ L2 ∩ C1 and gp ∈ L1 ∩ L2.

Frequency support conditions: supp(ĝ) is contained in a neighborhood of the
origin with |̂g(0)| = 1 and supp(ĝp) is a compact and connected set.

Uniform covering property: For any R > 0, there exists an integer N, such that for
any p ∈ P, the supp(ĝp) can be covered by N cubes of side length 2R.

Frame condition: We have
|̂g|2 +

∑
p∈P

|ĝp|2 = 1.

This is equivalent to: For all f ∈ L2,

‖f ∗ g‖2
L2 +

∑
p∈P

‖f ∗ gp‖2
L2 = ‖f‖2

L2 .

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Let g be smooth such that ĝ is compactly supported and for all ξ ∈ Rd,∑
m∈Zd

|̂g(ξ − m)| = 1.5

Let P = Zd \ {0}. For each p ∈ P, define the Gabor function gp by the formula,

gp(x) = e2πip·xg(x).

The sequence of functions,
G = {g, gp}p∈P

is a semi-discrete Gabor frame as well as a UCF. A direct calculation shows that

|(f ∗ gp)(x)| = |Vg̃f (x, p)|.

This example can be generalized to other lattices besides the integer lattice.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Abusing notation, we define scattering propagator U[p] by

U[p](f ) =

{
|f ∗ gp| if p ∈ P,
U[pk] · · ·U[p2]U[p1]f if p = (p1, p2, . . . , pk) ∈ Pk.

The Fourier scattering transform SF is formally defined as

SF(f ) = {f ∗ g} ∪ {U[p](f ) ∗ g}p∈Pk,k≥1.

Terminology:

Zero order coefficient: {f ∗ g}.
First order coefficients: {|f ∗ gp| ∗ g}p∈P.

Second order coefficients: {||f ∗ gp1 | ∗ gp2 | ∗ g}(p1,p2)∈P2 .

Etc.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Proposition: Exponential decay of energy

There exists a constant 0 < Cdecay < 1 depending only on the UCF such that for all
f ∈ L2 and n ≥ 1, ∑

p∈Pn

‖U[p](f )‖2
L2 ≤ Cn−1

decay‖f‖
2
L2 .

This property is not (known to be) true for the wavelet case. To prove this, the main
challenge is to obtain the lower bound,

‖|f ∗ gp| ∗ g‖2
L2 ≥ (1− Cdecay)‖f ∗ gp‖2

L2 .

Higher order terms can be controlled by iterating this inequality and using the partition
of unity property to obtain some cancellation in the form of a telescoping series.

Let fp = |f ∗ gp|. From a Fourier perspective, the inequality of interest is equivalent to∫
Rd
|f̂p(ξ)|2 |̂g(ξ)|2 dξ ≥ (1− Cdecay)

∫
Rd
|f̂p(ξ)|2 dξ

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Heuristic: The Fourier transform of |f | tends to be concentrated near the origin. The
modulus tends to “push” energy from higher frequencies to lower ones.

Assuming f is continuous and f ∗ gp 6= 0, we have

f̂p(0) = (|f ∗ gp|)∧(0) = ‖|f ∗ gp|‖L1 = ‖f ∗ gp‖L1 > 0.

We have |̂g(0)| = 1 by assumption, so

‖|f ∗ gp| ∗ g‖2
L2 > 0.

Consequently, we expect the total energy contained in layer n to decrease.

However, we must be careful because |f ∗ gp| is not smooth, so it has slow Fourier
decay.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Rigorous proof. Let φ ≥ 0 such that |φ̂| ≤ |̂g| ≤ 1. Choose R > 0 sufficiently small such
that |φ̂|2 ≥ Cφ on QR(0). By the uniform covering property, there exists an integer
N ≥ 1 such that Sp = supp(f̂p) can be covered by N cubes of side length 2R, for any
p ∈ P. Let {ξp,n}N

n=1 ⊆ Rd be the center of these cubes, and so

‖f ∗ gp‖2
L2 ≤

1
Cφ

N∑
n=1

∫
Rd
|̂f (ξ)|2|ĝp(ξ)|2|φ̂(ξ − ξp,n)|2 dξ

=
1

Cφ

N∑
n=1

‖f ∗ gp ∗Mp,nφ‖2
L2

≤
1

Cφ

N∑
n=1

‖|f ∗ gp| ∗ φ‖2
L2

≤
N

Cφ
‖|f ∗ gp| ∗ g‖2

L2

Rearranging, we have

‖|f ∗ gp| ∗ g‖2
L2 ≥

Cφ
N
‖f ∗ gp‖2

L2 .

