Constant Amplitude and Zero Autocorrelation Sequences and Single Pixel Camera Imaging

Mark Magsino
mmagsino@math.umd.edu

Norbert Wiener Center for Harmonic Analysis and Applications
Department of Mathematics
University of Maryland, College Park

April 4, 2018
A finite frame for \mathbb{C}^N is a set $\mathcal{F} = \{v_j\}_{j=1}^M$ such that there exists constants $0 < A \leq B < \infty$ where

$$A \|x\|^2 \leq \sum_{j=1}^M |\langle x, v_j \rangle|^2 \leq B \|x\|^2$$

for any $x \in \mathbb{C}^N$. \mathcal{F} is called a tight frame if $A = B$ is possible.

Theorem

\mathcal{F} is a frame for \mathbb{C}^N if and only if \mathcal{F} spans \mathbb{C}^N.
The Frame Operator

Let $\mathcal{F} = \{v_j\}_{j=1}^{M}$ be a frame for \mathbb{C}^N and $x \in \mathbb{C}^N$.

(a) The frame operator, $S : \mathbb{C}^N \rightarrow \mathbb{C}^N$, is given by

$$S(x) = \sum_{j=1}^{M} \langle v_j, x \rangle v_j.$$

(b) Given any $x \in \mathbb{C}^N$ we can write x in terms of frame elements by

$$x = \sum_{j=1}^{M} \langle x, S^{-1}v_j \rangle v_j.$$

(c) If \mathcal{F} is a tight frame with bound A, then $S = A \text{Id}_N$.
Gabor Frames

Definition

(a) Let $\varphi \in \mathbb{C}^N$ and $\Lambda \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$. The Gabor system, (φ, Λ) is defined by

$$(\varphi, \Lambda) = \{ e_{\ell} \tau_k \varphi : (k, \ell) \in \Lambda \}.$$

(b) If (φ, Λ) is a frame for \mathbb{C}^N we call it a Gabor frame.
Definition
Let $\varphi, \psi \in \mathbb{C}^N$.

(a) The \textit{discrete periodic ambiguity function} of φ, $A_p(\varphi)$, is defined by

$$A_p(\varphi)[k, \ell] = \frac{1}{N} \sum_{j=0}^{N-1} \varphi[j+k] \overline{\varphi[j]} e^{-2\pi ij\ell/N} = \frac{1}{N} \langle \tau_{-k} \varphi, e_{\ell} \varphi \rangle.$$

(b) The \textit{short-time Fourier transform} of φ with window ψ, $V_\psi(\varphi)$, is defined by

$$V_\psi(\varphi)[k, \ell] = \langle \varphi, e_{\ell} \tau_k \psi \rangle.$$
Theorem

Let $\varphi \in \mathbb{C}^N \setminus \{0\}$. and $\Lambda = (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$. Then, (φ, Λ) is always a tight frame with frame bound $N\|\varphi\|_2^2$.
Janssen’s Representation

Definition
Let \(\Lambda \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z}) \) be a subgroup. The adjoint subgroup of \(\Lambda \), \(\Lambda^\circ \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z}) \), is defined by

\[
\Lambda^\circ = \{ (m, n) : e_\ell \tau_k e_n \tau_m = e_n \tau_m e_\ell \tau_k, \forall (k, \ell) \in \Lambda \}
\]

Theorem
Let \(\Lambda \) be a subgroup of \((\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z}) \) and \(\varphi \in \mathbb{C}^N \). Then, the \((\varphi, \Lambda)\) Gabor frame operator has the form

\[
S = \frac{|\Lambda|}{N} \sum_{(m,n) \in \Lambda^\circ} \langle \varphi, e_n \tau_m \varphi \rangle e_n \tau_m.
\]
Theorem

Let $\varphi \in \mathbb{C}^N \setminus \{0\}$ and let $\Lambda \subseteq (\mathbb{Z}/N\mathbb{Z}) \times (\mathbb{Z}/N\mathbb{Z})$ be a subgroup. (φ, Λ) is a tight frame if and only if

$$\forall (m, n) \in \Lambda^\circ, (m, n) \neq 0, \quad A_p(\varphi)[m, n] = 0.$$

The frame bound is $|\Lambda|A_p(\varphi)[0, 0]$.

