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Frames

A finite frame for CN is a set F = {vj}Mj=1 such that there exists
constants 0 < A ≤ B <∞ where

A‖x‖2
2 ≤

M∑
j=1

|〈x , vj〉|2 ≤ B‖x‖2
2

for any x ∈ CN . F is called a tight frame if A = B is possible.

Theorem
F is a frame for CN if and only if F spans CN .
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The Frame Operator

Let F = {vj}Mj=1 be a frame for CN and x ∈ CN .

(a) The frame operator, S : CN → CN , is given by

S(x) =
M∑
j=1

〈vj , x〉vj .

(b) Given any x ∈ CN we can write x in terms of frame elements
by

x =
M∑
j=1

〈x , S−1vj〉vj .

(c) If F is a tight frame with bound A, then S = A IdN .
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Gabor Frames

Definition

(a) Let ϕ ∈ CN and Λ ⊆ (Z/NZ)× (Z/NZ)̂. The Gabor system,
(ϕ,Λ) is defined by

(ϕ,Λ) = {e`τkϕ : (k , `) ∈ Λ}.

(b) If (ϕ,Λ) is a frame for CN we call it a Gabor frame.
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Time-Frequency Transforms

Definition
Let ϕ,ψ ∈ CN .

(a) The discrete periodic ambiguity function of ϕ, Ap(ϕ), is
defined by

Ap(ϕ)[k , `] =
1

N

N−1∑
j=0

ϕ[j + k]ϕ[j ]e−2πij`/N =
1

N
〈τ−kϕ, e`ϕ〉.

(b) The short-time Fourier transform of ϕ with window ψ, Vψ(ϕ),
is defined by

Vψ(ϕ)[k, `] = 〈ϕ, e`τkψ〉.
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Full Gabor Frames Are Always Tight

Theorem
Let ϕ ∈ CN \ {0}. and Λ = (Z/NZ)× (Z/NZ)̂. Then, (ϕ,Λ) is
always a tight frame with frame bound N‖ϕ‖2

2.

Mark Magsino (UMD) Finite Gabor Frames



Janssen’s Representation

Definition
Let Λ ⊆ (Z/NZ)× (Z/NZ)̂ be a subgroup. The adjoint subgroup
of Λ, Λ◦ ⊆ (Z/NZ)× (Z/NZ)̂, is defined by

Λ◦ = {(m, n) : e`τkenτm = enτme`τk , ∀(k , `) ∈ Λ}

Theorem
Let Λ be a subgroup of (Z/NZ)× (Z/NZ)̂ and ϕ ∈ CN . Then,
the (ϕ,Λ) Gabor frame operator has the form

S =
|Λ|
N

∑
(m,n)∈Λ◦

〈ϕ, enτmϕ〉enτm.
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Λ◦-sparsity and Tight Frames

Theorem
Let ϕ ∈ CN \ {0} and let Λ ⊆ (Z/NZ)× (Z/NZ)̂ be a subgroup.
(ϕ,Λ) is a tight frame if and only if

∀(m, n) ∈ Λ◦, (m, n) 6= 0, Ap(ϕ)[m, n] = 0.

The frame bound is |Λ|Ap(ϕ)[0, 0].

Mark Magsino (UMD) Finite Gabor Frames



Proof of Λ◦-sparsity Theorem

By Janssen’s representation we have

S =
|Λ|
N

∑
(m,n)∈Λ◦

〈enτmϕ,ϕ〉enτm =
∑

(m,n)∈Λ◦

〈τmϕ, e−nϕ〉enτm

= |Λ|
∑

(m,n)∈Λ◦

Ap(ϕ)[−m,−n]en τm = |Λ|
∑

(m,n)∈Λ◦

Ap(ϕ)[m, n]e−nτ−m.

