Zak transform analysis of shift-invariant subspaces

Joseph W. Iverson

Department of Mathematics & Norbert Wiener Center
University of Maryland
College Park, MD

NWC Seminar May 11, 2018

Co-author / PhD advisor

Marcin Bownik Professor University of Oregon

Outline

Group frames

Shift-invariant spaces

3 Zak transform analysis

Group frames

Example: Dynamical sampling

Let $\mathcal H$ be a Hilbert space evolving discretely under a unitary V. Fix "sensors" $\{f_j\}_{j\in I}$ in $\mathcal H$. Measure evolutions of $g\in \mathcal H$:

$$Tg = \{\langle V^k g, f_j \rangle\}_{k \in \mathbb{Z}, j \in I} = \{\langle g, V^{-k} f_j \rangle\}_{k \in \mathbb{Z}, j \in I}$$

We can stably recover $g \in \mathcal{H}$ from Tg if and only if $\{V^k f_j\}_{k \in \mathbb{Z}, j \in I}$ is a frame for \mathcal{H} .

V defines a representation $\pi\colon \mathbb{Z} o U(\mathcal{H}),\ \pi(k)=V^k.$ We want a frame

$$\{V^k f_j\}_{k \in \mathbb{Z}, j \in I} = \{\pi(k) f_j\}_{k \in \mathbb{Z}, j \in I}$$

that is the "orbit" of the sensors $\{f_j\}_{j\in I}$.

Group frames

Example: Dynamical sampling

Let $\mathcal H$ be a Hilbert space evolving discretely under a unitary V. Fix "sensors" $\{f_j\}_{j\in I}$ in $\mathcal H$. Measure evolutions of $g\in \mathcal H$:

$$Tg = \{\langle V^k g, f_j \rangle\}_{k \in \mathbb{Z}, j \in I} = \{\langle g, V^{-k} f_j \rangle\}_{k \in \mathbb{Z}, j \in I}$$

We can stably recover $g \in \mathcal{H}$ from Tg if and only if $\{V^k f_j\}_{k \in \mathbb{Z}, j \in I}$ is a frame for \mathcal{H} .

V defines a representation $\pi\colon\mathbb{Z}\to U(\mathcal{H}),\ \pi(k)=V^k.$ We want a frame

$$\{V^k f_j\}_{k \in \mathbb{Z}, j \in I} = \{\pi(k) f_j\}_{k \in \mathbb{Z}, j \in I}$$

that is the "orbit" of the sensors $\{f_j\}_{j\in I}$.

Example

Let $\mathbb{Z}/3$ act on \mathbb{R}^2 by rotation

Spin around f = (1,0) to get Mercedes-Benz

Group frames

Definition

Let H be a locally compact group with left Haar measure dx. Let $\pi: H \to U(\mathcal{H}_{\pi})$ be a unitary representation on \mathcal{H}_{π} . A countable family $\mathscr{A} = \{f_i\}_{i \in I} \subseteq \mathcal{H}_{\pi}$ generates a group frame under π if $\exists A, B > 0$ s.t.

$$A\|g\|^2 \leq \sum_{i \in I} \int_H |\langle g, \pi(x)f_j \rangle|^2 dx \leq B\|g\|^2$$
 for all $g \in \mathcal{H}_{\pi}$.

In other words, the joint orbit of \mathscr{A} is a (continuous) frame for \mathcal{H}_{π} .

Example

Let \mathbb{Z} act on $L^2(\mathbb{R})$ by integer shifts, $[\pi(k)f](x) = f(x-k)$

The orbit of a scaling function f is $\{f(\cdot + k)\}_{k \in \mathbb{Z}}$, as in an MRA

Group frames

Great Big Question

Given $\pi: H \to U(\mathcal{H}_{\pi})$, which families $\mathscr{A} \subseteq \mathcal{H}_{\pi}$ generate group frames?

