Constant Amplitude and Zero Autocorrelation Sequences and Single Pixel Camera Imaging

Mark Magsino mmagsino@math.umd.edu

Norbert Wiener Center for Harmonic Analysis and Applications Department of Mathematics
University of Maryland, College Park

April 4, 2018

Frames

A finite frame for \mathbb{C}^{N} is a set $\mathcal{F}=\left\{v_{j}\right\}_{j=1}^{M}$ such that there exists constants $0<A \leq B<\infty$ where

$$
A\|x\|_{2}^{2} \leq \sum_{j=1}^{M}\left|\left\langle x, v_{j}\right\rangle\right|^{2} \leq B\|x\|_{2}^{2}
$$

for any $x \in \mathbb{C}^{N} . \mathcal{F}$ is called a tight frame if $A=B$ is possible.
Theorem
\mathcal{F} is a frame for \mathbb{C}^{N} if and only if \mathcal{F} spans \mathbb{C}^{N}.

The Frame Operator

Let $\mathcal{F}=\left\{v_{j}\right\}_{j=1}^{M}$ be a frame for \mathbb{C}^{N} and $x \in \mathbb{C}^{N}$.
(a) The frame operator, $S: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, is given by

$$
S(x)=\sum_{j=1}^{M}\left\langle v_{j}, x\right\rangle v_{j} .
$$

(b) Given any $x \in \mathbb{C}^{N}$ we can write x in terms of frame elements by

$$
x=\sum_{j=1}^{M}\left\langle x, S^{-1} v_{j}\right\rangle v_{j}
$$

(c) If \mathcal{F} is a tight frame with bound A, then $S=A / d_{N}$.

Gabor Frames

Definition

(a) Let $\varphi \in \mathbb{C}^{N}$ and $\Lambda \subseteq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$. The Gabor system, (φ, Λ) is defined by

$$
(\varphi, \Lambda)=\left\{e_{\ell} \tau_{k} \varphi:(k, \ell) \in \Lambda\right\}
$$

(b) If (φ, Λ) is a frame for \mathbb{C}^{N} we call it a Gabor frame.

Time-Frequency Transforms

Definition

Let $\varphi, \psi \in \mathbb{C}^{N}$.
(a) The discrete periodic ambiguity function of $\varphi, A_{p}(\varphi)$, is defined by

$$
A_{p}(\varphi)[k, \ell]=\frac{1}{N} \sum_{j=0}^{N-1} \varphi[j+k] \overline{\varphi[j]} e^{-2 \pi j \ell / N}=\frac{1}{N}\left\langle\tau_{-k} \varphi, e_{\ell} \varphi\right\rangle .
$$

(b) The short-time Fourier transform of φ with window $\psi, V_{\psi}(\varphi)$, is defined by

$$
V_{\psi}(\varphi)[k, \ell]=\left\langle\varphi, e_{\ell} \tau_{k} \psi\right\rangle .
$$

Full Gabor Frames Are Always Tight

Theorem
Let $\varphi \in \mathbb{C}^{N} \backslash\{0\}$. and $\Lambda=(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$. Then, (φ, Λ) is always a tight frame with frame bound $N\|\varphi\|_{2}^{2}$.

Janssen's Representation

Definition

Let $\Lambda \subseteq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$ be a subgroup. The adjoint subgroup of $\Lambda, \Lambda^{\circ} \subseteq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$, is defined by

$$
\Lambda^{\circ}=\left\{(m, n): e_{\ell} \tau_{k} e_{n} \tau_{m}=e_{n} \tau_{m} e_{\ell} \tau_{k}, \forall(k, \ell) \in \Lambda\right\}
$$

Theorem
Let Λ be a subgroup of $(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$ and $\varphi \in \mathbb{C}^{N}$. Then, the (φ, Λ) Gabor frame operator has the form

$$
S=\frac{|\Lambda|}{N} \sum_{(m, n) \in \Lambda^{\circ}}\left\langle\varphi, e_{n} \tau_{m} \varphi\right\rangle e_{n} \tau_{m}
$$

Λ°-sparsity and Tight Frames

Theorem
Let $\varphi \in \mathbb{C}^{N} \backslash\{0\}$ and let $\Lambda \subseteq(\mathbb{Z} / N \mathbb{Z}) \times(\mathbb{Z} / N \mathbb{Z})$ be a subgroup. (φ, Λ) is a tight frame if and only if

$$
\forall(m, n) \in \Lambda^{\circ},(m, n) \neq 0, \quad A_{p}(\varphi)[m, n]=0 .
$$

The frame bound is $|\Lambda| A_{p}(\varphi)[0,0]$.