If Ap(ϕ)[m, n] = 0 for every (m, n) ∈ Λ◦, (m, n) 6= 0, then S is
|Λ|Ap(ϕ)[0, 0] times the identity. and so (ϕ,Λ) is a tight frame.
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Proof of Λ◦-sparsity Theorem (con’t)

To show this is a necessary condition, we observe that for S to be
tight we need

S = |Λ|
∑

(m,n)∈Λ◦

Ap(ϕ)[m, n]enτm = A Id

which can be rewritten as∑
(m,n)∈Λ◦\{(0,0)}

|Λ|Ap(ϕ)[m, n]enτm + (|Λ|Ap(ϕ)[0, 0]− A)Id = 0.
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CAZAC Definition

Let ϕ ∈ CN . ϕ is said to be a constant amplitude zero
autocorrelation (CAZAC) sequence if

∀j ∈ (Z/NZ), |ϕj | = 1 (CA)

and

∀k ∈ (Z/NZ), k 6= 0,
1

N

N−1∑
j=0

ϕj+kϕj = 0. (ZAC)
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Examples

Quadratic Phase Sequences

Let ϕ ∈ CN and suppose for each j , ϕj is of the form ϕj = e−πip(j)

where p is a quadratic polynomial. The following quadratic
polynomials generate CAZAC sequences:

I Chu: p(j) = j(j − 1)

I P4: p(j) = j(j − N), N is odd

I Odd-length Wiener: p(j) = sj2, gcd(s,N) = 1, N is odd

I Even-length Wiener: p(j) = sj2/2, gcd(s, 2N) = 1, N is even
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Examples

Björck Sequences

Let p be prime and ϕ ∈ Cp be of the form ϕj = e iθ(j). Then ϕ will
be CAZAC in the following cases:

I If p ≡ 1 mod 4, then,

θ(j) =

(
j

p

)
arccos

(
1− p

1 +
√
p

)
I If p ≡ 3 mod 4, then,{

arccos
(

1−p
1+p

)
, if

(
j
p

)
= −1

0, otherwise
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Connection to Hadamard Matrices

Theorem
Let ϕ ∈ CN and let H be the circulant matrix given by

H =


ϕ
τ1ϕ
τ2ϕ
· · ·

τN−1ϕ


Then, ϕ is a CAZAC sequence if and only if H is Hadamard. In
particular there is a one-to-one correspondence between CAZAC
sequences and circulant Hadamard matrices.
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Connection to Cyclic N-roots

Definition
x ∈ CN is a cyclic N-root if it satisfies

x0 + x1 + · · ·+ xN−1 = 0

x0x1 + x1x2 + · · ·+ xN−1x0 = 0

· · ·
x0x1x2 · · · xN−1 = 1
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Connection to Cyclic N-roots

Theorem

(a) If ϕ ∈ CN is a CAZAC sequence then,(
ϕ1

ϕ0
,
ϕ2

ϕ1
, · · · , ϕ0

ϕN−1

)
is a cyclic N-root.

(b) If x ∈ CN is a cyclic N-root then,

ϕ0 = x0, ϕj = ϕj−1xj

is a CAZAC sequence.

(c) There is a one-to-one correspondence between CAZAC
sequences which start with 1 and cyclic N-roots.
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5-Operation Equivalence

Proposition

Let ϕ ∈ CN be a CAZAC sequence. Then, the following are also
CAZAC sequences:

(a) ∀c ∈ C, |c | = 1, cϕ

(b) ∀k ∈ Z/NZ, τkϕ
(c) ∀` ∈ (Z/NZ)̂, e`ϕ

(d) ∀m ∈ Z/NZ, gcd(m,N) = 1, πmϕ[j ]

(e) n = 0, 1, cnϕ

The operation πm is defined by πmϕ[j ] = ϕ[mj ] and c0, c1 is
defined by c0ϕ = ϕ and c1ϕ = ϕ.
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5-Operation Group Action

Let G be the set given by

{(a, b, c , d , f ) : a ∈ {0, 1}, b, c , d , f ∈ Z/pZ, c 6= 0}

and define the operation · : G × G → G by

(a, b, c , d , f ) · (h, j , k, `,m)

= (a + h, cj + b, ck , `+ (−1)hkd ,m + (−1)h(f − jc)).