At best, $\mathscr{A} = \{f_j\}_{j \in I}$ generates a frame for the invariant subspace

$$S(\mathscr{A}) := \overline{\operatorname{span}}\{\pi(x)f_j : x \in H, j \in I\}$$

Proof

If $S(\mathscr{A}) \neq \mathcal{H}_{\pi}$, then $\exists g \perp S(\mathscr{A}), g \neq 0$, and

$$\sum_{i\in I}\int_{H}|\langle g,\pi(x)f_{j}\rangle|^{2}dx=0\ngeq A\left\Vert g\right\Vert ^{2}.$$

Group frames

Great Big Question 1

Given $\pi: H \to U(\mathcal{H}_{\pi})$, which families $\mathscr{A} \subseteq \mathcal{H}_{\pi}$ generate group frames?

At best, $\mathscr{A} = \{f_j\}_{j \in I}$ generates a frame for the invariant subspace

$$S(\mathscr{A}) := \overline{\operatorname{span}}\{\pi(x)f_j : x \in H, j \in I\}$$

Great Big Question 2

What are the invariant subspaces of \mathcal{H}_{π} ?

SI spaces

Fix a locally compact group $G \supseteq H$.

Left translation operator for $y \in G$:

$$L_y: L^2(G) \rightarrow L^2(G),$$

$$(L_y f)(x) = f(y^{-1}x) \qquad (x, y \in G).$$

Definition

A subspace $V \subseteq L^2(G)$ is *H*-shift invariant (*H*-SI) if

$$f \in V \implies L_y f \in V$$
 for all $y \in H$.

SI spaces

Theorem (Bownik, JI – in preparation)

Let $\pi: H \to U(\mathcal{H}_{\pi})$ be a representation, and let $\{f_j\}_{j \in I} \subseteq \mathcal{H}_{\pi}$ be a countable family that generates a group frame for \mathcal{H}_{π} . If G is any second countable group containing H as a closed subgroup of index $[G:H] \geq |I|$, then there is an isometric embedding $T:\mathcal{H}_{\pi} \to L^2(G)$ s.t.

$$T\pi(y) = L_y T$$
 for all $y \in H$.

Corollary

Up to unitary equivalence, all group frames are given by shifts in shift-invariant spaces.

Proof

T maps \mathcal{H}_{π} unitarily onto the shift-invariant space $T(\mathcal{H}_{\pi})$ while sending the group frame $\{\pi(y)f_i\}_{y\in G,\,j\in I}$ to $\{L_yTf_i\}_{y\in H,\,j\in I}$.

SI spaces

Theorem (Bownik, JI – in preparation)

Let $\pi\colon H\to U(\mathcal{H}_\pi)$ be a representation, and let $\{f_j\}_{j\in I}\subseteq \mathcal{H}_\pi$ be a countable family that generates a group frame for \mathcal{H}_π . If G is any second countable group containing H as a closed subgroup of index $[G:H]\geq |I|$, then there is an isometric embedding $T:\mathcal{H}_\pi\to L^2(G)$ s.t.

$$T\pi(y) = L_y T$$
 for all $y \in H$.

Corollary

Up to unitary equivalence, all group frames are given by shifts in shift-invariant spaces.

Proof.

T maps \mathcal{H}_{π} unitarily onto the shift-invariant space $T(\mathcal{H}_{\pi})$ while sending the group frame $\{\pi(y)f_i\}_{v \in G, i \in I}$ to $\{L_v Tf_i\}_{v \in H, i \in I}$.

Example

We have $\mathbb{Z} \subseteq \mathbb{R}$ as a closed subgroup of infinite index. Hence:

Corollary (Bownik, JI)

Suppose $\mathcal H$ is a Hilbert spacing evolving under a unitary V for which there exist "sensors" $\{f_j\}_{j\in I}$ that produce a frame $\{V^kf_j\}_{j\in I}$. Then up to unitary equivalence $\mathcal H$ is a shift-invariant subspace of $L^2(\mathbb R)$ and V is the shift

$$(Vg)(x)=g(x-1).$$

Great big questions, rephrased

Great Big Question 1'

Given a locally compact subgroup pair $H \subseteq G$, which families $\mathscr{A} \subseteq L^2(G)$ generate group frames under shifts by H?

