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Introduction

The HRT Conjecture states that any set of distinct time-frequency
shifts of any nonzero L2(R) function, g ,

{e2πibkg(t − ak)}Nk=1 = {MbkTakg}
N
k=1,

is linearly independent.

Such a set is called a Gabor system and is denoted as G(g ,Λ), where
Λ = {(ak , bk)}Nk=1.

This problem was introduced by Heil, Ramanathan and Topiwala in
1996 and remains largely unsolved even for strong decay and
smoothness conditions.
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Introduction

The initial results of Heil, Ramanathan and Topiwala included:

g is compactly supported or supported on the half life for any N

g(x) = p(x)e−x
2
, where p is a nonzero polynomial for any N

g if N ≤ 3

If the HRT holds for a g ∈ L2(R)/0 and Λ, then there exists an ε > 0
such that the HRT holds for any h ∈ L2(R)/{0} satisfying
||g − h||2 < ε using the same set Λ

If the HRT holds for a g ∈ L2(R)/0 and Λ, then there exists an ε > 0
such that the HRT holds for any set of N points within ε-Euclidean
distance of Λ.

Linnell in 1999 was able to demonstrate the HRT for any Λ that is a
translate of a full-rank lattice.
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Metaplectic Transformation

One important method for addressing the HRT, is to take some
unsolved frame Λ1 and reducing it some other Λ2 for which the HRT
holds.

For instance, if one could show that
G(g ,Λ1)) = G(A(U(A)(f ),Λ1) = Λ2) where A : R2 → R2 and
U(A) : L2(R)→ L2(R) then one would have proven that the HRT
holds for G(g ,Λ) for all g ∈ L2(R)

If A is a linear transformation with determinant equal 1 then there
exists U(A) which we call a metaplectic transform for which the
above holds.
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Pure Modulation

To show that the HRT holds for G(g ,Λ) where Λ is collinear, we will
start with the case of pure modulaton.

The case of pure modulation

{e iβk tg(t)}nk=1, ∀g ∈ L2(R)/{0}.

Suppose that
∑n

k=1 cke
iβk tg(t) = 0. Since g is nonzero, there is a

set of positive measure on which g is nonzero. This implies that
m(t) =

∑n
k=1 cke

iβk t is zero on that set.
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m(t) can be extended to C and the extension is analytic. Since it is
zero on a set of positive measure, analyticity requires the function to
be identically zero.

We also see that for a sufficiently large imaginary number, it, m(it) is
nonzero since the term with the largest βk that is paired with a
nonzero ck dominates the expression.

This requires that all ck are zero and we have proven the HRT for
pure modulation.

We have also demonstrated that trigonometric polynomials are
nonzero, a result which will be used again in the lattice section.
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Collinearity

Suppose we have that Λ is colinear.

Any collinear set of points by translation and rotation can be made to
lie on the y-axis and since these transformations have unit
determinant, we have U(A) such that

UA(G(g ,Λ)) = {cA(a, b)MvTu(UAg)}(u,v)∈A(Λ)

Since A(Λ) lies on the y-axis, it represents pure modulation, a case
already proven.

We have demonstrated the HRT holds for any G(g ,Λ) for which Λ is
collinear.
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Lattice

Now we demonstrate that the HRT holds for G(g ,Λ) where Λ is a
subset of the lattice A(Z× Z). By a metaplectic transform, this case
reduces to Λ = αZ× βZ.

We will need the Zak Transform

Z [f ](t, ω) =
∞∑

k=−∞
f (t + k)e−2πkωi

When αβ = 1, an application of the Zak transform yields

Z (MkTng)(t, ω) = e2πikωe−2πikωZg(t, ω), (k , n) ∈ Z2.

Independence follows since trignometric polynomials are nonzero.

The case for general αβ is more complicated so let us restrict to when
n = 3.
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Lattice, n = 3

By a metaplectic transform, we can assume that
Λ = {(0, 0), (a, 0), (0, 1)}. If the HRT fails for some nonzero c1, c2, c3

for this combination, we can write

g(x − a) = m(x)e2πixg(x) a.e.,

where m(x) = − 1
c2

(c1 + c3e
2πix).

The 1-periodicity of m leads to

|g(x − na)| = |g(x)|
n−1∏
j=0

|m(x − ja)| = |g(x)|en
1
n

∑n−1
j=0 p(x−ja) a.e.

where p(x) = ln |m(x)|.
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Lattice, n = 3

The Birkhoff Ergodic Theorem states that if T is ergodic then

lim
n→∞

1

n

n−1∑
k=0

f (T k(x)) =

∫
f dx x a.e.