Then, (G , ·) is a group of size 2p3(p − 1).
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5-Operation Group Action (cont’d)

I To each element (a, b, c , d , f ) ∈ G we associate the operator
ωf edπcτbca, which form a group under composition, where
ω = e2πi/p.

I The composition is computed by the operation for (G , ·) and
obtaining the operator associated with the computed result.

I The group of operators under composition forms a group
action for Up

p , the set of p-length vectors comprised entirely of
p-roots of unity.

I There are p(p − 1) many CAZACs in Up
p which start with 1.

Adding in any scalar multiples of roots of unity, there are
p2(p − 1) many.
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5-Operation Orbits

Theorem
Let p be an odd prime and let ϕ ∈ Up

p be the Wiener sequence

ϕ[n] = e2πisn2/p, where s ∈ Z/pZ. Denote the stabilizer of ϕ under
the group (G , ·) as Gϕ. If p ≡ 1 mod 4, then |Gϕ| = 4p. If p ≡ 3
mod 4, then |Gϕ| = 2p. In particular, the orbit of ϕ has size
p2(p − 1)/2 if p ≡ 1 mod 4 and size p2(p − 1) if p = 3 mod 4.
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Sketch of Proof

I Take a linear operator ωf edπcτbca and write the system of
equations that would describe fixing each term of ϕ[n].

I Use the n = 0, 1 cases to get expressions for f and d in terms
of the other variables.

I Use any other n > 1 and substitute the expressions for f and
d to obtain the condition

c2 ≡ (−1)a mod p.
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Sketch of Proof (con’t)

I In the case a = 0, there are always the solutions c ≡ ±1
mod p. If a = 1, then it depends if −1 is a quadratic residue
modulo p. It is if p ≡ 1 mod 4 and is not if p ≡ 3 mod 4.

I All variables are solved for except b and the solutions leave it
as a free parameter. Thus there are 4p and 2p stabilizers for
the p ≡ 1 mod 4 and p ≡ 3 mod 4 cases respectively.
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DPAF of Chu Sequence

Ap(ϕChu)[k , `] :{
eπi(k

2−k)/N , k ≡ `modN

0, otherwise
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Figure: DPAF of length 15 Chu
sequence.
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Example: Chu/P4 Seqeunce

Proposition

Let N = abN ′ where gcd (a, b) = 1 and ϕ ∈ CN be the Chu or P4
sequence. Define K = 〈a〉, L = 〈b〉 and Λ = K × L.

(a) Λ◦ = 〈N ′a〉 × 〈N ′b〉.
(b) (ϕ,Λ) is a tight Gabor frame bound NN ′.
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DPAF of Even Length Wiener Sequence

Ap(ϕWiener)[k , `] :{
eπisk

2/N , sk ≡ `modN

0, otherwise
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Figure: DPAF of length 16 P4
sequence.
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DPAF of Björck Sequence

0 2 4 6 8 10 12

Time Shift
0

2

4

6

8

10

12

Do
pp
le
r S

hi
ft

DPAF of length 13 Bjorck sequence

0.0

0.2

0.4

0.6

0.8

1.0

M
ag
ni
tu
de

Figure: DPAF of length 13 Björck sequence.
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DPAF of a Kronecker Product Sequence

Kronecker Product:
Let u ∈ CM , v ∈ CN .
(u ⊗ v)[aM + b] = u[a]v [b]
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Figure: DPAF of Kroneker product of
length 7 Bjorck and length 4 P4.
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Example: Kronecker Product Sequence

Proposition

Let u ∈ CM be CAZAC, v ∈ CN be CA, and ϕ ∈ CMN be defined
by the Kronecker product: ϕ = u ⊗ v. If gcd (M,N) = 1 and
Λ = 〈M〉× 〈N〉, then (ϕ,Λ) is a tight frame with frame bound MN.
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Gram Matrices and Discrete Periodic Ambiguity Functions

Definition
Let F = {vi}Mi=1 be a frame for CN . The Gram matrix, G , is
defined by

Gi ,j = 〈vi , vj〉.