Great Big Question 2'

What are the H-SI subspaces of $L^2(G)$?

This talk: Focus on G and H both abelian, second countable.

Outline

Group frames

Shift-invariant spaces

3 Zak transform analysis

Problem

Which subspaces of $L^2(\mathbb{R}^n)$ are invariant under translation?

Solution (Wiener, 1932)

Use the Fourier transform!

Key fact: Translation \rightarrow Modulation

$$(L_y f)^{\hat{}}(x) = e^{-2\pi i y \cdot x} \cdot \hat{f}(x)$$

Given $E \subseteq \mathbb{R}^n$, define $V_E = \{ f \in L^2(\mathbb{R}^n) : \hat{f}(x) = 0 \text{ for a.e. } x \notin E \}.$

It's translation invariant:

$$f \in V_E, y \in \mathbb{R}^n \implies (L_y f)\hat{\ }(x) = e^{-2\pi i y \cdot x} \cdot \hat{f}(x) = 0 \text{ for } x \notin E.$$

Wiener: That's every TI space!

Fiberization operator:

$$\mathcal{T} \colon L^2(\mathbb{R}^n) \to L^2([0,1)^n; \ell^2(\mathbb{Z}^n)),$$

$$(\mathcal{T}f)(x) = \left\{ \hat{f}(x+k) \right\}_{k \in \mathbb{Z}^n} \qquad \left(f \in L^2(\mathbb{R}^n), \, x \in [0,1)^n \right).$$

Composition of unitaries $L^2(\mathbb{R}^n)\cong L^2(\mathbb{R}^n)\cong L^2([0,1)^n;\ell^2(\mathbb{Z}^n))$:

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(\xi)|^2 d\xi = \int_{0}^{1} \sum_{k \in \mathbb{Z}} |\hat{f}(\xi + k)|^2 d\xi$$

Fiberization operator:

$$\mathcal{T} \colon L^2(\mathbb{R}^n) \to L^2([0,1)^n; \ell^2(\mathbb{Z}^n)),$$

$$(\mathcal{T}f)(x) = \left\{ \hat{f}(x+k) \right\}_{k \in \mathbb{Z}^n} \qquad \left(f \in L^2(\mathbb{R}^n), \, x \in [0,1)^n \right).$$

Integer shifts \rightarrow modulation:

$$(\mathcal{T}L_m f)(x) = \left\{ (L_m f)^{\hat{}}(x+k) \right\}_{k \in \mathbb{Z}^n} = \left\{ e^{-2\pi i m \cdot (x+k)} \cdot \hat{f}(x+k) \right\}_{k \in \mathbb{Z}^n}$$
$$= \left\{ e^{-2\pi i m \cdot x} \cdot \hat{f}(x+k) \right\}_{k \in \mathbb{Z}^n} = e^{-2\pi i m \cdot x} \cdot (\mathcal{T}f)(x).$$

Fiberization operator:

$$\mathcal{T} \colon L^2(\mathbb{R}^n) \to L^2([0,1)^n; \ell^2(\mathbb{Z}^n)),$$

$$(\mathcal{T}f)(x) = \left\{ \hat{f}(x+k) \right\}_{k \in \mathbb{Z}^n} \qquad \left(f \in L^2(\mathbb{R}^n), \, x \in [0,1)^n \right).$$

Key properties: (1) unitary; (2) integer shifts \rightarrow modulation

$$(\mathcal{T}L_kf)(x) = e^{-2\pi i k \cdot x} \cdot (\mathcal{T}f)(x) \qquad (f \in L^2(\mathbb{R}^n), \ k \in \mathbb{Z}^n, \ x \in [0,1)^n).$$

Which subspaces of $L^2([0,1)^n; \ell^2(\mathbb{Z}^n))$ are modulation invariant (MI)?