Proof of Λ°-sparsity Theorem

By Janssen's representation we have

$$
\begin{aligned}
S & =\frac{|\Lambda|}{N} \sum_{(m, n) \in \Lambda^{\circ}}\left\langle e_{n} \tau_{m} \varphi, \varphi\right\rangle e_{n} \tau_{m}=\sum_{(m, n) \in \Lambda^{\circ}}\left\langle\tau_{m} \varphi, e_{-n} \varphi\right\rangle e_{n} \tau_{m} \\
& =|\Lambda| \sum_{(m, n) \in \Lambda^{\circ}} A_{p}(\varphi)[-m,-n] e_{n} \tau_{m}=|\Lambda| \sum_{(m, n) \in \Lambda^{\circ}} A_{p}(\varphi)[m, n] e_{-n} \tau_{-m} .
\end{aligned}
$$

If $A_{p}(\varphi)[m, n]=0$ for every $(m, n) \in \Lambda^{\circ},(m, n) \neq 0$, then S is
$|\Lambda| A_{p}(\varphi)[0,0]$ times the identity. and so (φ, Λ) is a tight frame.

Proof of Λ°-sparsity Theorem (con't)

To show this is a necessary condition, we observe that for S to be tight we need

$$
S=|\Lambda| \sum_{(m, n) \in \Lambda^{\circ}} A_{p}(\varphi)[m, n] e_{n} \tau_{m}=A / d
$$

which can be rewritten as

$$
\sum_{(m, n) \in \Lambda^{\circ} \backslash\{(0,0)\}}|\Lambda| A_{p}(\varphi)[m, n] e_{n} \tau_{m}+\left(|\Lambda| A_{p}(\varphi)[0,0]-A\right) / d=0
$$

CAZAC Definition

Let $\varphi \in \mathbb{C}^{N} . \varphi$ is said to be a constant amplitude zero autocorrelation (CAZAC) sequence if

$$
\begin{equation*}
\forall j \in(\mathbb{Z} / N \mathbb{Z}),\left|\varphi_{j}\right|=1 \tag{CA}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall k \in(\mathbb{Z} / N \mathbb{Z}), k \neq 0, \frac{1}{N} \sum_{j=0}^{N-1} \varphi_{j+k} \overline{\varphi_{j}}=0 \tag{ZAC}
\end{equation*}
$$

Examples

Quadratic Phase Sequences

Let $\varphi \in \mathbb{C}^{N}$ and suppose for each j, φ_{j} is of the form $\varphi_{j}=e^{-\pi i p(j)}$ where p is a quadratic polynomial. The following quadratic polynomials generate CAZAC sequences:

- Chu: $p(j)=j(j-1)$
- P4: $p(j)=j(j-N), N$ is odd
- Odd-length Wiener: $p(j)=s j^{2}, \operatorname{gcd}(s, N)=1, N$ is odd
- Even-length Wiener: $p(j)=s j^{2} / 2, \operatorname{gcd}(s, 2 N)=1, N$ is even

Examples

Björck Sequences

Let p be prime and $\varphi \in \mathbb{C}^{p}$ be of the form $\varphi_{j}=e^{i \theta(j)}$. Then φ will be CAZAC in the following cases:

- If $p \equiv 1 \bmod 4$, then,

$$
\theta(j)=\left(\frac{j}{p}\right) \arccos \left(\frac{1-p}{1+\sqrt{p}}\right)
$$

- If $p \equiv 3 \bmod 4$, then,

$$
\begin{cases}\arccos \left(\frac{1-p}{1+p}\right), & \text { if }\left(\frac{j}{p}\right)=-1 \\ 0, & \text { otherwise }\end{cases}
$$

Connection to Hadamard Matrices

Theorem
Let $\varphi \in \mathbb{C}^{N}$ and let H be the circulant matrix given by

$$
H=\left[\begin{array}{c}
\overline{-} \tau_{1} \varphi- \\
-\tau_{2} \varphi- \\
\cdots \\
-\tau_{N-1} \varphi
\end{array}\right]
$$

Then, φ is a CAZAC sequence if and only if H is Hadamard. In particular there is a one-to-one correspondence between CAZAC sequences and circulant Hadamard matrices.