In the case of Gabor frames F = {e`mτkmϕ : m ∈ 0, · · · ,M − 1},
we can write the Gram matrix in terms of the discrete periodic
ambiguity function of ϕ:

Gm,n = Ne−2πikn(`n−`m)/NAp(ϕ)[kn − km, `n − `m]
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Gram Matrix of Chu and P4 Sequences

Lemma
Let ϕ ∈ CN be the Chu or P4 sequence and let N = abN ′ where
gcd(a, b) = 1. Suppose G is the Gram matrix generated by the
Gabor system (ϕ,K × L) where K = 〈a〉 and L = 〈b〉. Then,

(a) The support of the rows (or columns) of G either completely
conincide or are completely disjoint.

(b) If two rows (or columns) have coinciding supports, they are
scalar multiples of each other.
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Example: P4 Gram Matrix
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Tight Frames from Gram Matrix

Theorem
Let ϕ ∈ CN be the Chu or P4 sequence and let N = abN ′ where
gcd(a, b) = 1. Suppose G is the Gram matrix generated by the
Gabor system (ϕ,K × L) where K = 〈a〉 and L = 〈b〉. Then,

(a) rank(G ) = N.

(b) G has exactly one nonzero eigenvalue, NN ′.

In particular (a) and (b) together imply that the Gabor system
(ϕ,K × L) is a tight frame with frame bound NN ′.
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Proof

I K ∩ L = 〈ab〉.
I Gmn 6= 0 if and only if (`n − `m) ≡ (kn − km) mod N.

I This can only occur at the intersection of K and L, i.e.,

∀j ∈ (Z/N ′Z), (`n − `m) ≡ (kn − km) ≡ jab mod N

I Fix an m, we can write kn as kn = a(jm + jb) for some j

I By the column ordering of G we can write the n-th column by

n = knN
′ + `n/b.
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Proof (con’t)

I We want to look at the first N columns so we want n < N
and thus require kn < ab.

I Thus, (jm + jb) < b.

I There is exactly one such j ∈ (Z/N ′Z) and it is j = −bjm/bc.
I Consequently, for each row m, there is exactly 1 column

n ≤ N where Gmn 6= 0 and the first N columns of G are
linearly independent.

I rank(G ) = N.
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Proof (con’t)

I Let gn be the n-th column of G , n < N.

I The goal is to show that Ggn = NN ′gn.

I Ggn[m] is given by the inner product of row m and column n.

I The n-th column is the conjugate of the n-th row.

I If Ggn[m] 6= 0, then Gmn 6= 0 and Gnn 6= 0.
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Proof (con’t)

I Lemma implies row m and n have coinciding supports and are
constant multiples of each other thus, Gm(·) = Cmg

∗
n where

|Cm| = 1.

I Therefore, Ggn[m] = Cm‖gn‖2
2 = N2N ′Cm.

I Gnn = N, so gn[m] = NCm.

I Finally, Ggn[m] = (NN ′)(NCm) and we conclude the first N
columns of G are eigenvectors of G with eigenvalue NN ′.
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Future work: Continuous CAZAC Property

Is it possible to generalize CAZAC to the real line? The immediate
problem is the natural inner product to use for autocorrelation is
the L2(R) inner product, but if |f (x)| = 1 for every x ∈ R, then
clearly f 6∈ L2(R).
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Future work: Continuous CAZAC Property

Alternatives and ideas:

I Define a continuous autocorrelation on L2(T) and push torus
bounds to infinity.

I Distribution theory, esp. using tempered distributions.

I Wiener’s Generalized Harmonic Analysis, which includes a
theory of mean autocorrelation on R.
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Future work: Single Pixel Camera

I My work on this is with John Benedetto and Alfredo
Nava-Tudela and is an ongoing project.

I The original concept is due to Richard Baraniuk.

I The idea is to construct a camera using only a single light
receptor or sensor.

I This is accomplished by filtering through a pixel grid that
either admits or blocks light.

I Baraniuk’s original design does this with digital micromirror
devices.

I Several collections with different pixel grids are required but
compressed sensing theory allows this to be done efficiently.
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Questions?

Mark Magsino (UMD) Finite Gabor Frames