Definition

A range function maps

$$J: [0,1)^n \to \{ \text{closed subspaces of } \ell^2(\mathbb{Z}^n) \}.$$

Let P(x) be projection onto $J(x) \subseteq \ell^2(\mathbb{Z}^n)$. We say J is measurable if $x \mapsto \langle P_J(x)u, v \rangle$ is measurable on $[0,1)^n$ for every $u, v \in \ell^2(\mathbb{Z}^n)$.

Given a measurable range function

$$J \colon [0,1)^n \to \{ \text{closed subspaces of } \ell^2(\mathbb{Z}^n) \},$$

 $\int_{J(x)}^{x} \int_{(0,1)}^{x} f(2)$

define

$$M_J = \{ \varphi \in L^2([0,1)^n; \ell^2(\mathbb{Z}^n)) : \varphi(x) \in J(x) \text{ for a.e. } x \in [0,1)^n \}.$$

It's modulation invariant: for any $\varphi \in M_J$, we have

$$e^{-2\pi i k \cdot x} \cdot \varphi(x) \in J(x)$$
 for a.e. $x \in [0,1)^n$.

Helson & Srinivasan (1964): Those are all the MI spaces!

Fiberization operator $\mathcal{T}\colon L^2(\mathbb{R}^n) \to L^2([0,1)^n;\ell^2(\mathbb{Z}^n))$,

$$(\mathcal{T}f)(x) = \left\{\hat{f}(x+k)\right\}_{k \in \mathbb{Z}^n} \qquad \left(f \in L^2(\mathbb{R}^n), x \in [0,1)^n\right)$$

Corollary (de Boor, DeVore, and Ron, 1994)

SI subspaces of $L^2(\mathbb{R}^n)$ are indexed by measurable range functions

$$J: [0,1)^n \to \{ \text{closed subspaces of } \ell^2(\mathbb{Z}^n) \}.$$

The subspace associated with J is

$$V_J = \{ f \in L^2(\mathbb{R}^n) : (\mathcal{T}f)(x) \in J(x) \text{ for a.e. } x \in [0,1)^n \}.$$

Theorem (Bownik, 2000)

Fix $\mathscr{A} = \{f_j\}_{j \in I} \subseteq L^2(\mathbb{R}^n)$, and let $J \colon [0,1)^n \to \{\text{closed subspaces of } \ell^2(\mathbb{Z}^n)\}$ be given by

$$J(x) = \overline{\operatorname{span}}\{(\mathcal{T}f_j)(x) : j \in I\} \subseteq \ell^2(\mathbb{Z}^n) \qquad (x \in [0,1)^n).$$

Then $S(\mathscr{A}) = V_J$. For constants A, B > 0, TFAE:

- **1** The integer shifts $\{L_k f_j\}_{j \in I, k \in \mathbb{Z}^n}$ form a frame for V_J w/ bounds A, B.
- ② For a.e. $x \in [0,1)^n$, $\{(\mathcal{T}f_j)(x)\}_{j \in I}$ is a frame for J(x) w/ bounds A, B.

Example: $\mathbb{Z}^n \subseteq \mathbb{R}^n$, one generator

Corollary (Benedetto & Li, 1998)

Given $f \in L^2(\mathbb{R}^n)$, denote $S(f) = \overline{\operatorname{span}}\{f(\cdot + k) : k \in \mathbb{Z}^n\}$. Then the following are equivalent for any constants A, B > 0:

- **①** The integer shifts $\{f(\cdot + k) : k \in \mathbb{Z}^n\}$ produce a frame for S(f) with bounds A, B.
- ② For a.e. $x \in [0,1)^n$, $\sum_{k \in \mathbb{Z}^n} \left| \hat{f}(x+k) \right|^2 \in \{0\} \cup [A,B]$.

Proof

The range function for S(f) is $J(x) = \text{span}\{(\mathcal{T}f)(x)\}$. Given $x \in [0,1)^n$, we have that $\{(\mathcal{T}f)(x)\}$ is a frame for J(x) if and only if:

- (Tf)(x) = 0, hence $J(x) = \{0\}$, or
- $A \le \|(\mathcal{T}f)(x)\|^2 \le B$.