Λ°-sparsity and Tight Frames
Proof of Λ°-sparsity Theorem

By Janssen’s representation we have

\[S = \frac{|\Lambda|}{N} \sum_{(m,n) \in \Lambda^\circ} \langle e_n \tau_m \varphi, \varphi \rangle e_n \tau_m = \sum_{(m,n) \in \Lambda^\circ} \langle \tau_m \varphi, e_{-n} \varphi \rangle e_n \tau_m \]

\[= |\Lambda| \sum_{(m,n) \in \Lambda^\circ} A_p(\varphi)[-m, -n] e_n \tau_m = |\Lambda| \sum_{(m,n) \in \Lambda^\circ} A_p(\varphi)[m, n] e_{-n} \tau_{-m}. \]

If $A_p(\varphi)[m, n] = 0$ for every $(m, n) \in \Lambda^\circ, (m, n) \neq 0$, then S is $|\Lambda| A_p(\varphi)[0, 0]$ times the identity, and so (φ, Λ) is a tight frame.
Proof of Λ°-sparsity Theorem (con’t)

To show this is a necessary condition, we observe that for S to be tight we need

$$S = |\Lambda| \sum_{(m,n) \in \Lambda^\circ} A_p(\varphi)[m, n] e_n \tau_m = A \text{Id}$$

which can be rewritten as

$$\sum_{(m,n) \in \Lambda^\circ \setminus \{(0,0)\}} |\Lambda| A_p(\varphi)[m, n] e_n \tau_m + (|\Lambda| A_p(\varphi)[0, 0] - A) \text{Id} = 0.$$
Let $\varphi \in \mathbb{C}^N$. φ is said to be a constant amplitude zero autocorrelation (CAZAC) sequence if

$$\forall j \in (\mathbb{Z}/N\mathbb{Z}), |\varphi_j| = 1$$ \hspace{1cm} (CA)

and

$$\forall k \in (\mathbb{Z}/N\mathbb{Z}), k \neq 0, \frac{1}{N} \sum_{j=0}^{N-1} \varphi_{j+k} \overline{\varphi_j} = 0.$$ \hspace{1cm} (ZAC)
Examples

Quadratic Phase Sequences
Let $\varphi \in \mathbb{C}^N$ and suppose for each j, φ_j is of the form $\varphi_j = e^{-\pi i p(j)}$ where p is a quadratic polynomial. The following quadratic polynomials generate CAZAC sequences:

- **Chu:** $p(j) = j(j - 1)$
- **P4:** $p(j) = j(j - N)$, N is odd
- **Odd-length Wiener:** $p(j) = sj^2$, $\gcd(s, N) = 1$, N is odd
- **Even-length Wiener:** $p(j) = sj^2 / 2$, $\gcd(s, 2N) = 1$, N is even
Examples

Björck Sequences

Let \(p \) be prime and \(\varphi \in \mathbb{C}^p \) be of the form \(\varphi_j = e^{i\theta(j)} \). Then \(\varphi \) will be CAZAC in the following cases:

- If \(p \equiv 1 \mod 4 \), then,
 \[
 \theta(j) = \left(\frac{j}{p} \right) \arccos \left(\frac{1 - p}{1 + \sqrt{p}} \right)
 \]

- If \(p \equiv 3 \mod 4 \), then,
 \[
 \begin{cases}
 \arccos \left(\frac{1-p}{1+p} \right), & \text{if } \left(\frac{j}{p} \right) = -1 \\
 0, & \text{otherwise}
 \end{cases}
 \]
Connection to Hadamard Matrices

Theorem

Let $\varphi \in \mathbb{C}^N$ and let H be the circulant matrix given by

\[
H = \begin{bmatrix}
\varphi \\
\tau_1 \varphi \\
\tau_2 \varphi \\
\vdots \\
\tau_{N-1} \varphi
\end{bmatrix}
\]

