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Introduction

Compressed Sensing

The motivating problem: finding sparse solutions of underdetermined
equations.

The foundational result: yes, it is possible, and we can do so with
linear programming!

The catch: there are limitations on the sensing matrix that make the
theory difficult to apply in practice.
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Introduction

Compressed Sensing
The Motivating Problem

Let x ∈ RN be k-sparse. A measurement of x is y = Ax for an m× N
matrix A. A is called the measurement matrix.

We want to find a way to reconstruct x from the both the
measurement y, and the knowledge of its sparsity.

We can frame this as a constrained optimization problem:

x# = argmin‖z‖`0 s.t. Az = y. (1)
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Introduction

Compressed Sensing
The Motivating Problem

Problem (1) is computationally unrealistic, so we consider the convex
relaxation of the problem, which has the convenient realization:

x# = argmin‖z‖`1 s.t. Az = y. (2)
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Introduction

Compressed Sensing
The Foundational Result

In 2004, Candes, Romberg and Tao published a series of papers on
the problem (2) and its relationship to the motivating problem.

The main result: not only does problem (2) have a unique solution,
but it is guaranteed to recover x exactly as long as A is a satisfactory
sensing matrix

A randomly generated Gaussian matrix is satisfactory with high
probability, provided it satisfies m & k ln(eN/k).
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Restricted Isometry Property

The catch: how do we know if a matrix is suitable for compressive
sensing?

To characterize matrices for compressive sensing is a big topic. I will
focus on two properties which are most popular: NSP and RIP.
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Restricted Isometry Property

Null Space Property

Definition

(Null Space Property) An m × N matrix A is said to have the NSP of
order k if for any ν ∈ kerA \ {0}, S ⊂ {1, . . . ,N} with |S | ≤ k,
‖νS‖`1 <‖νSc‖`1 .

A matrix has NSP iff equation (2) recovers all k-sparse vectors
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Restricted Isometry Property

Null Space Property

0https://dustingmixon.wordpress.com/
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Restricted Isometry Property

Null Space Property

The Null Space Property (NSP) provides an exact characterization of
the matrices which can recover k-sparse vectors.

Difficult to work with in practice

Not robust
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Restricted Isometry Property

Restricted Isometry Property

Definition

(Restricted Isometry Property) An m×N matrix is said to have the RIP of
order k with constant δ ∈ (0, 1) if for any k-sparse x ∈ RN ,

(1− δ)‖x‖2`2 <‖Ax‖
2
`2
< (1 + δ)‖x‖2`2 .

We say that δk is the restricted isometry constant of A if δk is the smallest
δ > 0 such that A satisfies RIP of order k .

We say that δk is the restricted isometry constant of A if δk is the
smallest δ > 0 such that A satisfies RIP of order k.

RIP is strictly stronger than NSP, but in return for the added
restriction, we do get a robustness result.
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Restricted Isometry Property

Restricted Isometry Property

Introduce an error term to the measurement: y = Ax + e.

Likewise relax the constraint in (2) to:

x# = argmin‖z‖`1 s.t. ‖Az− y‖`2 ≤ η. (3)

Theorem (Cai, Zhang)

If A has δ2k < 1/
√

2, then the solution x# to problem (3) satisfies∥∥∥x− x#
∥∥∥
`2
≤ C√

k
‖x− xk‖`1 + D‖e‖`2 , (4)

for some C and D depending only on δ2k .
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Random Gaussian Matrices

Random Gaussian Matrices
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Random Gaussian Matrices

Random Gaussian Matrices

The final foundational result of Candes, Romberg and Tao’s original
publications was that RIP matrices are in fact plentiful

Theorem

Let A be an m × N random matrix wherein each element is an
independent Gaussian variable with mean zero and variance 1/m. If
m ≥ C1δ

−2k ln(eN/k) then with probability at least 1− 2 exp(−C2δ
2m),

δk < δ.
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Random Gaussian Matrices

How many measurements must we take?

Theorem (4) guarantees RIP matrices with m . δ−2k ln(eN/k).

Fix R = N/m and δ. Then the relationship becomes

m . k ln(m/k).

This in turn implies the existence of families of RIP matrices for
k = Ω(m).

However this is where the theory falters: explicit constructions of RIP
matrices only manage k = Ω(m1/2)!

This discrepancy is the square-root bottleneck referenced in the title
of this presentation.
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Random Gaussian Matrices

The Square-Root Bottleneck

The explicit RIP problem is defined by Mixon as follows:

Definition

To solve ExRIP[z ] is to find an explicit family of matrices with arbitrarily
large aspect ratio N/m, such that each matrix satisfies RIP with constant
δ of order k , where k = Ω(mz−ε) for all ε > 0 and δ < 1/3.