Now observe that $\|(\mathcal{T}f)(x)\|^2 = \sum_{k \in \mathbb{Z}^n} |\hat{f}(x+k)|^2$.

Example: $\mathbb{Z}^n \subseteq \mathbb{R}^n$, one generator

Corollary (Benedetto & Li, 1998)

Given $f \in L^2(\mathbb{R}^n)$, denote $S(f) = \overline{\operatorname{span}}\{f(\cdot + k) : k \in \mathbb{Z}^n\}$. Then the following are equivalent for any constants A, B > 0:

- The integer shifts $\{f(\cdot + k) : k \in \mathbb{Z}^n\}$ produce a frame for S(f) with bounds A, B.
- ② For a.e. $x \in [0,1)^n$, $\sum_{k \in \mathbb{Z}^n} \left| \hat{f}(x+k) \right|^2 \in \{0\} \cup [A,B]$.

Proof.

The range function for S(f) is $J(x) = \text{span}\{(\mathcal{T}f)(x)\}$. Given $x \in [0,1)^n$, we have that $\{(\mathcal{T}f)(x)\}$ is a frame for J(x) if and only if:

- $(\mathcal{T}f)(x) = 0$, hence $J(x) = \{0\}$, or
- $A \leq ||(Tf)(x)||^2 \leq B$.

Now observe that $\|(\mathcal{T}f)(x)\|^2 = \sum_{k \in \mathbb{Z}^n} \left| \hat{f}(x+k) \right|^2$.

Extensions to locally compact abelian (LCA) groups

What about general $H \subseteq G$, both LCA?

- Cabrelli and Paternostro (2010), Kamyabi Gol and Raisi Tousi (2010): Generalize to G second countable LCA, $H \subseteq G$ closed and discrete, and G/H is compact.
- Bownik and Ross (2013): Remove "H is discrete" above. Still need G abelian and G/H compact.
- Bad news: Can't do things like $\mathbb{R}^m \subseteq \mathbb{R}^n$ or $\mathbb{Z}^m \subseteq \mathbb{R}^n$ when m < n.

Cast of characters

Dual group \hat{G} : All cont's homomorphisms $\alpha \colon G \to \mathbb{T}$,

$$(\alpha + \beta)(x) := \alpha(x) \cdot \beta(x)$$
 $(\alpha, \beta \in \hat{G}; x \in G)$

Fourier transform $\mathcal{F}_{\mathcal{G}}\colon L^2(\mathcal{G}) o L^2(\hat{\mathcal{G}})$,

$$(\mathcal{F}_G f)(\alpha) = \hat{f}(\alpha) = \int_G f(x) \overline{\alpha(x)} dx \qquad (\alpha \in \hat{G})$$

Plancherel measure on \hat{G} : \mathcal{F}_{G} is unitary

Annihilator $H^* = \left\{ lpha \in \hat{\mathcal{G}} : lpha(y) = 1 \text{ for all } y \in H \right\}$

What is the fiberization operator doing?

$$\mathcal{T} \colon L^2(\mathbb{R}^n) \to L^2(\mathbb{T}^n; \ell^2(\mathbb{Z}^n)),$$

$$(\mathcal{T}f)(x) = \left\{ \hat{f}(x+k) \right\}_{k \in \mathbb{Z}^n} \qquad \left(f \in L^2(\mathbb{R}^n), \, x \in [0,1)^n \right).$$

- **1** Apply the Fourier transform $L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$.
- Oo the periodization trick

$$\int_{\mathbb{R}^n} f(x) \ dx = \int_{[0,1)^n} \sum_{k \in \mathbb{Z}^n} f(x+k) \ dx$$

to identify $L^2(\mathbb{R}^n) \cong L^2([0,1)^n; \ell^2(\mathbb{Z}^n))$. Basically, think of $[0,1)^n$ as being $(\mathbb{R}^n)^{\hat{}}/(\mathbb{Z}^n)^*$, unrolled in $(\mathbb{R}^n)^{\hat{}}$.

Why do we like co-compactness?