Then, φ is a CAZAC sequence if and only if H is Hadamard. In particular there is a one-to-one correspondence between CAZAC sequences and circulant Hadamard matrices.
Connection to Cyclic N-roots

Definition

$x \in \mathbb{C}^N$ is a cyclic N-root if it satisfies

\[
\begin{cases}
x_0 + x_1 + \cdots + x_{N-1} = 0 \\
x_0x_1 + x_1x_2 + \cdots + x_{N-1}x_0 = 0 \\
\vdots \\
x_0x_1x_2 \cdots x_{N-1} = 1
\end{cases}
\]
Connection to Cyclic N-roots

Theorem

(a) If $\varphi \in \mathbb{C}^N$ is a CAZAC sequence then,

$$\left(\frac{\varphi_1}{\varphi_0}, \frac{\varphi_2}{\varphi_1}, \ldots, \frac{\varphi_0}{\varphi_{N-1}} \right)$$

is a cyclic N-root.

(b) If $x \in \mathbb{C}^N$ is a cyclic N-root then,

$$\varphi_0 = x_0, \varphi_j = \varphi_{j-1}x_j$$

is a CAZAC sequence.

(c) There is a one-to-one correspondence between CAZAC sequences which start with 1 and cyclic N-roots.
Proposition

Let \(\varphi \in \mathbb{C}^N \) be a CAZAC sequence. Then, the following are also CAZAC sequences:

(a) \(\forall c \in \mathbb{C}, |c| = 1, \ c \varphi \)
(b) \(\forall k \in \mathbb{Z}/N\mathbb{Z}, \ \tau_k \varphi \)
(c) \(\forall \ell \in (\mathbb{Z}/N\mathbb{Z})^\hat{\ }, \ e_\ell \varphi \)
(d) \(\forall m \in \mathbb{Z}/N\mathbb{Z}, \ \gcd(m, N) = 1, \ \pi_m \varphi[j] \)
(e) \(n = 0, 1, \ c_n \varphi \)

The operation \(\pi_m \) is defined by \(\pi_m \varphi[j] = \varphi[mj] \) and \(c_0, c_1 \) is defined by \(c_0 \varphi = \varphi \) and \(c_1 \varphi = \overline{\varphi} \).
5-Operation Group Action

Let G be the set given by

$$\{(a, b, c, d, f) : a \in \{0, 1\}, b, c, d, f \in \mathbb{Z}/p\mathbb{Z}, c \neq 0\}$$

and define the operation $\cdot : G \times G \to G$ by

$$(a, b, c, d, f) \cdot (h, j, k, \ell, m)$$

$$= (a + h, cj + b, ck, \ell + (-1)^h kd, m + (-1)^h (f - jc)).$$

Then, (G, \cdot) is a group of size $2p^3(p - 1)$.
To each element \((a, b, c, d, f) \in G\) we associate the operator
\[
\omega_f e_d \pi c \tau b c_a,
\]
which form a group under composition, where
\[
\omega = e^{2\pi i/p}.
\]

The composition is computed by the operation for \((G, \cdot)\) and obtaining the operator associated with the computed result.

The group of operators under composition forms a group action for \(U^p_p\), the set of \(p\)-length vectors comprised entirely of \(p\)-roots of unity.

There are \(p(p - 1)\) many CAZACs in \(U^p_p\) which start with 1. Adding in any scalar multiples of roots of unity, there are \(p^2(p - 1)\) many.
Theorem

Let p be an odd prime and let $\varphi \in U_p^p$ be the Wiener sequence $\varphi[n] = e^{2\pi i s n^2/p}$, where $s \in \mathbb{Z}/p\mathbb{Z}$. Denote the stabilizer of φ under the group (G, \cdot) as G_φ. If $p \equiv 1 \mod 4$, then $|G_\varphi| = 4p$. If $p \equiv 3 \mod 4$, then $|G_\varphi| = 2p$. In particular, the orbit of φ has size $p^2(p-1)/2$ if $p \equiv 1 \mod 4$ and size $p^2(p-1)$ if $p \equiv 3 \mod 4$.
Sketch of Proof