Assuming the irrationality of a and defining T (x) as x − a mod 1
requires

lim
j→∞

1

n

n−1∑
j=0

p(x − ja) =

∫ 1

0
p dx = C

This convergence implies ∃ε, ∃N s.t. ∀n ≥ N,

g(x − na) > eCn−ε|g(x)|, a.e.

Considering a subset of positive measure for which g is nonzero, this
would demand g to have a nonfinite integral, unless C − ε < 0 and
thereby thereby C ≤ 0.
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By a similar argument using g(x) = m(x + a)g(x + a), we have C ≥ 0

The case of C = 0 is eliminated by another more subtle ergodic
argument of Heil and we have demonstrated this for the n = 3 lattice
case

For when a is a rational number, r
q , we have

lim
j→∞

1

n

n−1∑
j=0

p(x − ja) =
1

q

q−1∑
l=0

p(x − ja) = C

The same arguments apply to this new C we have defined.
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Ratio-Limit Case

Definition

A measurable function g on R has the ratio-limit lg (α) ∈ C ∪ {±∞} at
α ∈ R if

lim
x→∞

g(x + α)

g(x)
= lg (α).

Theorem

Let g ∈ L2(R) have the ratio-limit lg (α) at every α > 0, and let
Λ = {(αk , βk)}Nk=1 ⊆ R2. The HRT conjecture holds for G(g ,Λ) in the
following cases:
(a) lg (1) = 0 and Λ is any finite subset of R2; and
(b) lg (1) 6= 0 and Λ satisfies the difference condition for the second
variable. (Difference condition stated later.)
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Proof of Ratio-Limit Case, Part (a)

Assume the HRT is false.

From this assumption, we can write

M∑
k=1

cke
2πiβkxg(x) =

N∑
k=M+1

cke
2πiβkxg(x + αk) a.e.,

Let {xn} be a positive sequence converging to infinity and such that
e2πiβkxn converges to a limit Lk , ∀k .

In order to establish a domain for which we can guaruntee that the
equality, we include the following lemma
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Proof of Ratio-Limit Case, Part (a)

Lemma

Let P be a property that holds for almost every x ∈ R. For every sequence
{un}n∈N ⊂ R, there exists E ⊆ R such that its completement is of
measure zero and P holds for x + un for each (n, x) ∈ R× E

Proof.

If E = ∩n∈N{x : P(x + un) holds for each n}, then P holds for x + un for
each (n, x) ∈ N× E . We know that |{x : P(x + un)fails}| = 0 for each
n ∈ N, and so | ∪n∈N {x : P(x + un) fails }| = 0, i,e.,|R/E | = 0

Let E be the set obtained by applying this theorem to {xn} and the
equality above.
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Proof of Ratio-Limit Case, Part (a)

Fixing a x ∈ E and given that since g is ultimately nonzero, we have
n0 > 0 such that g(x + x0) is nonzero for all n > n0 and thereby

M∑
k=1

cke
2πiβk (x+xn) =

N∑
k=M+1

cke
2πiβk (x+xn) g(x + xn + αk)

g(x + xn)
.

Letting n tend to infinity, the RHS tends to zero, while the LHS
becomes a sum of complex exponentials. Since this holds on all E , it
holds a.e. and requiring thereby that the Lk are zero which they could
not be from their unit moduli.
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Proof of Ratio-Limit Case, Part (b)

For part b, again assume the HRT is false. We have l(1) = a 6= 0 and
the difference condition on the second variable, i .e., at least one of
the βk is different from the others. This implies

g(x) =
N∑

k=1

cke
2πiβkxg(x + αk)a.e.

Taking a sequence {xn} with the same properties as before, dividing
both sides by g(x), and taking the limit, we have

N−1∑
k=1

ck lg (αk)Lke
2πiβkx = 1 a.e.

Since none of the coefficients are zero, we have a contradiction.
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Ratio-Limit Case

Corollary

Let g ∈ L2(R)\{0} and let Λ ⊆ R2 have the property that card(Λ) ≤ 5. If
g and ĝ have ratio limits at every α ∈ R, then the HRT conjecture holds
for G(g ,Λ).
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Extension and Restriction Principles

Definition

Let f , g ∈ L2(R). The Short-Time Fourier Transform (STFT) of a
function with respect to a window g is

Vg f (x , y) =

∫
R
f (t)ḡ(t − x)e−2πiytdt.