Problem: When G/H is not compact, H^* is not discrete. Then we can't think of \hat{G}/H^* as a set in \hat{G} with positive measure.

Bottom line

When G/H is not compact, it's not clear how to define fiberization.

Solution: Don't use the \hat{G} -measure for $\hat{G}/H^*!$

Lemma (Feldman and Greenleaf, 1968)

There is a Borel measurable cross-section $\tau \colon \hat{G}/H^* \to \hat{G}$ whose image $\Omega := \tau(\hat{G}/H^*)$ intersects each coset of H^* exactly once.

Invariant measure on \hat{G}/H^* :

$$\int_{\hat{G}} f(\alpha) d\alpha = \int_{\hat{G}/H^*} \int_{H^*} f(\kappa + \alpha) d\alpha d(\kappa + H^*) \qquad \left(f \in L^1(\hat{G}) \right).$$

Measure space isomorphism: $\hat{G}/H^* \times H^* \cong \hat{G}$,

$$(\alpha + H^*, \kappa) \mapsto \kappa + \tau(\alpha + H^*) \qquad (\alpha + H^* \in \hat{G}/H^*, \kappa \in H^*)$$

Hilbert space isomorphism: $L^2(\hat{G}) \cong L^2(\hat{G}/H^* \times H^*) \cong L^2(\hat{G}/H^*; L^2(H^*))$

Fiberization operator

Definition

The fiberization operator

$$\mathcal{T}\colon L^2(G)\to L^2(\hat{G}/H^*;L^2(H^*))$$

is given by

$$(\mathcal{T}f)(\alpha H^*)(\kappa) = \hat{f}(\kappa + \tau(\alpha + H^*)) \qquad (f \in L^2(G), \alpha + H^* \in \hat{G}/H^*, \kappa \in H^*).$$

Basically: Apply Fourier transform for G, then split off H^* .

Key properties: (1) unitary; (2) H-shifts \rightarrow modulations

$$(\mathcal{T}L_y f)(\alpha + H^*) = \overline{\alpha(y)} \cdot (\mathcal{T}f)(\alpha)$$

Example: $\mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$

$$G = \mathbb{R}^2$$
 $\hat{G} \cong \mathbb{R}^2$ $\hat{G}/H^* \cong \mathbb{R}$ $H = \mathbb{R} \times \{0\}$ $H^* \cong \{0\} \times \mathbb{R}$ $\Omega \cong \mathbb{R} \times \{0\}$

$$\mathcal{T} \colon L^2(\mathbb{R}^2) \to L^2(\mathbb{R}; L^2(\mathbb{R})),$$

$$(\mathcal{T}f)(x) = \hat{f}(x, \cdot) \qquad (f \in L^2(\mathbb{R}^2), x \in \mathbb{R})$$

Example: $\mathbb{Z} \times \{0\} \subseteq \mathbb{R}^2$

$$G = \mathbb{R}^2$$
 $\hat{G} \cong \mathbb{R}^2$ $\hat{G}/H^* \cong \mathbb{T}$ $H = \mathbb{Z} \times \{0\}$ $H^* \cong \mathbb{Z} \times \mathbb{R}$ $\Omega \cong [0, 1) \times \{0\}$

$$\mathcal{T} \colon L^2(\mathbb{R}^2) \to L^2([0,1); L^2(\mathbb{Z} \times \mathbb{R})),$$
$$(\mathcal{T}f)(x)(k,y) = \hat{f}(x+k,y) \qquad \left(f \in L^2(\mathbb{R}^2), x \in [0,1), k \in \mathbb{Z}, y \in \mathbb{R}\right)$$

Classification of SI spaces

Fiberization operator $\mathcal{T} \colon L^2(G) \to L^2(\hat{G}/H^*; L^2(H^*))$

Theorem (JI)

H-SI spaces in $L^2(G)$ are indexed by measurable range functions

$$J: \hat{G}/H^* \to \{ \text{closed subspaces of } L^2(H^*) \}.$$

The subspace corresponding to J is

$$V_J = \{ f \in L^2(G) : (\mathcal{T}f)(\alpha + H^*) \in J(\alpha + H^*) \text{ for a.e. } \alpha + H^* \in \hat{G}/H^* \}.$$