- Take a linear operator $\omega f e_d \pi_c \tau_b c_a$ and write the system of equations that would describe fixing each term of $\varphi[n]$.
- Use the $n = 0, 1$ cases to get expressions for f and d in terms of the other variables.
- Use any other $n > 1$ and substitute the expressions for f and d to obtain the condition

$$c^2 \equiv (-1)^a \mod p.$$
In the case \(a = 0 \), there are always the solutions \(c \equiv \pm 1 \mod p \). If \(a = 1 \), then it depends if \(-1\) is a quadratic residue modulo \(p \). It is if \(p \equiv 1 \mod 4 \) and is not if \(p \equiv 3 \mod 4 \).

All variables are solved for except \(b \) and the solutions leave it as a free parameter. Thus there are \(4p \) and \(2p \) stabilizers for the \(p \equiv 1 \mod 4 \) and \(p \equiv 3 \mod 4 \) cases respectively.
DPAF of Chu Sequence

\[A_p(\varphi_{\text{Chu}})[k, \ell]: \]
\[e^{\pi i (k^2 - k)/N}, \quad k \equiv \ell \mod N \]
\[0, \quad \text{otherwise} \]

Figure: DPAF of length 15 Chu sequence.
Example: Chu/P4 Sequence

Proposition

Let $N = abN'$ where $\gcd(a, b) = 1$ and $\varphi \in \mathbb{C}^N$ be the Chu or P4 sequence. Define $K = \langle a \rangle$, $L = \langle b \rangle$ and $\Lambda = K \times L$.

(a) $\Lambda^o = \langle N'a \rangle \times \langle N'b \rangle$.

(b) (φ, Λ) is a tight Gabor frame bound NN'.
DPAF of Even Length Wiener Sequence

\[A_p(\varphi_{\text{Wiener}})[k, \ell] : \]
\[\begin{cases}
 e^{\frac{\pi isk^2}{N}}, & sk \equiv \ell \mod N \\
 0, & \text{otherwise}
\end{cases} \]

Figure: DPAF of length 16 P4 sequence.
DPAF of Björck Sequence

Figure: DPAF of length 13 Björck sequence.
Kronecker Product:
Let \(u \in \mathbb{C}^M, v \in \mathbb{C}^N \).
\((u \otimes v)[aM + b] = u[a]v[b]\)

Figure: DPAF of Kronecker product of length 7 Bjorck and length 4 P4.
Proposition

Let $u \in \mathbb{C}^M$ be CAZAC, $v \in \mathbb{C}^N$ be CA, and $\varphi \in \mathbb{C}^{MN}$ be defined by the Kronecker product: $\varphi = u \otimes v$. If $\gcd(M, N) = 1$ and $\Lambda = \langle M \rangle \times \langle N \rangle$, then (φ, Λ) is a tight frame with frame bound MN.
Definition
Let \(\mathcal{F} = \{v_i\}_{i=1}^{M} \) be a frame for \(\mathbb{C}^N \). The Gram matrix, \(G \), is defined by
\[
G_{i,j} = \langle v_i, v_j \rangle.
\]
In the case of Gabor frames \(\mathcal{F} = \{e^{\ell_m \tau_k} \varphi : m \in \{0, \ldots, M-1\}\} \), we can write the Gram matrix in terms of the discrete periodic ambiguity function of \(\varphi \):
\[
G_{m,n} = Ne^{-2\pi i k_n (\ell_n - \ell_m) / N} A_p(\varphi)[k_n - k_m, \ell_n - \ell_m]
\]
Lemma

Let $\varphi \in \mathbb{C}^N$ be the Chu or P4 sequence and let $N = abN'$ where $\gcd(a, b) = 1$. Suppose G is the Gram matrix generated by the Gabor system $(\varphi, K \times L)$ where $K = \langle a \rangle$ and $L = \langle b \rangle$. Then,

(a) The support of the rows (or columns) of G either completely coincide or are completely disjoint.