For many years after Candes, Romberg and Tao’s foundational work,
the best known result was ExRIP[1/2], thus the bottleneck.

In 2011, Bourgain, et. al., managed to beat the above result by a
small amount. Their result stands today as the best effort at solving
the explicit RIP problem.
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Random Gaussian Matrices

How many measurements must we take?

To gain insight into the difficulties for this problem, let’s compare some
existing methods of constructing RIP matrices.
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Random Gaussian Matrices

Random Construction

The following proof is paraphrased from work by Foucart [10].

Outline of proof:

1 A concentration inequality which quantifies the amount of vectors on
which the sensing matrix A is not a near-isometry.

2 A combinatorial argument to quantify the approximate number of
degrees of freedom of the set of sparse unit vectors.

3 Combine the above estimates to bound the probability that A is a
near-isometry on the set of k-sparse vectors.
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Random Gaussian Matrices

Random Construction
The Concentration Inequality

Let A be a random m × N matrix where each element is a Gaussian
i.i.d. random variable with mean 0 and variance 1/m.

For a fixed x, we have

(Ax)i =
∑
j

Ai ,jxj =
‖x‖2√

m
gi .

Using this observation, we can find the likelihood that the energy of A
is concentrated near x.

Lemma

P(‖Ax‖2 −‖x‖2 > t‖x‖2) ≤ 2 exp

(
−mt2

16

)
.
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Random Gaussian Matrices

Random Construction
The Combinatorial Argument

Consider an index set S ⊂ {1, . . . ,N} of size k. We consider Rk to
be the subset of RN of vectors supported on S .

Lemma

The unit sphere in Rk can be covered by n ≤ (1 + 2/ρ)k balls of radius ρ,
with centers {ui} on the sphere.

We can combine the above lemma with the concentration inequality
from before to apply it to the RIP.
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Random Gaussian Matrices

Random Construction
The Combinatorial Argument

With the substitution B = A∗SAS − I , the concentration inequality
reads:

P(|〈Bx, x〉| > t) ≤ 2 exp

(
−mt2

16

)
.

Considering just the ui ’s, calculate

P
(
|〈Bui ,ui 〉| > t for some i

)
≤ 2

(
1 +

2

ρ

)k

exp

(
−mt2

16

)
.
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Random Gaussian Matrices

Random Construction
The Combinatorial Argument

If we assume that indeed |〈Bui ,ui 〉| ≤ t for all i , then we can use the
fact that any unit-norm vector supported on S is at most a distance ρ
away from some ui to put a bound on the operator norm of B,

‖B‖ ≤ t

1− 2ρ
= δ,

for a choice ρ = 1
4 , t = δ

2 . Thus, we have an upper bound on the
probability that A is not a near-isometry for any x supported on S!
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Random Gaussian Matrices

Random Construction
The Combinatorial Argument

Lastly, generalize to any k-sparse vector by taking the union over all
sets S .

P(δk > δ) ≤
(
N

k

)
2 exp

(
ln(9)k − mδ2

64

)

≤ 2 exp

(
k ln(9e) ln

(
eN

k

)
− mδ2

64

)
.

So as long as m ≥ kδ−2 ln(9e) ln(eN/k)/128,

P(δk > δ) ≤ 2 exp

(
−mδ2

128

)
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Random Gaussian Matrices

Random Construction

Why doesn’t this proof give us insight into explicit constructions?

The proof hinges on a combinatorial argument: The number of
vectors which are near to the null space of A and the degrees of
freedom of the RIP are both small and unlikely to overlap.

But the number of degrees of freedom of RIP is very large
(
(N
k

)
(3/2)k). It is unfeasible to explicitly prescribe this many values

for even modest N and k.

In addition, the problem of verifying RIP is known to be NP-hard.

So any explicit construction must rely on some symmetry to reduce
the degrees of freedom.
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Explicit Constructions

The Coherence Method

The standard method of explicitly constructing RIP matrices attempts
to maximize the incoherence of the rows of A.

The following is an equivalent characterization of RIP:

Definition

An m × N matrix A has the Restricted Isometry Property of order k with
constant δ if for any S ⊂ {1, . . . ,N} with |S | ≤ k , every eigenvalue of
A∗SA lies in the range 1− δ < λ < 1 + δ.
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Explicit Constructions

The Coherence Method

Gershgorin’s circle theorem gives us a method to bound the
eigenvalues of a matrix in terms of its entries, i.e. the coherence of
rows of A.