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Theorem: Properties of Fourier scattering

Let SF be the Fourier scattering transform associated with a UCF F, and let PW(R, ε)
be the set of f ∈ L2 such that ‖̂f‖L2(QR(0)) ≥ (1− ε)‖f‖L2 .

1 (Energy conservation) For all f ∈ L2, ‖SF(f )‖L2`2 = ‖f‖L2 .
2 (Non-expansiveness) For all f , h ∈ L2, ‖SF(f )− SF(h)‖L2`2 ≤ ‖f − h‖L2 .
3 (Translation stability) There exists a constant C > 0 depending only on the UCF

such that for all f ∈ L2 and y ∈ Rd,

‖SF(f )− SF(f (· − y))‖L2`2 ≤ C|y|‖∇g‖L1‖f‖L2 .

4 (Diffeomorphism stability) There exists a universal constant C > 0 such that for
any τ ∈ C1(Rd;Rd) with ‖Id − τ‖L∞ sufficiently small, and any f ∈ PW(R, ε),

‖SF(f )− SF(f (τ(·)))‖L2`2 ≤ C(R‖Id − τ‖L∞ + ε)‖f‖L2 .

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Scattering transforms have infinitely many coefficients per layer and infinitely
many layers. We need to truncate in practice, but how?

Additional assumptions beyond f ∈ L2 are required to produce non-trivial finite
width and depth scattering transforms. To see why, we just need to examine the
first layer.

Suppose we only use a finite set of functions {ψλ}λ∈Λ0 in the first layer, where
Λ0 ⊆ Λ is finite. There exists f ∈ L2 such that f ∗ ψλ = 0 for all λ ∈ Λ0. Then the
first layer of coefficients is

|f ∗ ψλ| ∗ ϕ = 0.

Thus, all k-th order coefficients are also zero.

A natural assumption to work with is that f ∈ PW(R, ε), the set of f ∈ L2 such that
‖̂f‖L2(QR(0)) ≥ (1− ε)‖f‖L2 .

Exponential decay of energy provides excellent depth control for the Fourier
scattering transform. We still estimates for width truncation.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Proposition: “Canonical” ordering of a UCF

There exists a constant C = Ctiling > 0 and finite subsets Pm ↗ P such that for each
m ≥ 1,

|̂g(ξ)|2 +
∑

p∈Pm

|ĝp(ξ)|2 =

{
1 if ξ ∈ QCm(0),

0 if ξ 6∈ QC(m+1)(0).

The truncated Fourier scattering transform SF[M,N] : L2 → L2`2 is given by

SF[M,N](f ) = {f ∗ g} ∪ {U[p](f ) ∗ g}p∈Pn
M ,1≤n≤N .

It has N layers and (#PM)n coefficients in the n-th layer.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Proposition: Energy propagation along frequency decreasing paths

For each m ≥ 1, there exists Cm > 0 such that Cm ↗ 1 as m→∞ and for all n ≥ 1,
p ∈ Pn, and f ∈ L2,

‖U[p](f ) ∗ g‖2
L2 +

∑
q∈Pm

‖U[p](f ) ∗ gq‖2
L2 ≥ Cm‖U[p]f‖2

L2 .

Let fp = U[p](f ). This inequality in the Fourier domain is,∫
Rd
|f̂p(ξ)|2

(
|̂g(ξ)|2 +

∑
q∈Pm

|ĝq(ξ)|2
)

dξ ≥ Cm

∫
Rd
|f̂p|2 dξ.

The proof is based on more involved covering techniques.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Theorem: Properties of the truncated Fourier scattering transform

Let SF[M,N] be the Truncated Fourier scattering transform.
1 (Upper bound) For all M,N ≥ 1 and f ∈ L2, ‖SF[M,N](f )‖L2`2 ≤ ‖f‖L2 .
2 (Lower bound) Let M(ε,R,F) be sufficiently large. For all N ≥ 1 and f ∈ (R, ε),

‖SF[M,N](f )‖2
L2`2 ≥ (CN

M(1− ε2)− CN−1
decay)‖f‖2

L2 .

3 Non-expansiveness, translation stability, and diffeomorphism stability still hold,
and the estimates are similar to the regular Fourier scattering transform.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Fix an integer A ≥ 1. Let Gm be the finite rotation group on R2 generated by rotations
by 2π/(m∗A), where m∗ = 2blog2(m)c. Let G = G0 and

P = {(m, r) : m ≥ 1, r ∈ Gm}.