Connection to Cyclic N-roots

Definition

$x \in \mathbb{C}^{N}$ is a cyclic N-root if it satisfies

$$
\left\{\begin{array}{l}
x_{0}+x_{1}+\cdots+x_{N-1}=0 \\
x_{0} x_{1}+x_{1} x_{2}+\cdots+x_{N-1} x_{0}=0 \\
\cdots \\
x_{0} x_{1} x_{2} \cdots x_{N-1}=1
\end{array}\right.
$$

Connection to Cyclic N-roots

Theorem
(a) If $\varphi \in \mathbb{C}^{N}$ is a CAZAC sequence then,

$$
\left(\frac{\varphi_{1}}{\varphi_{0}}, \frac{\varphi_{2}}{\varphi_{1}}, \cdots, \frac{\varphi_{0}}{\varphi_{N-1}}\right)
$$

is a cyclic N-root.
(b) If $x \in \mathbb{C}^{N}$ is a cyclic N-root then,

$$
\varphi_{0}=x_{0}, \varphi_{j}=\varphi_{j-1} x_{j}
$$

is a CAZAC sequence.
(c) There is a one-to-one correspondence between CAZAC sequences which start with 1 and cyclic N-roots.

5-Operation Equivalence

Proposition

Let $\varphi \in \mathbb{C}^{N}$ be a CAZAC sequence. Then, the following are also CAZAC sequences:
(a) $\forall c \in \mathbb{C},|c|=1, c \varphi$
(b) $\forall k \in \mathbb{Z} / N \mathbb{Z}, \tau_{k} \varphi$
(c) $\forall \ell \in(\mathbb{Z} / N \mathbb{Z}), e_{\ell} \varphi$
(d) $\forall m \in \mathbb{Z} / N \mathbb{Z}, \operatorname{gcd}(m, N)=1, \pi_{m} \varphi[j]$
(e) $n=0,1, c_{n} \varphi$

The operation π_{m} is defined by $\pi_{m} \varphi[j]=\varphi[m j]$ and c_{0}, c_{1} is defined by $c_{0} \varphi=\varphi$ and $c_{1} \varphi=\bar{\varphi}$.

5-Operation Group Action

Let G be the set given by

$$
\{(a, b, c, d, f): a \in\{0,1\}, b, c, d, f \in \mathbb{Z} / p \mathbb{Z}, c \neq 0\}
$$

and define the operation : $: G \times G \rightarrow G$ by

$$
\begin{gathered}
(a, b, c, d, f) \cdot(h, j, k, \ell, m) \\
=\left(a+h, c j+b, c k, \ell+(-1)^{h} k d, m+(-1)^{h}(f-j c)\right) .
\end{gathered}
$$

Then, (G, \cdot) is a group of size $2 p^{3}(p-1)$.

5-Operation Group Action (cont'd)

- To each element $(a, b, c, d, f) \in G$ we associate the operator $\omega_{f} e_{d} \pi_{c} \tau_{b} c_{a}$, which form a group under composition, where $\omega=e^{2 \pi i / p}$.
- The composition is computed by the operation for (G, \cdot) and obtaining the operator associated with the computed result.
- The group of operators under composition forms a group action for U_{p}^{p}, the set of p-length vectors comprised entirely of p-roots of unity.
- There are $p(p-1)$ many CAZACs in U_{p}^{p} which start with 1. Adding in any scalar multiples of roots of unity, there are $p^{2}(p-1)$ many.

5-Operation Orbits

Theorem
Let p be an odd prime and let $\varphi \in U_{p}^{p}$ be the Wiener sequence $\varphi[n]=e^{2 \pi i s n^{2} / p}$, where $s \in \mathbb{Z} / p \mathbb{Z}$. Denote the stabilizer of φ under the $\operatorname{group}(G, \cdot)$ as G_{φ}. If $p \equiv 1 \bmod 4$, then $\left|G_{\varphi}\right|=4 p$. If $p \equiv 3$ $\bmod 4$, then $\left|G_{\varphi}\right|=2 p$. In particular, the orbit of φ has size $p^{2}(p-1) / 2$ if $p \equiv 1 \bmod 4$ and size $p^{2}(p-1)$ if $p=3 \bmod 4$.