(b) If two rows (or columns) have coinciding supports, they are scalar multiples of each other.
Example: P4 Gram Matrix
Theorem
Let $\varphi \in \mathbb{C}^N$ be the Chu or P4 sequence and let $N = abN'$ where $\gcd(a, b) = 1$. Suppose G is the Gram matrix generated by the Gabor system $(\varphi, K \times L)$ where $K = \langle a \rangle$ and $L = \langle b \rangle$. Then,

(a) $\text{rank}(G) = N$.
(b) G has exactly one nonzero eigenvalue, NN'.

In particular (a) and (b) together imply that the Gabor system $(\varphi, K \times L)$ is a tight frame with frame bound NN'.
Proof

- $K \cap L = \langle ab \rangle$.
- $G_{mn} \neq 0$ if and only if $(\ell_n - \ell_m) \equiv (k_n - k_m) \mod N$.
- This can only occur at the intersection of K and L, i.e.,

 \[\forall j \in (\mathbb{Z}/N'\mathbb{Z}), \ (\ell_n - \ell_m) \equiv (k_n - k_m) \equiv j ab \mod N \]

- Fix an m, we can write k_n as $k_n = a(j_m + jb)$ for some j.
- By the column ordering of G we can write the n-th column by

 \[n = k_n N' + \ell_n/b. \]
Proof (con’t)

- We want to look at the first N columns so we want $n < N$ and thus require $kn < ab$.
- Thus, $(jm + jb) < b$.
- There is exactly one such $j \in (\mathbb{Z}/N\mathbb{Z})$ and it is $j = -\lfloor jm/b \rfloor$.
- Consequently, for each row m, there is exactly 1 column $n \leq N$ where $G_{mn} \neq 0$ and the first N columns of G are linearly independent.
- $\text{rank}(G) = N$.
Proof (con’t)

- Let g_n be the n-th column of G, $n < N$.
- The goal is to show that $Gg_n = NN'g_n$.
- $Gg_n[m]$ is given by the inner product of row m and column n.
- The n-th column is the conjugate of the n-th row.
- If $Gg_n[m] \neq 0$, then $G_{mn} \neq 0$ and $G_{nn} \neq 0$.
Lemma implies row m and n have coinciding supports and are constant multiples of each other thus, $G_m(\cdot) = C_m g_n^*$ where $|C_m| = 1$.

Therefore, $Gg_n[m] = C_m \|g_n\|^2_2 = N^2 N' C_m$.

$G_{nn} = N$, so $g_n[m] = NC_m$.

Finally, $Gg_n[m] = (NN')(NC_m)$ and we conclude the first N columns of G are eigenvectors of G with eigenvalue NN'.
Is it possible to generalize CAZAC to the real line? The immediate problem is the natural inner product to use for autocorrelation is the $L^2(\mathbb{R})$ inner product, but if $|f(x)| = 1$ for every $x \in \mathbb{R}$, then clearly $f \not\in L^2(\mathbb{R})$.
Future work: Continuous CAZAC Property

Alternatives and ideas:

- Define a continuous autocorrelation on $L^2(\mathbb{T})$ and push torus bounds to infinity.
- Distribution theory, esp. using tempered distributions.
- Wiener’s Generalized Harmonic Analysis, which includes a theory of mean autocorrelation on \mathbb{R}.
Future work: Single Pixel Camera

- My work on this is with John Benedetto and Alfredo Nava-Tudela and is an ongoing project.
- The original concept is due to Richard Baraniuk.
- The idea is to construct a camera using only a single light receptor or sensor.
- This is accomplished by filtering through a pixel grid that either admits or blocks light.
- Baraniuk’s original design does this with digital micromirror devices.
- Several collections with different pixel grids are required but compressed sensing theory allows this to be done efficiently.
Questions?