Select g and {gm}m≥1 appropriately such that if gm,r(x) = gm(rx) for each r ∈ Gm, then
the sequence of functions

F = {g, gp}p∈P,

is UCF. This readily generalizes to d-dimensions.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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We examine what happens to the scattering coefficients when f is rotated by r ∈ G.

Rotations act on L2 by the identity fr(x) = (f ◦ r)(x) = f (rx).

Each r ∈ G acts on Gm since G is a subgroup of Gm.

Define the action of r ∈ G on p ∈ P by rp = r(m, s) = (m, rs). This extends to Pk.

Simple calculation:
(fr ∗ gp)(x) = (f ∗ grp)(rx).

Iterating this identity, for all p ∈ Pk,

U[p](fr) = U[rp](f )(rx).

Since g is rotationally invariant, for all p ∈ Pk,

U[p](fr) ∗ g = U[rp](f ) ∗ g.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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The action of r on Pk is a permutation of the indices and its orbit can be easily
computed. We have the disjoint union

Pk =
⋃
r∈G

rQk,

where Qk = P0 × Pk−1 and P0 = {(m, r) : m ≥ 1, r ∈ Gm/G}.

The rotational Fourier scattering transform is

SF(f )(x) =
{ 1
|G|

(∑
r∈G

|(f ∗ g)(rx)|2
)1/2}

∪
{(∑

r∈G

|(U[rq](f ) ∗ g)(rx)|2
)1/2

, q ∈ Qk, k ≥ 1
}
.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Theorem: Properties of rotational Fourier scattering

Let SF be the rotational Fourier scattering transform associated to a RUCF F.
1 (G-invariance) For all f ∈ L2 and r ∈ G, SF(fr) = SF(f ).
2 (Energy conservation): For all f ∈ L2, ‖SF(f )‖L2`2 = ‖f‖L2 .
3 (Non-expansiveness) For all f , h ∈ L2, ‖SF(f )− SF(h)‖L2`2 ≤ ‖f − h‖L2 .
4 (Translation stability) There exists a constant C > 0 depending only on the UCF

such that for all f ∈ L2 and y ∈ Rd,

‖SF(f )− SF(f (· − y))‖L2`2 ≤ C|y|‖∇g‖L1‖f‖L2 .

5 (Diffeomorphism stability) There exists a universal constant C > 0 such that for
any τ ∈ C1(Rd;Rd) with ‖Id − τ‖L∞ sufficiently small, and any f ∈ PW(R, ε),

‖SF(f )− SF(f (τ(·)))‖L2`2 ≤ C(R‖Id − τ‖L∞ + ε)‖f‖L2 .

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Fast Fourier scattering transform

Input: data f , parameters M,N ≥ 1
Construct: finite UCF frame elements {g, gp}p∈PM
for n = 1, 2, . . . ,N

for each p = (p′, pn) ∈ Pn
M

Compute U[p](f ) = U[(p′, pn)](f ) = |U[p′](f ) ∗ gpn | and U[p](f ) ∗ g.
end

end

Remarks:

We can create a finite uniform covering frame from the semi-discrete frame using
standard sampling theory techniques.

We can further improve the algorithm by only computing the path decreasing
coefficients and down-sampling the representations.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Figure : Google Earth view of the experiment layout at the University of Maryland. Total dataset
consists of a collection of one-dimensional spectral data sampled coordinates from 12 loops around
the perimeter.
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Strong sources can be detected from global statistics. Ideal spectrum for two fairly
subtle sources.

Figure : Gamma spectrum for cs (left) and pus (right).

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Figure : Raw gamma spectrum (left) and their corresponding Fourier scattering spectra (right). The
red, blue, and yellow gamma spectrum were taken near each of the three sources, while the purple
spectra was taken far away.
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Figure : Fourier scattering transform classification results. Computed the Fourier scattering
coefficients of the entire data set, trained a support machine (SVM) on half of the features, and
used the SVM to classify the remaining half. Red dots are the detected locations.

Weilin Li Topics in Harmonic Analysis, Sparse Representations, and Data Analysis
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Figure : Comparison of the features generated by Fourier and Wavelet scattering transforms on the
Lena image. Only coefficients whose norms are larger than 0.5% of the original norm are
displayed. Features are sorted by depth of the network and in increasing frequencies. The top four
rows display (1, 33, 6) zero, first, and second order Fourier scattering transform coefficients. The
bottom six rows display (1, 40, 17) zero, first, and second order Wavelet scattering coefficients.
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Thank You!
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