Definition

The Grammian Gg of G(g ,Λ) = {e2πibkg(t − ak)}Nk=1 is given by

Gg = (〈e2πibk tg(t − ak), e2πibl tg(t − al)〉)Nk,l=1

Definition

F (a, b) = FN+1(a, b) = 〈G−1
N uN(a, b), uN(a, b)〉
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Extension and Restriction Principles

Theorem

Given that GN is a positive definite matrix, the following statements hold.
(i) 0 ≤ F (a, b) ≤ 1,∀(a, b) ∈ R2, and moreover, F (ak , bk) = 1 for each
k = 1, ...,N. (ii) F is uniformly continuous and lim|(a,b)|→∞ F (a, b) = 0

Proof.

(i) The assumption of positive definiteness on GN requires that G−1
N is

positive definite since the eigenvalues of the inverse must be the reciprocal
of the eigenvalues of GN which are all positive. It is proven elsewhere that
F will be greater than zero and the upper bound.
(ii) Since both coordinates are uniformly continuous and that the function
tends to 0 as it approaches ∞
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Extension and Restriction Principles

Corollary

Let g ∈ L2(R) with ||g ||2 = 1 and Λ = {(ak , bk)}Nk=1 ∪ {(a, b)}. Then
G(g ,Λ′) is linearly independent if and only if F (a, b) < 1. Furthermore,
there exists R := R(Λ, g) > 0 such that for all (a, b) ∈ R2 with
|(a, b)| > R, then G(g ,Λ′) is linearly independent where Λ′ = Λ ∪ {(a, b)}

Theorem

Let g ∈ L2(R) with ||g ||2 = 1. Suppose Λ is a (3,2) configuration given by
Λ = {(0, 0, (0, 1), (0,−1), (a, b), (a,−b))} where b 6= 0. Then, the HRT
holds for Λ and g whenever
(i) a,b are rationally dependent,
(ii) a ∈ Q but b /∈ Q,
(iii) a = b /∈ Q,
(iv) a,b /∈ Q but ab /∈ Q
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Proof of (ii)

By use of a metaplectic transform, we can write

Λ = {(0, 0), (0, a), (0,−a), (1, b′ = ba), (1,−b′)}

Suppose G(g ,Λ) is linearly dependent. So there are ck such that

c1g + c2Mag + c3M−ag = −c4MbT1g − c5M−bT1g .

Taking the difference between this equation and its conjugate, we find

(c2−c̄3)Mag+(c3−c̄2)M−ag+(c4−c̄5)M−bT1g+(c5−c̄4)M−bT1g = 0

This is as a (2,2) configuration so the HRT demands c3 = c̄2, c5 = c̄4.
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Proof of (ii)

We can rewrite our initial statement of the HRT as

P(x)g(x) = Q(x)g(x − 1) a.e.,

where P(x) = c + 2r cos 2π(ax + θ) and Q(x) = 2r ′cos2π(bx + θ′).

Furthermore, because g ∈ L2(R) we have that

lim
|n|→∞,n∈Z

g(x − n) = 0 a.e.,

and that supp(g) ∩ [0, 1] has positive measure.

Let S be a subset thereof of positive measure and such that S + Z
does not have any zeros of P and Q.
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By Birchoff’s pointwise ergodic theorem with 1S ,

∃x0 ∃n′ s.t. x1 = {−x0 −
2θ′

b
+

n′

b
} ∈ S .

Define m = −x0 − 2θ′

b + n′

b − x1

By iterating our polynomial expression, for all N > m
abs(g(x0 + N)) = |g(x0 − 1)|

∏N
n=0 |Q(x0+n)|∏N
n=0 |P(x0+n)|

abs(g(x1 − N + m)) = |g(x1 − 1)|
∏−1

n=−N+m |P(x1+n)|∏−1
n=−N+m |Q(x1+n)|
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Proof of (ii)

Let T (x) :=
∏s−1

n=1 |P(x + n)|, and assume T (x1) ≥ T (x0)

With some additional algebra, we have N > m

|g(x1 − N + m)| = |g(x1 − 1)|
∏−1

n=−N+m |P(x1 + n)|∏−1
n=−N+m |Q(x1 + n)|

≥ |g(x1 − 1)|
∏N

n=0 |P(x0 + n)|∏N
n=0 |Q(x0 + n)|

≥ |g(x1 − 1)||g(x0 − 1)||g(x0 + N)|−1

contradicting the convergence of g(x − n) to 0, a.e. x.

Alternatively suppose T (x0) ≥ T (x1). By a similar argument, we have

|g(x0 − N + m)| ≥ |g(x0 − 1)||g(x1 − 1)||g(x1 + N)|−1.

This again contradicts the convergence of g(x − n) to 0 and we have
.......... proven (ii).
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Summary

The cases for which the HRT which we have seen:

Λ is collinear or the subset of a lattice.
The ratio-limit exists for the function
Certain (3,2)-configurations of Λ
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