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e
CAZAC Definition

Let ¢ € CN. ¢ is said to be a constant amplitude zero
autocorrelation (CAZAC) sequence if

Vj € (Z/NZ),|pjl =1 (CA)
and
;N1
TS (ENE) KA O 3 piaadi =0 (2AC)
J:
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Examples

Quadratic Phase Sequences

Let ¢ € CN and suppose for each j, ; is of the form ; = e~™PU)
where p is a quadratic polynomial. The following quadratic
polynomials generate CAZAC sequences:

> Chu: p(j) = j(j — 1)

» P4: p(j) =/ — N), Nis odd

» Odd-length Wiener: p(j) = sj?, gcd(s, N) = 1, N is odd

» Even-length Wiener: p(j) = sj2/2, gcd(s,2N) =1, N is even
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Examples

Let p be prime. Then, the Legendre symbol is defined as follows,

. 0 if j=0 mod p,
<J> =<1 if j = k> mod p has a solution,
—1 if j=k?> mod p does not have a solution.
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Examples

Bjorck Sequences

Let p be prime and ¢ € CP be of the form ¢; = €U). Then ¢ will
be CAZAC in the following cases:

> If p=1 mod 4, then,

- (3 Joen()

> If p=3 mod 4, then,

6 — {arccos G;—ﬁ) , if (%) =-1

0, otherwise
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Connection to Hadamard Matrices

Theorem
Let ¢ € CN and let H be the circulant matrix given by

SO—
e —
T2¢ ——

— TN—-1¥ —

Then, ¢ is a CAZAC sequence if and only if H is Hadamard, i.e.
H*H = Nidy and |Hjj| =1 for every (i,j). In particular there is a
one-to-one correspondence between CAZAC sequences and
circulant Hadamard matrices.
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Connection to Cyclic N-roots

Definition
x € CN is a cyclic N-root if it satisfies

xo+x1+-+xy-1=0
Xox1 + x1x2 + -+ xy—1x0 = 0

X0X1X2 - -+ XN—1 = 1
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Connection to Cyclic N-roots

Theorem

(a) If o € CN is a CAZAC sequence then,
(@1 P2 % )
wo p1 Nt
is a cyclic N-root.

(b) Ifx € CN is a cyclic N-root then,

Yo = X0, Pj = Pj-1Xj

is a CAZAC sequence.

(c) There is a one-to-one correspondence between CAZAC
sequences which start with 1 and cyclic N-roots. Norbert Wiener Center
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Gabor Frames

Definition

(a) Let o € CN and A C (Z/NZ) x (Z/NZ). The Gabor system,
(¢, N\) is defined by

(0, A) = {errip : (k, £) € A}

(b) If (p,A) is a frame for CV we call it a Gabor frame.
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Time-Frequency Transforms

Definition
Let ¢, € CN.
(a) The discrete periodic ambiguity function of ¢, Ap(p), is
defined by
1 = o 1
As(@)lk A = 55 D oli + Klplile 277N = ir_ip, erg).
Jj=0

(b) The short-time Fourier transform of ¢ with window 1), Vi, (),
is defined by

Vip(p)[k, €] = (o, ermit)).
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N
Full Gabor Frames Are Always Tight

Theorem -
Let o € CN\ {0}. and A = (Z/NZ) x (Z/NZ). Then, (¢,N) is
always a tight frame with frame bound N||¢||3.
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Janssen’s Representation

Definition
Let A C (Z/NZ) x (Z/NZ) be a subgroup. The adjoint subgroup
of A, \° C (Z/NZ) x (Z/NZ), is defined by

N = {(m7 n) L eTKenTm = enTme[fk,V(k,E) € /\}

Theorem (Janssen '95)
Let A be a subgroup of (Z/NZ) x (Z/NZ) and ¢ € CN. Then,
the (p,\) Gabor frame operator has the form

A
5:|N| Z (@, enTm®) enTm.
(m,n)eN°
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N°-sparsity and Tight Frames

Theorem (MM '17)

Let o € CN\ {0} and let A C (Z/NZ) x (Z/NZ) be a subgroup.
(¢, N) is a tight frame if and only if

V(m,n) € N°, Ap(p)[m,n] =0.

The frame bound is |A|Ap()][0,0].
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DPAF of Chu Sequence

DPAF of length 15 Chu sequence
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Figure: DPAF of length 15 Chu
sequence.
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N
Example: Chu/P4 Seqeunce

Proposition

Let N = abN' where gcd (a, b) = 1 and ¢ € CN be the Chu or P4
sequence. Define K = (a), L= (b) and N = K x L.

(a) A° = (N'a) x (N'b).
(b) (¢, N) is a tight Gabor frame bound NN'.
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DPAF of Even Length Wiener Sequence

DPAF of a 16 length Wiener sequence
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Figure: DPAF of length 16 P4
sequence.
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DPAF of Bjorck Sequence

DPAF of length 13 Bjorck sequence Lo
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Figure: DPAF of length 13 Bjorck sequence.
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DPAF of a Kronecker Product Sequence

DPAF of Bjorck(7) ® P4(4)
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Figure: DPAF of Kroneker product of
length 7 Bjorck and length 4 P4.
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Example: Kronecker Product Sequence

Proposition

Let u € CM be CAZAC, v € CN be CA, and p € CMN pe defined
by the Kronecker product: ¢ = u® v. If gcd (M,N) =1 and

N = (M) x (N), then (¢, M) is a tight frame with frame bound MN.
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Gram Matrices and Discrete Periodic Ambiguity Functions

Definition
Let F = {v;}M, be a frame for CN. The Gram matrix, G, is
defined by
Gjj = (vi, vj)-
In the case of Gabor frames F = {e/, 74, o : me€O0,--- , M —1},

we can write the Gram matrix in terms of the discrete periodic
ambiguity function of ¢:

Gmn - Ne_zﬂ-ikn(zn_zm)/NAP(SD)[kn - km: én - em]
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Gram Matrix of Chu and P4 Sequences

Lemma
Let p € CN be the Chu or P4 sequence and let N = abN' where

gcd(a, b) = 1. Suppose G is the Gram matrix generated by the
Gabor system (¢, K x L) where K = (a) and L = (b). Then,
(a) The support of the rows (or columns) of G either completely
conincide or are completely disjoint.
(b) If two rows (or columns) have coinciding supports, they are
scalar multiples of each other.
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Example: P4 Gram Matrix

(k£

Gram Matrix of P4 Sequence

|
] n |
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Tight Frames from Gram Matrix

Theorem

Let p € CN be the Chu or P4 sequence and let N = abN' where
gcd(a, b) = 1. Suppose G is the Gram matrix generated by the
Gabor system (¢, K x L) where K = (a) and L = (b). Then,

(a) rank(G) = N.
(b) G has exactly one nonzero eigenvalue, NN'.

In particular (a) and (b) together imply that the Gabor system
(p, K x L) is a tight frame with frame bound NN'.
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