Theorem (Gershgorin’s Circle Theorem)

Let A be n × n with entries ai ,j . Let Ri =
∑

j 6=i |ai ,j | be the sums of the
normed entries in row i of A. Then every eigenvalue of A falls in one of
the discs B(ai ,i ,Ri ).

Prescribe A so that it has unit columns and maximum coherence µ.
Then every eigenvalue falls within a distance of (k − 1)µ of 1. If we
can get µ ≤ δ/(k − 1) then we’re done.
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Explicit Constructions

The Coherence Method

But a bound from Welch [13] puts a bound on how small the
coherence can be.

µ ≥

√
N −m

m(N − 1)
(5)

This means that in order to get RIP using this method we need

δ ≥ (k − 1)

√
N −m

m(N − 1)
.

If we again take N/m to be constant, this puts k on the order
O(m1/2) in order to control δ.
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Explicit Constructions

Beating the Square-Root Bottleneck

There has been essentially one successful attempt to beat the bottleneck,
pioneered by Bourgain, et al. I’ll briefly go over a very abbreviated outline
of his method, with help from an overview written by Dustin Mixon.
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Explicit Constructions

Beating the Square-Root Bottleneck

Definition

A is said to have Weak Flat RIP of order k with constant δ if for any
disjoint I , J ⊂ {1, . . . ,N} with |I |, |J| ≤ k ,∣∣∣∣∣∣

〈∑
i∈I

ai ,
∑
j∈J

aj

〉∣∣∣∣∣∣ ≤ δk . (6)

Weak flat RIP, while weaker than restricting the maximum coherence,
only implies RIP if we also put a bound on the coherence: µ ≤ 1/k ,
seeming to put us back inside the bottleneck.
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Explicit Constructions

Beating the Square-Root Bottleneck

But all is not lost! If we can get the Weak Flat RIP constant very
small, then we can apply the following lemma:

Lemma

If A has RIP of order k with constant δ, then it also has RIP of order sk
with constant 2sδ, for any ≥ 1.

We can scale δ and k simultaneously, so that a very small δ and a
modest k can be turned into a modest δ and a larger k value.

This is the approach Bourgain and his collaborators take: to find a
sharp bound on the Weak Flat RIP using some sharp additive
combinatorics, and then apply the approach above
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Explicit Constructions

Beating the Square-Root Bottleneck

In brief, the paper exploits a relationship between the additive energy
of a set S ⊂ Fp and the complex exponential χ̂S .

Consider the family of vectors ua,b(x) = p−1/2ep(ax2 + bx), for some
large prime b. Which has a nice expression for its mutual coherence:

〈
ua1,b1 ,ua2,b2

〉
=

σp√
p

(
a1 − a2

p

)
ep

(
−(b1 − b2)2

4(a1 − a2)

)
.

Verifying weak flat RIP is then equivalent to finding a bound on a
sum of complex exponentials
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Explicit Constructions

Beating the Square-Root Bottleneck

The next step is to exploit the link between additive energy and the
Fourier transform to bound the sum∑

b1∈B1
b2∈B2

ep(θ(b1 − b2)2)

by the product of the additive energies and cardinalities of the sets B1

and B2.

Last, the matrix A is defined to be ua,b s.t. (a, b) ∈ A, B for some A,
B carefully chosen to minimize additive energy.
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Explicit Constructions

Beating the Square-Root Bottleneck

The above estimate still forces us to require that k =
√
p, but we get

Weak Flat RIP with constant p−2ε for some ε > 0, which leads to
RIP with constant 75p−ε ln p.

By applying the Lemma, we can convert this to RIP of order
k = p1/2+ε−ε

′
, for any ε′ > 0, with constant 75p−ε

′
ln p <

√
2− 1 for

sufficiently large p.

Hence the matrix construction indeed breaks the square-root
bottleneck!
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Explicit Constructions

Beating the Square-Root Bottleneck

Unfortunately, currently the best value we have for ε is on the order
10−24.

Followup work from Mixon sharpened Bourgain, et. al.’s estimates
somewhat, but didn’t yield any major insights.

The state of the problem is unsatisfying: why is it so difficult to
construct matrices with very little structure, especially when they’re
known to be plentiful?

The facts we know about random matrices seem to virtually
guarantee that improvement is possible in this regard.

The connections with number theory and geometry suggest that
future work could include some other deep mathematical insights.
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