Characterization of SI frames

Fiberization operator $\mathcal{T} \colon L^2(G) \to L^2(\hat{G}/H^*; L^2(H^*))$

Theorem (JI)

Fix $\mathscr{A} = \{f_j\}_{j \in I} \subseteq L^2(G)$, and let $J \colon \hat{G}/H^* \to \{\text{closed subspaces of } L^2(H^*)\}$ be given by

$$J(\alpha+H^*)=\overline{\operatorname{span}}\{(\mathcal{T}f_j)(\alpha+H^*):j\in I\}\subseteq L^2(H^*)\qquad \left(\alpha+H^*\in \hat{G}/H^*\right).$$

Then $S(\mathscr{A}) = V_J$. For constants A, B > 0, TFAE:

- **1** The H-shifts $\{L_y f_j\}_{j \in I, y \in H}$ form a frame for V_J with bounds A, B.
- ② For a.e. $\alpha + H^* \in \hat{G}/H^*$, $\{(\mathcal{T}f_j)(\alpha + H^*)\}_{j \in I}$ is a frame for $J(\alpha + H^*)$ with bounds A, B.

Outline

Group frames

Shift-invariant spaces

3 Zak transform analysis

An alternative to fiberization

The Zak transform is a unitary $Z:L^2(\mathbb{R}^n)\to L^2([0,1)^n\times [0,1)^n)$,

$$(Zf)(t,s) = \sum_{k \in \mathbb{Z}^n} f(t+k)e^{-2\pi ik \cdot s} \qquad (s,t \in [0,1)^n).$$

- First used separately by Gelfand (1950) and Weil (1964). Zak rediscovered it later.
- ullet Key properties: (1) Unitary, (2) integer shifts o modulation

$$(ZL_kf)(s) = e^{-2\pi i k \cdot s} \cdot (Zf)(s) \qquad (f \in L^2(\mathbb{R}^n), k \in \mathbb{Z}^n, s \in [0,1)^n).$$

An alternative to fiberization

The Zak transform is a unitary $Z: L^2(\mathbb{R}^n) \to L^2([0,1)^n; L^2([0,1)^n))$,

$$(Zf)(s)(t) = \sum_{k \in \mathbb{Z}^n} f(t+k)e^{-2\pi i k \cdot s} \qquad (s, t \in [0,1)^n).$$

- First used separately by Gelfand (1950) and Weil (1964). Zak rediscovered it later.
- ullet Key properties: (1) Unitary, (2) integer shifts o modulation

$$(ZL_k f)(s) = e^{-2\pi i k \cdot s} \cdot (Zf)(s) \qquad (f \in L^2(\mathbb{R}^n), k \in \mathbb{Z}^n, s \in [0,1)^n).$$

An alternative to fiberization

Fix a Borel cross-section $\tau \colon G/H \to G$, i.e. transversal $\Omega = \tau(G/H) \subseteq G$.

Definition

Given $f: G \to \mathbb{C}$ and $x + H \in G/H$, define $f_{x+H}: H \to \mathbb{C}$ by

$$f_{x+H}(y) = f(\tau(x) + y)$$
 $(y \in H)$.

The Zak transform is the unitary $Z:L^2(G)\to L^2(\hat{H};L^2(G/H))$ given by

$$(Zf)(\alpha)(x+H)=f_{x+H}^{\hat{}}(\alpha) \qquad (f\in L^2(G), \ \alpha\in \hat{H}, \ x+H\in G/H).$$

Basically: Treat cosets like copies of H, and apply the Fourier transform.