Sketch of Proof

- Take a linear operator $\omega_{f} e_{d} \pi_{c} \tau_{b} c_{a}$ and write the system of equations that would describe fixing each term of $\varphi[n]$.
- Use the $n=0,1$ cases to get expressions for f and d in terms of the other variables.
- Use any other $n>1$ and substitute the expressions for f and d to obtain the condition

$$
c^{2} \equiv(-1)^{a} \quad \bmod p
$$

Sketch of Proof (con't)

- In the case $a=0$, there are always the solutions $c \equiv \pm 1$ $\bmod p$. If $a=1$, then it depends if -1 is a quadratic residue modulo p. It is if $p \equiv 1 \bmod 4$ and is not if $p \equiv 3 \bmod 4$.
- All variables are solved for except b and the solutions leave it as a free parameter. Thus there are $4 p$ and $2 p$ stabilizers for the $p \equiv 1 \bmod 4$ and $p \equiv 3 \bmod 4$ cases respectively.

DPAF of Chu Sequence

$$
\begin{gathered}
A_{p}\left(\varphi_{\mathrm{Chu}}\right)[k, \ell]: \\
\begin{cases}\mathrm{e}^{\pi i\left(k^{2}-k\right) / N}, & k \equiv \ell \bmod N \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Figure: DPAF of length 15 Chu sequence.

Example: Chu/P4 Seqeunce

Proposition

Let $N=a b N^{\prime}$ where $\operatorname{gcd}(a, b)=1$ and $\varphi \in \mathbb{C}^{N}$ be the Chu or P4 sequence. Define $K=\langle a\rangle, L=\langle b\rangle$ and $\Lambda=K \times L$.
(a) $\Lambda^{\circ}=\left\langle N^{\prime} a\right\rangle \times\left\langle N^{\prime} b\right\rangle$.
(b) (φ, Λ) is a tight Gabor frame bound $N N^{\prime}$.

DPAF of Even Length Wiener Sequence

Figure: DPAF of length 16 P4 sequence.

DPAF of Björck Sequence

Figure: DPAF of length 13 Björck sequence.

DPAF of a Kronecker Product Sequence

Kronecker Product:
Let $u \in \mathbb{C}^{M}, v \in \mathbb{C}^{N}$.
$(u \otimes v)[a M+b]=u[a] v[b]$

Figure: DPAF of Kroneker product of length 7 Bjorck and length 4 P4.

Example: Kronecker Product Sequence

Proposition
Let $u \in \mathbb{C}^{M}$ be CAZAC, $v \in \mathbb{C}^{N}$ be $C A$, and $\varphi \in \mathbb{C}^{M N}$ be defined by the Kronecker product: $\varphi=u \otimes v$. If $\operatorname{gcd}(M, N)=1$ and $\Lambda=\langle M\rangle \times\langle N\rangle$, then (φ, Λ) is a tight frame with frame bound $M N$.

Gram Matrices and Discrete Periodic Ambiguity Functions

Definition
Let $\mathcal{F}=\left\{v_{i}\right\}_{i=1}^{M}$ be a frame for \mathbb{C}^{N}. The Gram matrix, G, is defined by

$$
G_{i, j}=\left\langle v_{i}, v_{j}\right\rangle .
$$

In the case of Gabor frames $\mathcal{F}=\left\{e_{\ell_{m}} \tau_{k_{m}} \varphi: m \in 0, \cdots, M-1\right\}$, we can write the Gram matrix in terms of the discrete periodic ambiguity function of φ :

$$
G_{m, n}=N e^{-2 \pi i k_{n}\left(\ell_{n}-\ell_{m}\right) / N} A_{p}(\varphi)\left[k_{n}-k_{m}, \ell_{n}-\ell_{m}\right]
$$

Gram Matrix of Chu and P4 Sequences

Lemma

Let $\varphi \in \mathbb{C}^{N}$ be the Chu or $P 4$ sequence and let $N=a b N^{\prime}$ where $\operatorname{gcd}(a, b)=1$. Suppose G is the Gram matrix generated by the Gabor system $(\varphi, K \times L)$ where $K=\langle a\rangle$ and $L=\langle b\rangle$. Then,
(a) The support of the rows (or columns) of G either completely conincide or are completely disjoint.
(b) If two rows (or columns) have coinciding supports, they are scalar multiples of each other.