Key property: H-shifts \rightarrow modulation

$$(ZL_y f)(\alpha) = \overline{\alpha}(y) \cdot (Zf)(\alpha)$$

Example: $\mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$

$$G=\mathbb{R}^2$$
 $G/H\cong\mathbb{R}$ $\hat{H}\cong\mathbb{R}$ $H=\mathbb{R}\times\{0\}$ $\Omega=\{0\}\times\mathbb{R}$

$$(f_x)(t) = f(t,x)$$
 $(f \in L^2(\mathbb{R}^2), x, t \in \mathbb{R})$

$$Z: L^{2}(\mathbb{R}^{2}) \to L^{2}(\mathbb{R}; L^{2}(\mathbb{R})),$$
$$(Zf)(\xi)(x) = (f_{x})^{\hat{}}(\xi) = \int_{\mathbb{R}} f(t, x) e^{-2\pi i t \xi} dt \qquad (x, \xi \in \mathbb{R})$$

Example: $\mathbb{Z} \times \{0\} \subseteq \mathbb{R}^2$

$$\begin{split} G &= \mathbb{R}^2 & G/H \cong \mathbb{T} \times \mathbb{R} & \hat{H} \cong \mathbb{T} \cong [0,1) \\ H &= \mathbb{Z} \times \{0\} & \Omega = [0,1) \times \mathbb{R} \end{split}$$

$$(f_{x,y})(k) = f(x+k,y)$$
 $(f \in L^2(\mathbb{R}^2), x \in [0,1), y \in \mathbb{R}, k \in \mathbb{Z})$

$$Z: L^2(\mathbb{R}^2) \to L^2([0,1); L^2([0,1) \times \mathbb{R})),$$

$$(Zf)(t)(x,y) = (f_{x,y})^{\hat{}}(e^{2\pi ti}) = \sum_{k \in \mathbb{Z}} f(x+k,y)e^{2\pi kti} \quad (x,t \in [0,1); \ y \in \mathbb{R})$$

The Zak transform and SI spaces

Zak transform $Z\colon L^2(G) \to L^2(\hat{H};L^2(G/H))$

Theorem (JI)

H-SI spaces in $L^2(G)$ are indexed by measurable range functions

 $J \colon \hat{H} \to \{ \text{closed subspaces of } L^2(G/H) \}.$

The space associated with J is

$$V_J = \{ f \in L^2(G) : (Zf)(\alpha) \in J(\alpha) \text{ for a.e. } \alpha \in \hat{H} \}.$$

Zak transform analysis of H-SI frames

Theorem (JI)

Fix $\mathscr{A} = \{f_j\}_{j \in I} \subseteq L^2(G)$, and let $J \colon \hat{H} \to \{\text{closed subspaces of } L^2(G/H)\}$ be given by

$$J(\alpha) = \overline{\operatorname{span}}\{(Zf_j)(\alpha) : j \in I\} \subseteq L^2(G/H) \qquad (\alpha \in \hat{H}).$$

Then $S(\mathscr{A}) = V_J$. For constants A, B > 0, TFAE:

- **1** The H-shifts $\{L_y f_j\}_{j \in I, y \in H}$ form a frame for V_J with bounds A, B.
- **②** For a.e. $\alpha \in \hat{H}$, $\{(Zf_j)(\alpha)\}_{j \in I}$ is a frame for $J(\alpha)$ with bounds A, B.

Corollary (JI; cf. Benedetto & Li, 1998)

Let $Z \colon L^2(\mathbb{R}^n) \to L^2([0,1)^n \times [0,1)^n)$ be the Zak transform as usually defined,

$$(Zf)(t,s) = \sum_{k \in \mathbb{Z}^n} f(t+k)e^{-2\pi ik \cdot s} \qquad (s,t \in [0,1)^n).$$

Given $f \in L^2(\mathbb{R}^n)$, denote $S(f) = \overline{\operatorname{span}}\{f(\cdot + k) : k \in \mathbb{Z}^n\}$. Then the following are equivalent for any constants A, B > 0:

- **①** The integer shifts $\{f(\cdot + k) : k \in \mathbb{Z}^n\}$ produce a frame for S(f) with bounds A, B.
- ② For a.e. $s \in [0,1)^n$,

$$\int_{[0,1)^n} |Zf(t,s)|^2 dt \in \{0\} \cup [A,B].$$

Questions?