Example: P4 Gram Matrix

Gram Matrix of P4 Sequence

Tight Frames from Gram Matrix

Theorem
Let $\varphi \in \mathbb{C}^{N}$ be the Chu or P4 sequence and let $N=a b N^{\prime}$ where $\operatorname{gcd}(a, b)=1$. Suppose G is the Gram matrix generated by the Gabor system $(\varphi, K \times L)$ where $K=\langle a\rangle$ and $L=\langle b\rangle$. Then,
(a) $\operatorname{rank}(G)=N$.
(b) G has exactly one nonzero eigenvalue, $N N^{\prime}$.

In particular (a) and (b) together imply that the Gabor system
$(\varphi, K \times L)$ is a tight frame with frame bound $N N^{\prime}$.

Proof

- $K \cap L=\langle a b\rangle$.
- $G_{m n} \neq 0$ if and only if $\left(\ell_{n}-\ell_{m}\right) \equiv\left(k_{n}-k_{m}\right) \bmod N$.
- This can only occur at the intersection of K and L, i.e.,

$$
\forall j \in\left(\mathbb{Z} / N^{\prime} \mathbb{Z}\right),\left(\ell_{n}-\ell_{m}\right) \equiv\left(k_{n}-k_{m}\right) \equiv j a b \quad \bmod N
$$

- Fix an m, we can write k_{n} as $k_{n}=a\left(j_{m}+j b\right)$ for some j
- By the column ordering of G we can write the n-th column by

$$
n=k_{n} N^{\prime}+\ell_{n} / b
$$

Proof (con't)

- We want to look at the first N columns so we want $n<N$ and thus require $k_{n}<a b$.
- Thus, $\left(j_{m}+j b\right)<b$.
- There is exactly one such $j \in\left(\mathbb{Z} / N^{\prime} \mathbb{Z}\right)$ and it is $j=-\left\lfloor j_{m} / b\right\rfloor$.
- Consequently, for each row m, there is exactly 1 column $n \leq N$ where $G_{m n} \neq 0$ and the first N columns of G are linearly independent.
- $\operatorname{rank}(G)=N$.

Proof (con't)

- Let g_{n} be the n-th column of $G, n<N$.
- The goal is to show that $G g_{n}=N N^{\prime} g_{n}$.
- $G g_{n}[m]$ is given by the inner product of row m and column n.
- The n-th column is the conjugate of the n-th row.
- If $G g_{n}[m] \neq 0$, then $G_{m n} \neq 0$ and $G_{n n} \neq 0$.

Proof (con't)

- Lemma implies row m and n have coinciding supports and are constant multiples of each other thus, $G_{m(\cdot)}=C_{m} g_{n}^{*}$ where $\left|C_{m}\right|=1$.
- Therefore, $G g_{n}[m]=C_{m}\left\|g_{n}\right\|_{2}^{2}=N^{2} N^{\prime} C_{m}$.
- $G_{n n}=N$, so $g_{n}[m]=N C_{m}$.
- Finally, $G g_{n}[m]=\left(N N^{\prime}\right)\left(N C_{m}\right)$ and we conclude the first N columns of G are eigenvectors of G with eigenvalue $N N^{\prime}$.

Future work: Continuous CAZAC Property

Is it possible to generalize CAZAC to the real line? The immediate problem is the natural inner product to use for autocorrelation is the $L^{2}(\mathbb{R})$ inner product, but if $|f(x)|=1$ for every $x \in \mathbb{R}$, then clearly $f \notin L^{2}(\mathbb{R})$.

Future work: Continuous CAZAC Property

Alternatives and ideas:

- Define a continuous autocorrelation on $L^{2}(\mathbb{T})$ and push torus bounds to infinity.
- Distribution theory, esp. using tempered distributions.
- Wiener's Generalized Harmonic Analysis, which includes a theory of mean autocorrelation on \mathbb{R}.

Future work: Single Pixel Camera

- My work on this is with John Benedetto and Alfredo Nava-Tudela and is an ongoing project.
- The original concept is due to Richard Baraniuk.
- The idea is to construct a camera using only a single light receptor or sensor.
- This is accomplished by filtering through a pixel grid that either admits or blocks light.
- Baraniuk's original design does this with digital micromirror devices.
- Several collections with different pixel grids are required but compressed sensing theory allows this to be done efficiently.

Questions?

